Towards Automatic Phone-to-Phone Communication for Vehicular Networking Applications

Shaohan Hu, Hengchang Liu, Lu Su, Hongyan Wang, Tarek Abdelzaher, Pan Hui, Wei Zheng, Zhiheng Xie, John Stankovic

Motivation

Motivation

richer traffic info

infotainment opportunities

higher road awareness

... and more!

Goal

Build a Phone-to-Phone communication system for the tens of millions of vehicles on the roads today

Goal

Build a Phone-to-Phone communication system for the tens of millions of vehicles on the roads today

WiFi

AP

- **Key requirements**
 - No change to the existing infrastructure / protocols
 - Transparent to the end-users (e.g., no rooting / jailbreaking)

System Model

System Model

 Vehicle-resident phones toggle between hotspot and client modes

System Model

- Vehicle-resident phones toggle between hotspot and client modes
- Only considering pairwise communication: T-Drive dataset => ~80% encounters are pairwise (T-Drive: ~10k taxicabs' 1-week traces in Beijing, collected by MSRA)

Problem Statement

How to design the toggling scheme for optimal System Efficiency?

Problem Statement

How to design the toggling scheme for optimal System Efficiency?

 $\mathbf{T}_{data \ transfer \ can \ take \ place}$

 $\mathbf{T}_{\text{phones in range with each other (or AP)}}$

Problem Statement

How to design the toggling scheme for optimal System Efficiency?

$\mathbf{T}_{data \ transfer \ can \ take \ place}$

 $\mathbf{T}_{\text{phones in range with each other (or AP)}}$

Analytical Formulation

 t_0 Hotspot: r t_0 Client: sTime Frame: $f = 2t_0 + r + s$

Analytical Formulation

 t_0 Hotspot: r t_0 Client: sTime Frame: $f = 2t_0 + r + s$

 $\langle r^*, s^* \rangle = \arg \max_{r,s} E_{M_1,M_2} \left[E(\beta) T_1 + E(\gamma) T_2 \right]$

Analytical Formulation

 t_0 Hotspot: r t_0 Client: sTime Frame: $f = 2t_0 + r + s$

$$\langle r^*, s^* \rangle = \arg \max_{r,s} E_{M_1,M_2} \left[E(\beta) T_1 + E(\gamma) T_2 \right]$$

• M_1 (or M_2): Phone-Phone (or Phone-AP) meeting duration

- T_1 (or T_2) : Phone-Phone (or Phone-AP) expected transmission duration
- β (or γ) : Phone-Phone (or Phone-AP) meeting rate

Solution Sketch

• M_1, M_2, β, γ (meeting times and rates): estimated from empirical data

• $\langle r^*, s^* \rangle$ (optimal mode-toggling policy): solved using off-the-shelf non-linear optimization solver

?

Phone-to-Phone

Phone-to-Phone

Define a periodic function

$$f(t) = \begin{cases} 0, & 0 \le t \le t_0 \\ 1, & t_0 < t \le t_0 + r \\ 0, & t_0 + r < t \le 2t_0 + r \\ -1, & 2t_0 + r < t \le 2t_0 + r + s \end{cases}$$

with period $f = 2t_0 + r + s$.

=> during mode switching

- => in **hotspot** mode
- => during mode switching
- => in **client** mode

Phone-to-Phone

Define a periodic function

$$f(t) = \begin{cases} 0, & 0 \le t \le t_0 \\ 1, & t_0 < t \le t_0 + r \\ 0, & t_0 + r < t \le 2t_0 + r \\ -1, & 2t_0 + r < t \le 2t_0 + r + s \end{cases}$$

with period $f = 2t_0 + r + s$.

=> during mode switching
=> in hotspot mode
=> during mode switching

=> in **client** mode

Then, the time since meeting when two phones establish connection is

 $t^* = \min_{t} \{ t : f_1(t) f_2(t) < 0 \}$

Phone-to-Phone

Define a periodic function

$$f(t) = \begin{cases} 0, & 0 \le t \le t_0 \\ 1, & t_0 < t \le t_0 + r \\ 0, & t_0 + r < t \le 2t_0 + r \\ -1, & 2t_0 + r < t \le 2t_0 + r + s \end{cases}$$

with period $f = 2t_0 + r + s$.

