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ABSTRACT
�is paper presents the design and evaluation of GreenDrive, a
smartphone-based system that helps drivers save fuel by judiciously
advising on driving speed to match the signal phase and timing
(SPAT) of upcoming signalized tra�c intersections. In the absence
of such advice, the default driver behavior is usually to accelerate
to (near) the maximum legally allowable speed, tra�c conditions
permi�ing. �is behavior is suboptimal if the tra�c light ahead
will turn red just before the vehicle arrives at the intersection.
GreenDrive uses collected real-time vehicle mobility data to predict
exact signal timing a few tens of seconds ahead, which allows it
to o�er advice on speed that saves fuel by avoiding unnecessary
acceleration that leads to arriving too soon and stopping at red
lights. Our work di�ers from previous work in three respects. First
and most importantly, we tackle the more challenging scenario,
where some phases (such as le�-turn arrows) are added or skipped
dynamically, in accordance with real-time tra�c demand. Second,
our approach can accommodate a low system penetration rate and
low vehicle density. �ird, GreenDrive treats user-speci�ed travel
time requirements as so� deadlines and chooses appropriate speed
adaptation strategies according to the user time budget. Using
SUMO tra�c simulator with real and large-scale road network,
we show that GreenDrive learns phase durations with an average
error below 2s, and reduces fuel consumption by up to 23.9%. Real-
world experiments con�rm 31.2% fuel saving and the ability to meet
end-to-end travel time requirements.
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1 INTRODUCTION
Drivers o�en exhibit unnecessary “hurry up and wait” behavior
when vehicles accelerate too much from a previous intersection
only to arrive at a red signal. �is behavior leads to higher fuel
consumption because the energy is lost when the vehicle stops
completely. GreenDrive signi�cantly reduces complete halts at red
lights and saves fuel by learning the tra�c signal schedule and
suggesting optimal driving speed. In general, there are two kinds
of approaches, namely, infrastructure-centric and vehicle-centric.
�e infrastructure-centric approach installs intelligent tra�c signal
control systems to adapt signal schedule to real-time tra�c. It can
be complemented by vehicle-centric solutions that o�er intelligent
speed adaptation advice to drivers, assisting them in choosing the
right speed based on a predicted real-time tra�c signal schedule.

Infrastructure-centric systems such as SCATS [23], SCOOT [12],
and RHODES [10] have been smoothing tra�c �ows for years in
more than a hundred cities around the globe. In academia, intelli-
gent tra�c signal control systems are o�en based on job scheduling
algorithms [25], adjacent junction coordination [11], or vehicle
arrival time estimation [21]. �ese systems require the infrastruc-
ture to collect real-time vehicle speed and position data via ve-
hicular ad-hoc networks (VANETs) [20], vehicle to infrastructure
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(V2I) communication [22] or a combination of both [8]. However,
such infrastructure-centric systems are expensive to install, which
greatly hinders wide adoption.

In light of this problem, an increasing amount of e�ort on re-
ducing fuel consumption shi�ed to vehicle-centric approaches that
help adapt driving speed to the tra�c signal schedule. Some pre-
vious work [2, 4, 24] assumed that the signal schedule is readily
available to navigation devices. However, in reality such infor-
mation is managed by the transportation department, and cannot
be accessed in real-time. We observe that signal schedule can be
learned from spatial and temporal information conveyed by vehicle
movements at intersections. �anks to the ubiquity of powerful
embedded systems such as wearable devices [32] and smartphones,
vehicle movements can be captured by sensors and collected in a
crowd-sourced manner. Moreover, it is easier to achieve higher sys-
tem penetration by deploying intelligent speed adaptation systems
on smartphones than on built-in vehicular navigational devices.
�is motivates the development of GreenDrive.

GreenDrive uses crowdsourced vehicle movements to predict
real-time signal schedules a few tens of seconds ahead and share
that information with drivers in the form of speed advice that
reduces unnecessary accelerations and stops. We show that the
system results in more than 20% fuel savings and can meet end-to-
end travel time requirements. �e contributions of our work are
thus threefold:
(1) To the best of our knowledge, our system is the �rst to learn

the adaptive schedules of intelligent tra�c control systems
using only smartphone sensors and GPS.

(2) Our system chooses di�erent speed adaptation strategies in
real-time according to the predicted schedule and driver’s
time budget, achieving fuel savings while meeting travel time
requirements.

(3) We conduct large-scale realistic simulation using SUMO [3]
with real road network to test system performance under low
penetration rate. We also conduct real-world experiments to
con�rm fuel saving.

�e rest of this paper is organized as follows. In Section 2, we
discuss related work. Section 3 details the system architecture
and methodologies. Section 4 presents simulation results. �e
real-world experiment results are in Section 5. Finally, Section 6
concludes the paper.

2 RELATEDWORK
Learning tra�c light timing and phase information without a dedi-
cated infrastructure has a�racted increasing a�ention from urban
sensing researches. A number of papers propose digital image pro-
cessing techniques to capture real-time tra�c light states [7, 19].
�e vision-based approach has its limitations. For example, at an
urban intersection with a high tra�c volume, the line-of-sight from
the signal to the car-mounted camera may be obstructed. It may
also be di�cult to distinguish tra�c lights in clu�ered scenes. But
with careful system setup and �ne-tuning tra�c light detection
parameters, SignalGuru [16] successfully tracks and predicts tra�c
signal states by leveraging smartphone cameras and ad-hoc net-
works. SignalGuru requires smartphones to be mounted on the
windshield with some tilting angle, while our system allows arbi-
trary smartphone positioning and user �ddling. In addition, we

employ a central backend server to collect information and enable
optimal speed advisories even when the tra�c lights of the next
intersection are yet to be seen. Compared to the results presented
in the SignalGuru paper, our system achieves improved fuel savings
and a similar phase duration learning accuracy.

