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ABSTRACT
This paper presents a comprehensive evaluation of an ultra-
low power cluster, built upon the Intel Edison based micro
servers. The improved performance and high energy effi-
ciency of micro servers have driven both academia and in-
dustry to explore the possibility of replacing conventional
brawny servers with a larger swarm of embedded micro ser-
vers. Existing attempts mostly focus on mobile-class mi-
cro servers, whose capacities are similar to mobile phones.
We, on the other hand, target on sensor-class micro servers,
which are originally intended for uses in wearable technolo-
gies, sensor networks, and Internet-of-Things. Although
sensor-class micro servers have much less capacity, they are
touted for minimal power consumption (< 1 Watt), which
opens new possibilities of achieving higher energy efficiency
in datacenter workloads. Our systematic evaluation of the
Edison cluster and comparisons to conventional brawny clus-
ters involve careful workload choosing and laborious param-
eter tuning, which ensures maximum server utilization and
thus fair comparisons. Results show that the Edison clus-
ter achieves up to 3.5× improvement on work-done-per-joule
for web service applications and data-intensive MapReduce
jobs. In terms of scalability, the Edison cluster scales lin-
early on the throughput of web service workloads, and also
shows satisfactory scalability for MapReduce workloads de-
spite coordination overhead.

1. INTRODUCTION
The rising demand for cloud services has been continu-

ously driving the expansion of datacenters, which not only
puts excessive pressure on power supply and cooling infras-
tructure, but also causes inflated energy cost. For industry
giants like Google, Microsoft and Yahoo!, up to 50% of the
three-year total cost of datacenters is attributed to power
consumption [50]. When amortized to monthly total cost of
ownership, the energy-related costs can account for up to a
third [33]. Therefore, reducing datacenter power consump-
tion has become a hot research topic.
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To reduce datacenter energy cost, power proportional-
ity [47] is one major solution studied and pursued by both
academia and industry. Ideally, it allows datacenter power
draw to proportionally follow the fluctuating amount of work-
load, thus saving energy during non-peak hours. However,
current high-end servers are not energy-proportional and
have narrow power spectrum between idling and full uti-
lization [43], which is far from ideal. Therefore, researchers
try to improve energy-proportionality using solutions such
as dynamic provisioning and CPU power scaling. The for-
mer relies on techniques such as Wake-On-LAN [36] and
VM migration [24] to power on/off servers remotely and dy-
namically. However, the opportunities to go into hiberna-
tion state are few, while waking up servers on demand and
migrating VMs incur additional costs and unpredictability,
which make these techniques less efficient [23]. The lat-
ter solution saves energy using Dynamic Voltage/Frequency
Scaling (DVFS) [34], which reduces CPU voltage (therefore
power) and lowers frequency as the utilization drops. But
even if the CPU power consumption is proportional to work-
load, other components such as memory, disk and mother-
board still consume the same energy [47]. Thus the energy-
proportionality delivered by DVFS is not satisfactory.

Despite the large number of researches on the aforemen-
tioned complex solutions, significant energy savings are rare-
ly reported. The best scenarios only achieve up to 30% en-
ergy reduction [26]. However, when running cloud services
on energy-efficient embedded devices, the energy saving can
exceed 70% in some applications [21, 53]. Compared to
conventional high-end servers, embedded micro servers of-
fer three advantages:

1. System components of embedded micro servers are
innately better balanced [42]. For modern high-end
CPU, the power consumption increases super-linearly
with speed, a large part of which is devoted to branch
prediction, speculative execution and out-of-order ex-
ecution [50]. Imbalanced memory, network and I/O
bandwidth often leave the CPU under-utilized, caus-
ing high-end servers to be less energy efficient.

2. Individual node failure has far less significant impact
on micro clusters than on high-end clusters, simply be-
cause the number of nodes in micro clusters is larger.
Another point in [29] shows that in the event of load
increase due to node failure and load redistribution,
Xeon cores experience more QoS degradation than
small Atom cores if the workload becomes beyond sus-
tainable point.

696



3. The deployment of micro clusters requires much less
sophisticated power and cooling infrastructure. The
immense power draw of conventional datacenters en-
tails significant cost of designing and building the power
and cooling support. Thanks to the low power nature
of embedded devices, much of these investments can
be considerably reduced [20, 51].

In this paper, we push the energy efficiency even further
by building our cluster with sensor-class Intel Edison de-
vices [17], and conduct more extensive benchmark evalu-
ations. Although the Edison device is typically used for
wearable technologies, Internet-of-Things and sensor net-
works, we show that a larger cluster of such sensor-class mi-
cro servers can collectively offer significant processing capac-
ity for datacenter workloads when managed properly, while
achieving more work-done-per-joule.

To evaluate our sensor-class Edison cluster and compare
with high-end Dell cluster, we run two major categories of
datacenter workloads: on-line web services and off-line data
analysis. For the first category, we set up the cluster to take
on major roles (web servers and cache servers) in a standard
web service configuration, and have clients generate HTTP
requests to test the throughput and response delay. For the
second category, we choose to run well known MapReduce
jobs on the widely used Hadoop framework [2]. In addi-
tion, we optimize some MapReduce jobs on both platforms
to make sure that server capacity is as fully utilized as pos-
sible. The scalability of the Edison cluster is also evaluated
for both categories of workloads. We show detailed per-
formance comparison of the Edison cluster and Dell cluster
with emphasis on the metric of work-done-per-joule. Our
meaningful and fair comparison results can be valuable for
related system research.

