

Exploiting Structured Human Interactions to Enhance Estimation Accuracy in Cyber-physical Systems

Yunlong Gao, **Shaohan Hu**, Renato Mancuso, Hongwei Wang, Minje Kim, Po-Liang Wu, Lu Su, Lui Sha, Tarek Abdelzaher

Goal

Exploit knowledge on underlying workflows information to improve estimation accuracies from unreliable sensors in cyber-physical systems.

Problem Model

- Given: workflow (state transition model) and (noisy) measurements
- Seek: state sequence and value estimations

State transition sequence:

$$\mathbf{z} = (z_1, ..., z_T)$$

True value sequence:

$$\mathbf{x} = (x_1, ..., x_T)$$

Measurement sequence: $\mathbf{y} = (y_1, ..., y_T)$

$$\mathbf{y} = (y_1,...,y_T)$$

Objective:
$$\widehat{\mathbf{z}}\widehat{\mathbf{x}} = \underset{\mathbf{z}}{\operatorname{argmax}} p(\mathbf{z}\mathbf{x}|\mathbf{y})$$

$$p(\mathbf{z}\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{z}\mathbf{x}\mathbf{y})}{p(\mathbf{y})}$$

$$= \frac{p(\mathbf{y}|\mathbf{x}\mathbf{z})p(\mathbf{z}\mathbf{x})}{p(\mathbf{y})}$$

$$= \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x}|\mathbf{z})p(\mathbf{z})}{p(\mathbf{y})}$$

$$egin{aligned} p(\mathbf{z}\mathbf{x}|\mathbf{y}) &= & rac{p(\mathbf{z}\mathbf{x}\mathbf{y})}{p(\mathbf{y})} & p(z_0) \prod_{i=1}^T p(z_i|z_{i-1}) \ &= & rac{p(\mathbf{y}|\mathbf{x}\mathbf{z})p(\mathbf{z}\mathbf{x})}{p(\mathbf{y})} & ext{Markov property} \ &= & rac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x}|\mathbf{z})p(\mathbf{z})}{p(\mathbf{y})} \end{aligned}$$

Rewritten objective:

$$\widehat{\mathbf{z}}\widehat{\mathbf{x}} = rg \max_{\mathbf{z}\mathbf{x}} [\prod_{i=1}^T p(x_i|z_i) \prod_{i=1}^T p(z_i|z_{i-1}) \prod_{i=1}^T p(y_i|x_i) \prod_{i=1}^T p(y_0|z_0)]$$

DP Solution Sketch

• Denote the solution at T as $\mu_T(z_T, x_T)$, then we have the recurrence:

$$\mu_T(z_T, x_T) = \underset{z_{1:T}, x_{1:T}}{\arg \max} [\mu_{T-1}(z_{T-1}, x_{T-1}) p(x_T | z_T)$$

$$p(z_T | z_{T-1}) p(y_T | x_T)]$$

- DP complexity: $O(TVN^2)$, where T workflow path length, V value space size, N state space size
 - exhaustive search: $O((VN)^T)$

Evaluation: Simulation

- Topologies
 - Directed graphs:
 - # Nodes: 30
 - Average degree: 3
 - # Values per node: 5
 - Path length: 6
 - Sensor reliability: 0.6

- Directed tree:
 - Height: 5
 - Order: 3
 - # Values per node: 5
 - Path length: 6
 - Sensor reliability: 0.6
- Randomly generated workflow topologies
- Randomly selected groundtruth workflow paths
- Metric: estimation accuracy

Simulation Results

Longer workflow path => Higher error correction power

Simulation Results

Higher sensor reliability => Higher classification & tracking accuracy

Simulation Results

Higher intra-state value similarity => Higher state tracking accuracy,

Lower value estimation accuracy

Evaluation: Case Study

- Emergency Transcriber
 - Scenario: cardiac arrest, with multiple physicians and nurses operating at the same time, vocally communicating medical orders under noisy environment.
 - Goal: track/record the progress of the medical procedure

Adult Cardiac Arrest

Case Study

 Realistic cardiac arrest workflow

CPR Quality

- Push hard (≥2 inches [5 cm]) and fast (≥100/min) and allow complete chest recoil
- · Minimize interruptions in compressions
- · Avoid excessive ventilation
- · Rotate compressor every 2 minutes
- · If no advanced airway, 30:2 compressionventilation ratio
- Quantitative waveform capnography
 - If PETCO, <10 mm Hg, attempt to improve CPR quality
- Intra-arterial pressure - If relaxation phase (diastolic) pressure <20 mm Hg, attempt

Return of Spontaneous Circulation (ROSC)

· Pulse and blood pressure

to improve CPR quality

- · Abrupt sustained increase in PETCO, (typically ≥40 mm Hg)
- Spontaneous arterial pressure waves with intra-arterial monitoring

Shock Energy

- · Biphasic: Manufacturer recommendation (eg, initial dose of 120-200 J); if unknown, use maximum available. Second and subsequent doses should be equivalent, and higher doses may be considered.
- Monophasic: 360 J

Drug Therapy

- Epinephrine IV/IO Dose: 1 mg every 3-5 minutes
- · Vasopressin IV/IO Dose: 40 units can replace first or second dose of epinephrine
- · Amiodarone IV/IO Dose: First dose: 300 mg bolus. Second dose: 150 ma.

Advanced Airway

- · Supraglottic advanced airway or endotracheal intubation
- · Waveform capnography to confirm and monitor ET tube placement
- 8-10 breaths per minute with continuous chest compressions

Reversible Causes - Hypovolemia

- Hypoxia
- Hydrogen ion (acidosis)
- Hypo-/hyperkalemia
- Hypothermia
- Tension pneumothorax
- Tamponade cardiac Toxins
- Thrombosis, pulmonary - Thrombosis, coronary

Case Study

 System architecture

Running Instance

Emergency Transcriber - Resuscitation

٠ Assassination what's the rhythm the patient has a systole start CPR for 2 minutes give epinephrine for 3 minutes interval what's the rhythm the patient has V fib charge the defibrillator the patient start CPR for 2 minutes interval what's the the patient has me fit defibrillator clear the bed shock the patient start CPR for 2 minutes 3 minute interval what's the rhythm good pulse with compression

Send to UDP

Step	Word
0.	resuscitation
1.	rhythm
2.	asystole
3.	CPR
4.	CPR
5.	epinephrine
6.	rhythm
7.	VFIb
8.	defibrillator
9.	clear
10.	shock
11.	CPR
12.	epinephrine
13.	rhythm
14.	VFib
15.	defibrillator
16.	clear
17.	shock
18.	CPR
19.	amioderone
20.	rhythm
21.	compression

Emergency Transcriber Results

- Noise negatively affects the overall accuracy
- Our method takes advantage of workflow information and greatly improves estimation accuracy

Conclusion

- We design algorithm that improves estimation accuracies in CPS by exploiting workflow information.
- Simulation results confirm the benefits.
- We design and implement Emergency Transcriber, and show performance in realistic settings.

THANKS