Alternative to the vision-based approach, tra�c signal schedule
can be inferred from vehicle spatial and temporal movements. Prior
work [14] shows that collective velocity pro�les can be used to
infer signal schedules with either a �xed or slowly changing phase
duration. Other papers [18, 26] suggest that historical timing data
combined with partial real-time signal phase data can be used to
reduce idling in red lights and save fuel. Based on that information,
multiple approaches [24, 28] feature algorithms for optimal speed
planning. However, they (i) do not target intelligent tra�c control
systems, (ii) only focus on theory or small-scale simulation, or (iii)
do not validate their results in real-world experiments. We compare
our simulation results to the aforementioned work in terms of fuel
saving.

More recently, CityDrive [33] implemented a smartphone-based
system that learns �xed tra�c signal schedules and enables optimal
speed advisory services. Di�erent from CityDrive, we target tra�c
signals with intelligent tra�c control where the phase schedule is
adapted dynamically to tra�c conditions. We also conduct large-
scale and more realistic simulations to comprehensively evaluate
our system.
3 SYSTEM DESIGN
3.1 System overview

Accelerometer

Vehicle movement 
detection (§3.3)

Traffic signal phase and 
timing learning (§3.4)

Future signal phase and 
timing prediction (§3.5)

Magnetometer
GPS

Travel time 
requirement

Optimal speed 
calculation (§3.6)

Speed 
advice

Smartphone

Server

Sensing module User interface

Cellular networks

Figure 1: System architecture.
GreenDrive is an infrastructure-less and easy-to-deploy Intelli-

gent Speed Adaptation system using only smartphones and Inter-
net servers. �e overall system architecture is shown in Figure 1.
Sensing capabilities on smartphones are exploited to detect vehi-
cle movements at intersections, which are then sent to the server
through cellular networks. �e server �rst collects vehicle move-
ment data for a su�ciently long period of time to learn the Signal
Phase and Timing (SPAT) of each intersection. �en the server
predicts future signal timing using the learned SPAT and real-time
vehicle movements. �e smartphone requests the predicted signal
schedule of the intersection ahead and estimates remaining travel
time, and then adaptively chooses between a fuel-saving mode and
a time-saving mode according to the time budget.
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3.2 Tra�c signal control system background
and notations

Nowadays, many major intersections are installed with intelligent
tra�c control system, where vehicles waiting on the le�-turn lane
trigger the system to insert a le�-turn phase to meet the actual
tra�c demand [15]. �is on-demand system is more complicated
than �xed-time control system. In this case, although each phase
has �xed duration, the phase sequence of intelligent tra�c control
system dynamically changes to adapt to real-time tra�c demand.

CityDrive [33] targets tra�c signals with �xed-time control
systems that contain only 4 �xed phases, and therefore their sched-
ules are mush easier to learn and predict. However, we tackle the
more complex 8-phased intelligent tra�c control system, where the
phase sequence is adaptively changing to accommodate the need
of le�-turn vehicles.

(1) Phase 1 (S1). (2) Phase 2 (S2). (3) Phase 3 (S3). (4) Phase 4 (S4).

(5) Phase 5 (S5). (6) Phase 6 (S6). (7) Phase 7 (S7). (8) Phase 8 (S8).

Figure 2: Signal phases of intelligent tra�c control.
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Figure 3: Phase transition of intelligent tra�c control.
�e 8 phases for a 4-arm intersection are shown in Figure 2

according to [27], where arrows show the vehicle acceleration
upon the start of the phase. To facilitate our description, we make
the following notations. Shown in Figure 2, let Si (1≤i≤8) denote
the i-th phase, whose duration isTpi . Suppose the arm indices start
from North and increase clockwise. We name each incoming arm
Ii and outgoing arm Oi , where i is the arm index. �en the phase
transition logic according to tra�c signal design guidelines [27] is
shown in Figure 3. Functionw (i ) = 1 means that there are vehicles
waiting on the le�-turn lane of arm Ii , otherwise w (i ) = 0. For
example, S1 occurs if at the end of the phase S8, there are vehicles
waiting on the le�-turn lane of I2 while no vehicle is waiting on
the le�-turn lane of I4. In this case, the intelligent control system
inserts the le�-turn phase S1 before transitioning to S4.

We divide the phases into two stages of perpendicular �ows. As
shown in Figure 3, stage 1 corresponds to east or west approaching

directions, which is composed of S4 alone or a le�-turn phase (S1,
S2 or S3) followed by S4. Stage 2 corresponds to north or south
approaching directions, which is composed of S8 alone or a le�-turn
phase (S5, S6 or S7) followed by S8. Although the duration of each
phase is �xed, the actual phase sequence in each stage depends on
real-time tra�c demand, therefore the total duration of a stage can
change every tra�c signal cycle.

Let Tdi (1≤ i ≤ 8) denote the total duration of the stage starting
with Si . �e total duration can be the duration of a through phase
alone or the sum of a le� turn phase and a through phase. With ref-
erence to Figure 3, for stage 1 there are four possible total durations:
Td1=Tp1 +Tp4 , Td2=Tp2 +Tp4 , Td3 =Tp3 +Tp4 , Td4 =Tp4 . Similarly,
for stage 2, Td5=Tp5+Tp8 , Td6=Tp6+Tp8 , Td7 =Tp7+Tp8 , Td8 =Tp8 .
�erefore, learning SPAT means to learn all 8 total durations.

3.3 Vehicle movement detection
Shown in Figure 1, the �rst step is to detect vehicle movements
and send the movement data to the server. We use smartphone’s
accelerometer, magnetometer and GPS to reliably and accurately
detect vehicle movements at intersections [30, 33]. �e movement
data should include spacial and temporal information of the vehi-
cle either when it accelerates a�er waiting in red light, or when
it directly passes the intersection without a stop. �e format of
the vehicle movement is (nin , nout , tacc , isacc ), where nin is the
incoming arm index, nout is the outgoing arm index, and isacc
indicates whether the movement is an acceleration or a direct pass.
tacc is the timestamp of acceleration if isacc = 1, or the timestamp
of the direct pass if isacc = 0. �e arm indices help to infer stage
and phase number, and timestamp conveys phase transition time.