=> during mode switching
=> in hotspot mode
=> during mode switching
=> in client mode

Then, the time since meeting when two phones establish connection is

$$t^* = \min_{t} \{ t : f_1(t) f_2(t) < 0 \}$$

Therefore, the expected phone-to-phone transmission time is

$$T_1 = E_{t_1, t_2}[M_1 - t^*] = \frac{1}{f^2} \int_{t_1} \int_{t_2} (M_1 - t^*) dt_2 dt_1$$

Phone-to-Phone

t_1	t_2	t^*	M_1	$E(M_1 - t^*)$
$[0, t_0)$	$[0, t_0)$	∞	\sim	0
$[0, t_0)$	$[t_0, t_0 + r)$		$M_1 \ge t_0 + r$	$\frac{1}{2f^2} \left[(M_1 - t_0)^2 - \frac{1}{3}(M_1 - r)^3 + \frac{1}{3}(M_1 - t_0 - r)^3 \right]$
	or	$2t_0 + r - t_2$	$r \le M_1 < t_0 + r$	$\frac{1}{2f^2} \left[(M_1 - t_0)^2 t_0 - \frac{1}{3} (M_1 - r)^3 \right]$
$[t_0, t_0 + r)$	$[0,t_0)$		$t_0 \le M_1 < r$	$\frac{t_0}{2f^2} (M_1 - t_0)^2$
$[0, t_0)$	$[t_0 + r, 2t_0 + r)$	$\max(t_0 - t_1, 2t_0 + r - t_2)$	$M_1 \ge t_0$	$\frac{2}{f^2} \left(\frac{M_1}{2} t_0^2 - \frac{1}{3} t_0^3 \right)$
			$M_1 < t_0$	$\frac{1}{3f^2}M_1^3$
$[0, t_0)$	$[2t_0 + r, f)$	$t_0 - t_1$	$M_1 \ge t_0$	$\frac{1}{f^2} \left[\frac{1}{3} t_0^3 - \frac{1}{2} (M_1 + s) t_0^2 + M_1 s t_0 \right]$
			$M_1 < t_0$	$\frac{1}{f^2} \left(\frac{1}{2} s M_1^2 - \frac{1}{6} M_1^3 \right)$
$[t_0, t_0 + r)$	$[t_0, t_0 + r)$	$2t_0 + r - \max(t_1, t_2)$	$M_1 \ge r$	$\frac{\frac{2}{f^2}}{\frac{1}{2}} \left[\frac{r-t_0}{2} (M_1 - t_0)^2 - \frac{1}{6} (M_1 - t_0)^3 + \frac{1}{6} (M_1 - r)^3 \right]$
			$t_0 \le M_1 < r$	$\frac{1}{f^2} \left[(r-t_0)(M_1-t_0)^2 - \frac{1}{3}(M_1-t_0)^3 \right]$
$[t_0, t_0 + r)$	$[t_0 + r, 2t_0 + r)$	$2t_0 + r - t_2$	$M_1 \ge t_0$	$\frac{1}{f^2} \left[\frac{r}{2} M_1^2 - \frac{r-t_0}{2} (M_1 - t_0)^2 - \frac{1}{6} M_1^3 + \frac{1}{6} (M_1 - t_0)^3 \right]$
			$M_1 < t_0$	$\frac{1}{f^2} \left(\frac{r}{2} M_1^2 - \frac{1}{6} M_1^3 \right)$
$[t_0, t_0 + r)$	$[2t_0 + r, f)$	0	~	$\frac{M_1 rs}{f^2}$

Case analysis for expected transmission time

Phone-to-Phone

Collecting the cases:

$$T_{1} = \frac{2rs}{f^{2}}M_{1} + I_{(M_{1} < t_{0})}f_{1}(r, s, M_{1}) + I_{(M_{1} \ge t_{0})}f_{2}(r, s, M_{1}) + I_{(t_{0} \le M_{1} < r+t_{0})}f_{3}(r, s, M_{1}) + I_{(M_{1} \ge r+t_{0})}f_{4}(r, s, M_{1}) + I_{(t_{0} \le M_{1} < s+t_{0})}f_{5}(r, s, M_{1}) + I_{(M_{1} \ge s+t_{0})}f_{6}(r, s, M_{1}),$$

