On Exploiting Logical Dependencies for Minimizing Additive Cost Metrics in Resource-Limited Crowdsensing

Shaohan Hu, Shen Li, Shuochao Yao, Lu Su, Ramesh Govindan, Reginald Hobbs, Tarek Abdelzaher

key: Shortcut probability cost

How much?

Complete Algorithm Sketch

Concurrent queries with deadlines

- Greedy approach:
 - Compute most cost-effective object to retrieve next
 - Check expected latencies against deadlines
 - Increase parallel retrieval level if misses expected

Evaluation

Simulation experiments
An application scenario

Simulation Experiments

Baselines

- Random order
- Lowest cost object first
- Most urgent query first
- Most urgent query's lowest cost object first

Settings

- # Objects per query: 4, 8, 12, 16, 20
- **#** # ANDs per query: 1, **3**, 5, 7
- # # concurrent queries: 5, 10, 15, **20**, 25
- Deadline levels ($\frac{\text{deadline}}{\sum \text{latencies}}$): 0.5, 1, **2**, 4, 8

Varying # objects per query

Varying # ANDs per query

Varying # concurrent queries

Varying queries' deadline levels

Application: Route Finding

Find routes for <src, dst> pairs

- Each candidate route: AND of its segments
- Routing result: OR of all candidate routes
- Visual verification for route segment conditions

Route Finding Example Run

3 disaster response teams' computed candidate routes

	Greedy	Least-cost
# Road conditions retrieved	4	9
Retrieval cost ratio (%)	28.95	58.56
Deadline meet rate (%)	100	100

Conclusion

- Data retrieval algorithms for crowdsensing under resource constraints
- Minimizing cost under timeliness requirements
- Promising results through simulations and concrete route finding application scenario

Team 2

Team 3