To detect acceleration, the smartphone feeds the accelerometer
and magnetometer data into the Android API function getRotation-
Matrix() to get the acceleration vector in the earth’s North-East-
Down coordinate system. �en the acceleration vector is projected
onto the vehicle’s heading direction (given by GPS) so that the
acceleration along the driving direction can be calculated. �is
acceleration is cumulated over a 1-second sliding window to �lter
out ji�ers caused by user �ddling. Preliminary test shows that on
average the acceleration detection false positive rate is 1.9%, the
false negative rate is 3.6%, and the average detection delay is 1.014s,
with standard deviation 0.334s.

To detect a direct pass, the smartphone monitors the transition
of road segments using GPS and local map. If the transition occurs
at an intersection, thenin andnout are recorded, and the timestamp
of the GPS point closest to the intersection center is chosen to be the
movement timestamp. A direct pass movement is helpful to infer
tra�c signal schedule, because it tells that the stage containing the
movement is in green phase.

3.4 Learning tra�c signal phase and timing
For each intersection, the server collects the movement data from
vehicles going through that intersection to learn its tra�c signal
schedule. To describe the learning process, we �rst make several
additional notations.

3.4.1 Notations.
LetMov (i, j ) denote the movement from arm Ii to arm O j . Each

movement Mov (i, j ) can be categorized into two types. One is
Acc (i, j ) meaning that the vehicle has stopped, waited and then
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accelerated. �e other is Pas (i, j ) which means the movement is a
direct pass without a stop.

For each intersection, the server stores the collected movement
data in a table sorted by tacc . Using the movement data format
in Section 3.3, each movement (nin , nout , tacc , isacc ) is denoted
by Pas (nin ,nout ) if isacc = 0, or otherwise by Acc (nin ,nout ) if it
is an acceleration. An example of movement data of a particular
intersection is shown in Table 1, where “Sample” column will be
explained later. We say two movements happen simultaneously if
their tacc di�erence is less than 5s (e.g. row 3, 4), otherwise they’re
time-separated.

In our work we assume that the le�-turn tra�c signal is sym-
metric for tra�c from opposite directions (180◦), which means the
added le�-turn phases for opposite directions have the same du-
ration. However, we don’t assume symmetry for perpendicular
directions (90◦). Using the notations in Section 3.2, this implies
Tp1 = Tp2 ,Tp5 = Tp6 ,Td1 = Td2 , andTd5 = Td6 . We have 3 reasons for
this assumption: 1) in our �eld observation, this symmetry is preva-
lent; 2) making it non-symmetric would be a trivial extension, since
the methodology remains the same; 3) assuming non-symmetry
signi�cantly complicates the writing and notations.

�e server groups consecutive movements that appear to be in
the same stage into one sample, denoted by x (i ) , where i means the i-
th sample. For example, in Table 1, row 1 and 2 are movements from
west and east, respectively, so they both belong to stage 1, and form
the �rst sample x (1) . We de�ne the time duration of sample x (i )
be the earliest acceleration timestamp in x (i+1) minus the earliest
acceleration timestamp in x (i ) . For example, the duration of x (1) is
the absolute time di�erence of tacc between row 3 and row 1.

3.4.2 Validating samples on servers.
Ideally, each sample represents a stage, and the sample’s duration

equals to the total duration of this stage. In reality, since our system
allows low vehicle density and low penetration rate, the stage
transition may not be captured by vehicle movements. If so, the
samples’ duration is not the true total duration of that stage and
thus should be invalidated.

First, we check whether a sample’s earliest movement is an
acceleration event. If not, this sample itself and its previous sample
are marked as invalid, because the phase transition timestamp
between the two stages (samples) is unclear. For example, in Table
1, row 8 (Pas (1,2)) is not an accelerationmovement, so it invalidates
x (4) and x (3) .

Second, we check if some samples contain multiple tra�c signal
cycles. If so, they usually span multiple stages and should have
much larger total durations. Analyzing what phases are contained
in such samples can be di�cult, especially when the duration of
each phase is unknown yet. Instead, we simply �lter out the sam-
ples with durations larger than twice the median sample duration.

Table 1: Example movement data table.
Row # Movement nin nout tacc isacc Sample

1 Acc (4, 2) 4 2 484 1
x (1)

2 Pas (2, 3) 2 3 500 0
3 Acc (1, 2) 1 2 509 1

x (2)4 Acc (3, 4) 3 4 510 1
5 Acc (3, 1) 3 1 522 1
6 Acc (2, 4) 2 4 546 1

x (3)
7 Acc (4, 2) 4 2 549 1
8 Pas (1, 2) 1 2 566 0

x (4)
9 Pas (1, 3) 1 3 680 0

Similarly, false positive acceleration movements, though rare, usu-
ally result in samples with much smaller durations, as they tend to
split up a stage incorrectly. �erefore, we �lter out samples with
duration smaller than half of the median sample duration. A�er
the �ltering, the valid samples are fed to Expectation-Maximization
algorithm to learn the phase durations.

3.4.3 Expectation-Maximization algorithm.
�e goal of this algorithm is to �nd outTdi (1 ≤ i ≤ 8). It would

be a trivial task if we know the phases contained in each sample.
However, each sample does not come with a label saying whether
it is composed of one through phase only, or a le�-turn phase plus
a through phase. So we use a latent variable z to represent which
case the sample belongs to, and try to maximize the likelihood
of observed samples. As mentioned in Section 3.4.1, we consider
symmetric le�-turn signals, so there are 3 total duration values for
each stage. �is means the duration of each valid sample should
be one of the 3 total durations of its stage, and z for each sample
should take one of the three values (1, 2, or 3).

However, we cannot determine z solely by the sample’s duration,
since di�erent phase sequences could have similar total duration.
And we also cannot determine z just by analyzing the movements
in each sample, because low vehicle density and low system pen-
etration rate may cause missing movement reports. For example,
in Table 1, row 3 and 4 are two simultaneous le�-turn accelera-
tions from opposite directions, it is easy to see that the sample x (2)
starts with S7. However, if row 3 is not reported (missing), x (2) can
also start with S6. But if x (2) has duration closer to Td7 , then x (2)

is still more likely to start with S7. So we need some parameters
describing the movement characteristics in each sample, and then
�nd the maximum a posteriori (MAP) estimates of the parameters
(including z).