where the I's are indicator functions, and f's are

$$\begin{aligned} f_1(r,s,M_1) &= \frac{s+r}{f^2} M_1^2 \\ f_2(r,s,M_1) &= \frac{1}{f^2} \left[\frac{2}{3} M_1^3 - \frac{2}{3} (M_1 - t_0)^3 - 2t_0 (M_1 - t_0)^2 + 2M_1 t_0 (r+s) + \frac{4}{3} t_0^3 - (2M_1 + r+s) t_0^2 \right] \\ f_3(r,s,M_1) &= \frac{1}{f^2} \left[r(M_1 - t_0)^2 - \frac{1}{3} (M_1 - t_0)^3 \right] \\ f_4(r,s,M_1) &= \frac{1}{f^2} \left[r(M_1 - t_0)^2 + \frac{1}{3} (M_1 - t_0 - r)^3 - \frac{1}{3} (M_1 - t_0)^3 \right] \\ f_5(r,s,M_1) &= \frac{1}{f^2} \left[s(M_1 - t_0)^2 - \frac{1}{3} (M_1 - t_0)^3 \right] \\ f_6(r,s,M_1) &= \frac{1}{f^2} \left[s(M_1 - t_0)^2 + \frac{1}{3} (M_1 - t_0 - s)^3 - \frac{1}{3} (M_1 - t_0)^3 \right] . \end{aligned}$$

Phone-to-AP

Taking a similar approach (see AP's as nodes stuck in hotspot mode)

$$T_{2} = \frac{M_{2}r}{f} + I_{(M_{2} \ge 0)} \frac{1}{2f} \left[M_{2}^{2} - (M_{2} - t_{0})^{2} \right] + I_{(t_{0} \le M_{2} < f - r)} \frac{1}{2f} (M_{2} - t_{0})^{2} + I_{(M-2 \ge f - r)} \frac{1}{2f} \left[(M_{2} - t_{0})^{2} - (M_{2} - f + r)^{2} \right] + I_{(M_{2} < t_{0})} \frac{M_{2}^{2}}{2f}$$

Phone-to-AP

Taking a similar approach (see AP's as nodes stuck in hotspot mode)

$$T_{2} = \frac{M_{2}r}{f} + I_{(M_{2} \ge 0)} \frac{1}{2f} \left[M_{2}^{2} - (M_{2} - t_{0})^{2} \right] + I_{(t_{0} \le M_{2} < f - r)} \frac{1}{2f} (M_{2} - t_{0})^{2} + I_{(M-2 \ge f - r)} \frac{1}{2f} \left[(M_{2} - t_{0})^{2} - (M_{2} - f + r)^{2} \right] + I_{(M_{2} < t_{0})} \frac{M_{2}^{2}}{2f}$$

Finally, given T_1, T_2, β, γ , the optimal mode toggling schedule $\langle r^*, s^* \rangle$ is solved for using off-the-shelf solver.

Implementation

- On Android Galaxy Nexus and Nexus S phones
- Using Java Reflection, no rooting is required
- Driving data: GPS trajectories & car OBD-II readings
- Measured mode switching overhead and communication range, and tested functional system in practice

- MSRA T-Drive taxicab dataset
 - Central Beijing (50 km x 50 km)
 - Feb 2~8, 2008
 - 9211 taxicabs
 - Assumed 10% WiFi coverage

- MSRA T-Drive taxicab dataset
 - Central Beijing (50 km x 50 km)
 - Feb 2~8, 2008
 - 9211 taxicabs
 - Assumed 10% WiFi coverage
- Scenario
 - G.N (Galaxy Nexus) and N.S (Nexus S) phones
 - Cars collect driving data, share with each other
 - Cars offload data to backend server when encountering APs

- MSRA T-Drive taxicab dataset
 - Central Beijing (50 km x 50 km)
 - Feb 2~8, 2008
 - 9211 taxicabs
 - Assumed 10% WiFi coverage
- Scenario
 - G.N (Galaxy Nexus) and N.S (Nexus S) phones
 - Cars collect driving data, share with each other
 - Cars offload data to backend server when encountering APs
- Schemes
 - Baseline: no phone-to-phone communication
 - Adaptive: system parameters are updated every hour using historical data
 - Static: system parameters are computed using the first hour of data only

Simulation Results

How does the mode switching overhead affect optimal system efficiency?

Simulation Results

How does time-of-day affect the optimal system efficiency?

Simulation Results

Improvement on transmission delay (mean and median) w/ phone-to-phone communication enabled v.s. w/o

Conclusion

- Our system enables vehicle-vehicle communications using off-the-shelf smartphones
 - No change to existing infrastructure
 - Transparent to end users
- Analytical formulation and results for optimal system efficiency
- Experiments show
 - Over 80% system efficiency
 - Significantly reduces data transfer delay time

Thanks