�erefore, we apply EM algorithm to samples of the same stage
of an intersection. Assume there arem samples in the sample set
X = {x (i ) , i = 1,2, ...m}, we expand x (i ) into a vector of 5 elements,
each describing an observed feature:

x (i ) =
[
x
(i )
1 x

(i )
2 x

(i )
3 x

(i )
4 x

(i )
5

]T (1)

where each element takes the following value:

(1) x
(i )
1 =1 if x (i ) contains le�-turn acceleration, otherwise

x
(i )
1 =0.

(2) x
(i )
2 = 1 if x (i ) contains 2 phase transitions captured by
time-separated accelerations, x (i )2 =0 if there’s only 1.

(3) x
(i )
3 =1 if x

(i ) contains simultaneous le�-turn and straight-
through accelerations, otherwise x (i )3 =0.

(4) x
(i )
4 =1 if x

(i ) contains two simultaneous le�-turn accelera-
tions from opposite directions, otherwise x (i )4 =0.

(5) x
(i )
5 is the duration of x (i ) , which we assume to follow
Gaussian distribution N (µ5,Σj ) (if z = j for x (i ) ).

�e value of each element is easy to obtain by checking the
movements contained in that sample. Take x (2) in Table 1 as an
example. It has two simultaneous le�-turn accelerations (row 3,
4), so x

(2)
1 = 1, and x

(2)
4 = 1. It also has 2 time-separated phase

transition movements (row 3, 5) so x
(2)
2 = 1. But x (2)3 = 0 since
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straight-through Acc (3,1) does not happen simultaneously with its
previous le�-turn Acc (3,4). Finally x (2)5 =546−509=37 seconds.

Suppose when z=j , the expected mean values of the 5 elements in
vector form is µ j=[µ j1 µ j2 µ j3 µ j4 µ j5]T . Let µ = {µ1,µ2,µ3}. Letϕj
be the prior probability of z=j, Z be the set of latent variables, Φ=
{ϕ1,ϕ2,ϕ3}, and Σ = {Σ1,Σ2,Σ3}. �en, given a set ofm observed
data samplesX , a set of latent variablesZ , and unknown parameters
θ = {Φ,µ,Σ}, we are trying to maximize the likelihood function:

L(θ ;X ,Z ) = p (X ,Z |θ )

=

m∏
i=1

p (x (i ) ;θ ) =
m∏
i=1

∑
z (i )

p (x (i ) ,z (i ) ;θ )

=

m∏
i=1

3∑
j=1

p (x (i ) |z (i )=j; µ,Σ)p (z (i )=j;Φ) (2)

Where p (z (i ) = j;Φ) = ϕj , the latent variable of x (i ) is z (i ) , and

p (x (i ) |z (i ) = j; µ,Σ)

=

4∏
k=1

p (x
(i )
k |z

(i ) = j; µ) · p (x (i )5 |z
(i ) = j; µ j5,Σ)

=

4∏
k=1

µ
x (i )
k
jk (1−µ jk ) (1−x

(i )
k )
·fn (x

(i )
5 ,µ j5,

√
Σj ) (3)

In Equ. (3), µ jk (1≤k ≤ 4) is the mean value of the k-th element
for samples with z = j. µ j5 is the mean value of x (i )5 with z= j,
which is also the mean total duration of samples having z= j. Σj
is the variance of x (i )5 when z = j. And fn (x ,µ,σ ) is the normal
distribution function.

a) E-step:
We calculate the expected value of the log likelihood function

with respect to Z given X and current estimate of the parameters
θ (t ) :

Q (θ |θ (t ) ) = EZ |X ,θ (t ) (loд L(θ ;X , Z )) (4)

Denotew (i )
j as the probability that z (i ) = j (j=1,2,3). In E-step

we calculate the best values for Z given current parameters, i.e., we
calculatew (i )

j given θ (t ) using Equ. (3):

w
(i )
j = p (z

(i ) = j |x (i ) ;θ ) =

p (x (i ) |z (i ) = j; µ,Σ) · p (z (i ) = j;Φ)∑3
l=1 p (x

(i ) |z (i ) = l ; µ,Σ) · p (z (i ) = l ;Φ)
(5)

b) M-step:
In M-step we use the just-computed values ofw (i )

j to get a bet-
ter estimate for the parameters, i.e., we �nd the parameters that
maximize the Q (θ |θ (t ) ):

θ (t+1) = argmax
θ

Q (θ |θ (t ) ) (6)

Speci�cally, we update the parameters as follows:

ϕj =
1
m

m∑
i=1

w
(i )
j , j = 1,2,3. (7)

µ jk =

∑m
i=1w

(i )
j x

(i )
k∑m

i=1w
(i )
j

, j = 1,2,3; 1≤k ≤ 5. (8)

Σj =

∑m
i=1w

(i )
j (x

(i )
5 − µ j5)

2∑m
i=1w

(i )
j

(9)

�e iterations end when the parameters converge. �en we
need to determine which z represents which case. Suppose we are
processing samples of stage 1, where Td4 is the smallest. Without
loss of generality, suppose µ15 is the smallest, then Td4 = µ15 and
z=1 represents the total duration starting with S4. Suppose µ23 >
µ33 (samples with z = 2 are more likely to have 1 le�-turn plus
1 through acceleration), then z=2 represents the total duration
starting with S1 or S2, and Td1 =Td2 = µ25, Td3 = µ35. Otherwise
z=2 represents the total duration starting with S3 (2 simultaneous
le�-turn accelerations), and Td3 =µ25, Td1 =Td2 =µ35. To this point,
all phase durations are obtained from results of EM algorithm.

3.5 Tra�c signal phase and timing prediction
If the tra�c signals use �xed-time control system, then the future
phase sequence and timing can be easily predicted given the phase
durations. However, for intelligent control systems that add or skip
phases according to real-time tra�c demand, prediction is much
more challenging without the knowledge of future tra�c �ow. In
our case, prediction is all about whether or not to insert le�-turn
phases in the future phase sequence. We let the probability of
inserting each le�-turn phase equal to the occurrence probability of
that phase within an hour of history. For example, during rush hour,
there are proportionally more vehicles turning le�, thus almost
every stage contains a le�-turn phase, so there should also be a
le�-turn phase in the prediction.

3.5.1 Translate movements into phase sequence.
All we have so far is movement data as in Table 1, and the time

durations of 8 phases in the two stages (for a particular intersection).
We want to �nd the probability of each phase from near history,
therefore the �rst step is to translate the historical movements into
phase sequences. Note that valid samples are already labeled with
latent variable z by EM algorithm, so the phase sequences in those
samples are known. However, due to missing reports, there may
be time gaps between consecutive valid samples, so we need to
translate the movements between them into phase sequences.

�e approach is to go through all possible phase sequences and
�nd the one that best matches. �e process of enumerating all
possible sequences follows 2 basic rules according to the phase
transition diagram in Figure 3: (1) stage 1 and 2 are occurring
alternately; (2) each stage starting with Si has total duration Tdi
(1≤ i ≤ 8). �e degree of matching is re�ected by a penalty score
Ps , and lower Ps means be�er.

�e calculation of Ps of a candidate phase sequence π is as fol-
lows. For each movement (Mov) occurred within the timespan
of π , the server �rst �nds out the phase that Mov belongs to, i.e.,
the nearest phase Si that allows the movement. �en if Mov is an
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acceleration (Acc), the penalty is the time di�erence between the
Acc and the start of Si . IfMov is a direct pass (Pas), there is penalty
only if Pas did not happen within the timespan of Si , in which case
the penalty is the time di�erence between Pas and the nearest time
point in Si . �e penalty score Ps is the sum of all penalties of move-
ments in π . A�er Ps is calculated for all candidate phase sequences,
the one with minimum Ps is chosen as the translated historical
phase sequence. �e historical phase sequence in the past hour
is used to calculate the probability of each le�-turn phase, which
equals to the number of its occurrences divided by the number of
tra�c signal cycles. It also equals to the probability of inserting
that phase in the prediction.

3.5.2 Predicting future SPAT.
Predicting future phase sequence is a dead reckoning process

based on the probability of le�-turn phases. �e server needs to
predict the phase sequence starting from the timestamp of the latest
acceleration movement to the future time of vehicle’s estimated
arrival. According to the phase transition diagram in Figure 3, the
server concatenates phases stage by stage, with the probability of
inserting a le�-turn phase equal to its recent occurrence probability.
�e concatenated phases form the future phase sequence, which is
returned to the smartphone upon request.

3.6 Optimal speed calculation
Based on the future phase sequence from the server, the smartphone
chooses the most appropriate phase to cruise through according to
the vehicle’s route and location. �e route is planned beforehand
since the system needs to know the desired movement at every
intersection. Route planning can be similar to [31], so it is not a
focus of this paper.

Having chosen the desired future phase, it is suboptimal, how-
ever, to arrive at the exact start of that phase. Since the predicted
phase start time can be earlier than real start time, if the vehicle
arrives just a few seconds before the tra�c light turns green, it will
have to stop brie�y, defeating the purpose of our system. Instead,
the vehicle should arrive a�er the delay of a time bu�er.

3.6.1 Introducing the time bu�er tbuf .
Without foreknowledge of future tra�c �ow, it’s impossible

to predict SPAT with high accuracy. �us, to reduce the impact
of inaccurate time prediction, given the desired phase to cruise
through, the smartphone adds some time bu�er tbuf (padding) to
the start and end of the green phase time window. If the phase
duration is shorter than 2tbuf , then tbuf is set to be half the phase
duration. With tbuf , the probability that the vehicle can actually
cruise through the intersection in green phase will increase. How-
ever, this brings us a tradeo�. On the one hand the time bu�er
can save some fuel by increasing the chance of cruising through
in green phase, on the other hand it might cause prolonged travel
time, because the vehicle will approach slower due to the delay of
tbuf . Excessively large tbuf could even back�re because longer
travel time also causes higher fuel consumption. �erefore, Section
4.3.3 derives the optimal value of tbuf based on realistic simulation.

3.6.2 Remaining travel time estimation.
Being aware of user-speci�ed travel time requirements, the

smartphone needs to estimate the remaining travel time to choose
the most appropriate speed adaptation mode. If there is not much
time le�, the vehicle should hurry up instead of running in most

fuel-saving mode. To estimate remaining travel time, we use his-
torical average travel time of vehicles in fuel-saving mode on each
road segment. �is means the smartphone will also request and
upload average travel time of each road segment.

Our system aims to arrive at the destination at the user-speci�ed
time on average. If the users demand more assurance to arrive on
time, they can specify earlier arrival time requirements. �e amount
of time that needs to be set earlier depends on the uncertainty of
the historical travel time statistics, which is elaborated in [6] and
can be crowdsourced [29]. Let function getRemTime() return the
estimated remaining travel time.

3.6.3 Speed adaptation modes.
While there can be complicated speed control algorithm, we

propose a simple solution with binary speed modes. Suppose the
estimated remaining travel time is tr em , and the time budget is
tbud . �en we de�ne the late factor as r = tr em/tbud . If r exceeds
a threshold r1, the system assumes the fastest mode (MODEf ast ).
If r is less than a threshold r2, the system assumes fuel-saving mode
(MODEsave ). To prevent oscillation between the twomodes, we em-
pirically set r1 = 1.1 and r2 = 1.0. Let function getMode(tr em ,tbud )
return the desired mode.

3.6.4 Speed calculation algorithm.
�e smartphone requests the server for future phase sequence

π of the 1st intersection ahead every 10 seconds. Upon receiving
π , the smartphone scans π to �nd the desired phase (and stage). If
the �rst desired stage in the sequential scan will occur too soon
for the vehicle to arrive (exceeding speed limit is not allowed), the
smartphone �nds the next appropriate one. Note that if the vehicle
plans a le�-turn but the appropriate stage does not contain a le�-
turn phase, it still has to choose that stage. Suppose the desired
phase in the appropriate stage is S , we de�ne the cruise-through
time windowW = [ts + tbuf ,te − tbuf ], where ts and te are the
start and end timestamps of S , and tbuf is time bu�er.

�e cruise-through time windowW allows the vehicle to pass in
a wide time interval. �us we add another optimization to consider
the 2nd intersection ahead. �e logic is, for example, if the 2nd
intersection will be in red phase for a long time, the vehicle should
pass the 1st intersection at the end ofW to avoid too much slow
down when approaching the 2nd intersection. In other words, con-
sidering two intersections ahead enables a longer “vision”. Denote
the predicted phase sequence of the 2nd intersection as πn , the
desired phase as Sn , and the time window asW n .

When the system is in MODEf ast , the optimal speed vopt is
set to be the speed limit vl imit . In MODEsave , the system usesW
andW n to calculate speed. Let functions Vmin (W ) and Vmax (W )
return the minimum and maximum speed to arrive within the
time window ofW . If Vmin (W ) > vl imit , then the smartphone
should consider the next appropriate stage. Denote vnow as the
current driving speed. �e optimal speed is calculated according to
Algorithm 1.

4 SIMULATION
4.1 Simulation of Urban MObility (SUMO)
We use SUMO for the major part of system evaluation. SUMO
is an open source simulation package designed to simulate large-
scale, realistic tra�c �ows in urban se�ings [3, 17]. It is capable
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Algorithm 1: Optimal speed calculation
Input: π , πn , tbud , vnow
Output: vopt

1 tr em = дetRemT ime ()
2 mode = дetMode (tr em, tbud )
3 if mode=MODEf ast then
4 return vl imit

5 else
6 forW of S in π do
7 if Vmin (W ) > vl imit then
8 continue
9 forW n of Sn in πn do

10 if Vmin (W n ) > vl imit then
11 continue
12 else if Vmax (W n ) > Vmax (W ) then
13 returnmin {Vmax (W ),vl imit }

14 else if Vmax (W n ) > Vmin (W ) then
15 if Vmax (W n ) > vnow then
16 returnmin {Vmax (W n ),vl imit }

17 else
18 return Vmin (W )

of generating highly customized road networks, vehicle trips, and
tra�c signal schedules. SUMO is microscopic, meaning that each
vehicle has its own editable physical property and accessible travel
information such as route, speed, location, fuel consumption, etc.

We use OpenStreetMap [9] data to generate road network since it
is realistic and large-scale. We deploy the intelligent tra�c control
system at 157 four-armed intersections. We set up 2 lanes per
road segment, one is le�-turn lane and the other for both through
and right-turn movements. Every tra�c signal follows the same
phase transition diagram as shown in Figure 3. Note that the actual
phase sequence depends on actual tra�c demand, so di�erent tra�c
signals will not be synchronized due to randomized tra�c �ows.

We use SUMO API randomTrips() to generate large scale ran-
domized background tra�c �ows. Trip repetition rate controls how
o�en a new vehicle starts a trip, thus controlling vehicle density.
Adjusting the repetition rate ratio between test vehicles and other
vehicles can be used to simulate di�erent system penetration rates.

Figure 4: SUMO GUI.

4.2 Simulation parameters
To align our simulation parameters with real-world situations, we
show the measurement results of preliminary experiments and
explain basic parameters as following.

(1) Vehicle arrival rate rv : rv is the number of vehicles arriving at
a junction per second per incoming arm. To get the range of rv , we

resort to the tra�c cameras at District Department of Transporta-
tion [1], randomly choose 10 intersections and count the rate of
vehicle arrivals. �e rv ranges from 0.039 to 0.15, with an average
of 0.092. �us in our simulation we choose rv to be in this range.
�e basic three values of rv are 0.04, 0.069 and 0.094.

(2) Movement false positives and false negatives: False positive rate
rf p is de�ned as the percentage of reported acceleration movement
that did not actually happen. False negative rate rf n is the percent-
age of missing acceleration reports. To choose realistic rf p and rf n ,
we �rst conducted an experiment to detect acceleration movement
at an intersection. Out of 104 acceleration movements, there are
5 false negatives (4.8%) and 0 false positive. For simulation we
investigate SPAT learning accuracy under rf p =rf n =5%,10%,15%
by generating false or missing movement reports deliberately. In
simulations apart from SPAT learning, we set rf p =rf n =5%.

(3) Vehicle types: For simulation we have 3 vehicle types: random
background vehicles (not using GreenDrive), test vehicles (using
GreenDrive) and comparison vehicles (not using GreenDrive).

(4) System penetration rate rp : �is parameter is controlled by
adjusting the ratio of the departure repetition rate between vehicles
using GreenDrive and not using GreenDrive. �e three rp are 30%,
50%, and 70%.

(5) Tra�c signal phase durations: We let all tra�c signals have
the same set of phase duration parameters: Tp1 = Tp2 =13s , Tp3 =7s ,
Tp4 = 25s , Tp5 = Tp6 = 12s , Tp7 = 8s , Tp8 = 30s . Note that although
they share the same parameters, their phase transition will not be
synchronized due to randomized tra�c �ows.

4.3 Simulation results
4.3.1 Phase duration learning accuracy.
�e simulation generates random tra�c �ows and collects ve-

hicle movement data over the period of 4 hours, Apart from the
three basic rv con�gurations, we add another higher rate rv=0.14
with which congestion occurred at around 1/5 of all intersections.
We evaluate the learned Td1 , Td3 , Td4 for stage 1 and Td5 , Td7 , Td8
for stage 2. �e average (or maximum) phase duration error is the
mean (or maximum) error of the 3 total durations of each stage.

In Figure 5 we plot the statistical distribution of phase duration
error of 157 intersections. �e median of maximum and average
phase duration error are 4.3s and 1.8s , respectively, in worst case.
CityDrive [33] reports 1.24s mean phase length error, that is because
it targets �xed-control signal system. For the �rst three rv , higher
rv and rp lead to smaller error. But for the highest rv (0.14), the
errors become larger because tra�c congestion is observed via
SUMO GUI (right side of Figure 4), and some vehicles are unable to
move at intersections. In the rest of our simulations, we no longer
use rv=0.14.

To investigate the impact of lower sensor quality on learning
accuracy, we run simulation with rf p = rf n = 0.05,0.1,0.15 and
rp =30%. �e phase duration error distribution is shown in Figure
6. �e median error only increases slightly under larger rf p and
rf n .

4.3.2 Signal Phase and Timing (SPAT) prediction accuracy.
Vehicles using GreenDrive request future SPAT every 10s regard-

less of how far away they are from the next intersection. When
each vehicle chooses a target phase and decides the arrival time, the
ground truth phase which covers the arrival time is logged. Ideally
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Figure 5: Phase duration error distribution in stage 1 (�gure for
stage 2 is similar). For each box, central mark is the median, edges
are the 25th and 75th percentiles, whiskers covers 99.3% data points,
and outliers are red crosses limited by the vertical dashed line.
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Figure 6: Phase duration error distribution under di�erent rf p
(=rf n ).

the phase that occurs at the planned arrival time should be the same
as the chosen predicted phase. But to judge the correctness of the
predicted phase and timing, a simple right or wrong is not enough.

Here we distinguish four cases. Case 1: �e predicted phase
number is exactly the same as the ground truth. Case 2: �e pre-
dicted phase number is wrong, but there happens to be a phase in
that stage that allows the vehicle to cruise through. Case 3: �e
predicted phase number is wrong and the vehicle does not have
an appropriate phase to pass in that stage, but the stage number
is correct. Case 4: �e predicted phase number is wrong and the
predicted stage number is also wrong.
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Figure 7: Prediction timing error distribution. avд and siд are av-
erage and standard deviation of prediction error.

Figure 7 shows the prediction timing error distribution histogram
of the �rst two cases. �e bucket size of the histogram is 0.5s. Case
1 means the phase number is correct, and the vehicle can cruise
through in green phase. �e prediction error here is the phase

start time error compared to ground truth. It is likely to make
wrong predictions about whether or not there is a le�-turn phase
before the target phase or in the previous stage, so the prediction
error has small peaks around ±Tp1 or ±Tp5 (≈ ±12s). Case 2 means
the predicted phase number is not correct, but the phase at the
arrival time allows the vehicle’s desired movement. In this case, the
prediction error is the di�erence between the start time of predicted
stage and the true start time of the stage. �e stage start time is
also likely to di�er by one or two le�-turn phase durations, so there
are peaks around ±12s or ±24s . Case 3 means that the predicted
phase is not correct, and there is no phase in that stage that allows
the desired movement. �e stage is correct but whether the vehicle
has to stop or not totally depends on the driver’s behavior when
approaching the intersection. For example, a vehicle plans a le�-
turn while the ground truth stage contains only a through phase.
�us, the chance of stop and wait is high and prediction time error
has no meaning, so we don’t show case 3 in Figure 7. Case 3
accounts for 13.2%, 12.1% and 13.1% under rv = 0.04,0.069,0.094,
respectively. Case 4 means the prediction of the phase and stage is
wrong, and tra�c �ows of the con�icting stage are in motion. �is
means the vehicle has to stop and wait. Case 4 accounts for 1.72%,
1.93% and 1.86% under the three rv values.
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Figure 8: Fuel consumption and travel time for di�erent tbuf .

4.3.3 Fuel saving with optimal time bu�er (tbuf ).
We show the fuel-saving results with the optimal value for tbuf

when our system is in most fuel-saving mode (without travel time
requirement). We set up 5 test cases with tbuf = 1,3,5,7,9s and
rp = 30%. In each case we create 100 vehicles using GreenDrive
and another 100 without GreenDrive, and have them run in pairs
on 10 routes with approximately the same distance. �e departure
time of consecutive pair is separated by 50s.

Figure 8 shows the results for each tbuf (tbuf is next to the
markers). With respect to fuel saving, we observe that tbuf = 3s is
the best, achieving fuel saving of 21.6%, 23.9%, 22.8% under rv =
0.04,0.069,0.094 respectively, while only increasing travel time by
18.1%, 12.4%, 10.1%, respectively. Our system is be�er than [13]
which reports a 7% fuel saving under 50% system penetration using
SUMO, and also be�er than [5] which achieves 13.7% saving using
SUMO. �e fact that travel time increases is due to our strategy
to cope with the fundamental impossibility to accurately predict
future signal schedule which depends on unknown future tra�c.
With the unpredictability of dynamic signal control, the time bu�er
increases the chance to pass in green phase but causes more delay
compared to vehicles that always run the fastest, because vehicles
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that always run the fastest would not miss even the last second of
a green phase.

In Figure 8, we see that with the smallest tbuf = 1s , the vehicles
have the least travel time, but the fuel consumption is higher since
vehicles are more likely to arrive earlier than the phase transition
and come to a brief stop. However, tbuf ≥ 5s can lead to overly
extended travel time, thus more fuel consumption. Another reason
why large tbuf does not help is that, our system needs some accel-
erations to infer future SPAT, so it is impossible that all vehicles
don’t encounter red lights. Because if so, no acceleration would
be reported. �erefore, our system needs a dynamic equilibrium
where some vehicles come to a stop due to prediction error, and then
report accelerations to help the server improve prediction accuracy.
�us, no ma�er how large tbuf is, there will always be some ran-
dom vehicles coming to a stop. One more point worth mentioning
is that the travel time and fuel consumption of vehicles without
our system also increases as tbuf goes up. �is is because vehicles
using GreenDrive could interfere with those without GreenDrive,
such as blocking the lane of other vehicles.

�ese global e�ects and interactions are only observable in our
large-scale realistic simulations based on SUMO, and are not re-
ported by other related work because their simulations (e.g. [33]
uses MatLab) are simplistic, small-scale, and do not model vehicle
mobility well.
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Figure 9: Travel time distribution under di�erent travel time re-
quirements. avд and siд are average and standard deviation of
recorded travel time.

4.3.4 System performance under travel time requirements.
We investigate travel time distribution and fuel-saving under

di�erent travel time requirements tr eq . �e simulation parameters
are rv = 0.04 and rp = 30%. We choose a random route with
estimated travel time 800s , and run 4 test cases, three with tr eq=
700s,750s,800s , and another one without GreenDrive. For each test
case, we create 50 target vehicles with departure time separated
by 50s . Recall that, GreenDrive aims to arrive at required time on
average; and di�erent speed modes will be chosen based on time
budget.

Figure 9 shows that stricter travel time requirements lead to less
fuel-saving. Compared with vehicles without our system, we are
able to save 15.9% and 9.6% fuel consumption under tr eq=800s,750s ,
respectively. �e reason that this test achieves less fuel saving than
in Section 4.3.3 is that the system would occasionally switch to
MODEf ast to meet travel time requirements. When tr eq=700s , our
system is mostly in MODEf ast mode, thus the fuel consumption is
approximately the same as without our system.

5 REAL-WORLD EXPERIMENTS
Limited resources make it di�cult to conduct large-scale experi-
ments with many real vehicles. So we choose to report observed
real vehicle movements using smartphones and have a real vehicle
running under the speed advice of our system.

5.1 Experiment setup
We target four real major intersections and let one person stand
at each intersection to monitor and record observed vehicle move-
ments using a smartphone. �en the smartphone will manipulate
recorded movements to simulate false positives/negatives, system
penetration rate, etc. �e detail of Android program work�ow
is the following. When a movement is observed, the bu�on that
represents its type is clicked, and it also records the timestamp.
�en the incoming and outgoing arms represented by bu�ons are
clicked sequentially. �is operation is then followed by clicking the
number of vehicles nv observed in each movement. To simulate
system penetration rate, the number of vehicles using our system
is randomly generated in the integer interval [0,2nvrp ]. �en for
each vehicle a random �oat number between [0,1.0] is generated
and compared with rf p and rf n to determine if a false positive or
false negative is to be generated. To generate a false negative, the
program simply ignores the movement. To generate a false positive,
the program randomly subtracts the timestamp of this movement
to make it appear in the wrong stage.

In all our real-world experiments, the observed rv is about 0.05.
We choose rp =30%, and rf n =rf p =5% as parameters in the Android
program. �e test vehicle is Nissan Altima. We plug in the ELM
327 interface to read the vehicle’s real-time on-board diagnostics
(OBD) information and send it to the smartphone via Bluetooth.
�e OBD sample rate is 3Hz, and it gives accurate readings of fuel
consumption, speed, engine RPM, etc.

�e test trip is repeated traveling on a straight road consisting of
the four intersections with intelligent tra�c control system. Each
direction of the road has two lanes. �e driver makes round trips
along the same route and tries to stay at suggested speed. �e travel
distance of each round trip is about 2.2 kilometers and the travel
time is about 5 minutes.

5.2 Experiment results
5.2.1 Tra�ic signal schedule learning.
As the �rst stage of our system, we use smartphones to record

vehicle movements of the four intersections, each for four hours.
�e collected data are fed to the EM algorithm to learn the signal
schedule of each intersection. To get the ground truth of the phase
durations, we use a stopwatch to measure the average duration
multiple times. �e results are in Table 2, where the values in
parentheses are ground truth. It is shown that the average phase
duration error is 1.78s , which is slightly be�er than the 1.85s mean
phase length error claimed in SignalGuru [16] using direct image
processing.

5.2.2 System performance under travel time requirements.
�e server makes predictions using duration results in Table

2 and real-time vehicle movements sent from smartphones. �e
average driving speed used for estimating remaining time is 7.2
m/s . We record fuel consumption and travel time in the following
3 test cases. Test case 1 is the baseline, in which the vehicle makes
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Table 2: Phase duration learning result of 4 intersections.
Int. 1 Int. 2 Int. 3 Int. 4

Td1 55.8 (54.9) 45.9 (45.0) 40.7 (45.3) 33.1 (35.0)
Td3 58.5 (62.0) 39.6 (42.1) 37.3 (35.0) 32.8 (35.0)
Td4 40.4 (41.1) 28.6 (28.0) 33.5 (31.5) 30.5 (30.0)
Td5 49.8 (52.2) 69.4 (70.3) 70.5 (72.8) 70.1 (72.0)
Td7 49.7 (49.0) 74.8 (75.7) 61.3 (62.4) 69.9 (72.9)
Td8 35.7 (34.5) 59.4 (55.9) 60.6 (61.0) 64.4 (62.0)

10 round trips as fast as possible without our system. It’s the same
as driving constantly in MODEf ast . �is mode saves most time but
fuel consumption is high. �e average travel time is 249.6s . Test
case 2 is 10 round trips using our system with required travel time
tr eq=270s . During the travel the in-vehicle smartphone calculates
the available time budget and adaptively switches between the two
speed modes. Test case 3 is 10 round trips with tr eq=400s , which
allows the vehicle to be in MODEsave most of the time. In this case
our system saves the most fuel but causes 55s more travel time.

�e tradeo� between saving fuel and travel time is shown in
Table 3. �e case without travel time requirement and the case
with tr eq=270s save 31.2% and 23.0% fuel consumption, respec-
tively, which is be�er than the 20.3% fuel-saving in SignalGuru
[16]. SignalGuru uses ad-hoc networks and requires relay nodes
at intersections, thus vehicles far from the intersection may not
receive speed advice. Our centralized approach enables speed advi-
sory service all the way to the next intersection, which yields even
more fuel saving. CityDrive [33] claims 58.8% energy saving, but
it is calculated using GPS speed information instead of real fuel
consumption readings.

Table 3: Tradeo� between saving fuel and travel time.
Avg.

time (s)
Req.

time (s)
Avg.

fuel (g)
Fuel
saved

Case 1 249.6 / 158.2 Baseline
Case 2 261.2 270 121.6 23.0%
Case 3 304.4 400 108.9 31.2%

6 CONCLUSION
�is paper presents GreenDrive, a smartphone-based intelligent
speed adaptation system that helps reduce fuel consumption and
meet travel time requirements. Both realistic and large-scale SUMO
simulations and small-scale real-world experiments show that our
system is able to e�ectively learn tra�c signal schedule, and o�er
real-time optimal speed advice to drivers according to travel time
requirements. In the future we plan to improve the SPAT learning
algorithm to tolerate even lower system penetration rate.
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