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss related work. Section 3 gives the overview
of our testbed and measurement methodology. Then we
benchmark and compare individual Edison server and Dell
server to understand the per node performance gap in Sec-
tion 4. In Section 5 we run various datacenter workloads
on the clusters and compare energy efficiency in terms of
work-done-per-joule. Section 6 analyzes and compares the
total cost of ownership under a simple model. We discuss
the lessons that we learn through our experiments in Section
7. Finally, Section 8 concludes this paper.

2. RELATED WORK
Drastic increase in the size of datacenters has attracted

many research efforts to reduce power consumption. Gener-
ally, related work can be classified into two categories based
on the approach of achieving energy efficiency. The first
category is to seek energy proportionality with non-energy-
proportional servers [53, 32, 31, 27, 35]. The second cate-
gory is to build more energy-efficient architecture based on
low-power CPU [38, 41, 49, 33, 43, 46, 29].

Improving energy-proportionality allows power draw to
better match cluster utilization. Most work addresses this
problem by intelligently powering down servers or putting
them to hibernation state. Covering Set (CS) [35, 32] and
All-In Strategy (AIS) [31] are two techniques to optimally
shut-down cluster nodes to save energy. CS technique keeps
a small set of nodes according to data locality and shut
down the rest of the cluster, while AIS technique claims

to be more efficient by using all the nodes to complete the
job faster and shutting down the entire cluster afterwards.
Berkeley Energy Efficient MapReduce [27] divides the clus-
ter into interactive zone and batch zone, where the former
takes MapReduce Interactive Analysis (MIA) workloads and
the latter is responsible for non-interactive jobs and is often
put into low-power state. PowerNap [39] proposes a new
server architecture that is able to rapidly change the power
state of different components to reduce idle power draw.
However, generally speaking, switching power state and mi-
grating workloads inevitably increase overhead and make it
harder to guarantee service level agreements.

More recently, the idea of building datacenters based on
low-power embedded systems has become popular. Some
of these non-traditional server platforms are equipped with
low-power processors, such as ARM-based CPU [38, 41, 49],
Intel Atom CPU [33, 43, 46, 29, 25] or even embedded
CPU [21, 50]. In addition to low-power CPU, more energy-
efficiency can be achieved by exploiting low-power flash stor-
age [25, 21] or highly customizable FPGA [40]. In indus-
try, Applied Micro [16, 18, 19] and AMD [15] also target
low-power ARM-based servers for datacenter workloads. In
academia, several projects have explored using micro servers
in order to gain more work-done-per-joule than conventional
servers. Based on the CPU and memory capacity of micro
servers used in related work, we divide the platform into
two categories: 1) mobile-class servers, and 2) sensor-class
servers. Shown in Table 1, the first five rows are catego-
rized as mobile-class micro servers, since their capacity is
similar to a typical mobile phone. The last two rows in the
table represent sensor-class micro servers, in that they have
considerably lower specifications on CPU core counts, clock
rates, and RAM sizes. Sensor-class micro servers achieve
ultra-low power consumption (< 1W), by sacrificing consid-
erable computational power. Within the mobile-class cate-
gory, [38, 43] run database benchmarks (query processing,
OLAP, OLTP) and compare with conventional servers in
terms of performance per watt. [38, 25] run MapReduce
workloads on their micro servers to compare work-done-
per-joule with conventional servers. In [29], mobile cores
are used to run Internet-scale web search, and query speed
and price efficiency are compared with conventional servers.
With the increasing popularity of Raspberry Pi (either ear-
lier or more advanced model), many clusters are built for
research or educational purposes [51, 44, 20, 48]. In partic-
ular, a video streaming datacenter [51] is built and tested,
and a micro datacenter running big data applications [44]
is evaluated. However, the mentioned work on Raspberry
Pi does not compare the energy-efficiency with conventional
clusters. In the sensor-class category, FAWN [21], built upon
a cluster of low-power embedded systems with flash storage,
proves to be a highly energy-efficient key-value datastore,
as demonstrated through a comprehensive evaluation of the
system’s read/write speed, latency, queries per joule, fault-
tolerance, as well as comparisons to conventional database
systems. However, the feasibility of running big data appli-
cations (MapReduce jobs) on FAWN is not studied.

Our work is the first to carry out comprehensive evalu-
ation of datacenter workloads on a large cluster of sensor-
class micro servers. We show, through carefully examined
comparisons, that under data-intensive workloads, even the
computationally-weak Edison nodes can beat brawny servers
in terms of work-done-per-joule.
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Table 1: Micro server specifications in related work.
CPU Memory

Big.LITTLE [38] 4×600MHz, 4×1.6GHz 2GB
WattDB [43] 2×1.66GHz 2GB
Gordon [25] 2×1.9GHz 2GB

Diamondville [29] 2×1.6GHz 4GB
Raspberry Pi [51] 4×900MHz 1GB

FAWN [21] 1×500MHz 256MB
Edison [17] 2×500MHz 1GB

3. OVERVIEW
Figure 1 shows part of the Edison cluster and the power

supply system. The complete Edison cluster is composed
of five such boxes, each containing 7 Edison micro servers
and 1 switch. Each Edison compute module is stacked on a
microSD extension board (red) and a breakout board (blue).
The breakout board is connected with a 100Mbps Plugable
USB 2.0 Ethernet Adapter and the microSD board provides
8GB extra storage. The power is supplied and measured by
Mastech HY1803D DC power supply (7V).

The dimension of one Edison micro server is small, mea-
suring 4.3×1.2×1.2in (including Ethernet adaptor and ex-
tension boards). Even if each box holds only 7 Edison mi-
cro servers, the whole 35-node cluster can sit comfortably in
a 1.3m×0.5m×0.5m cabinet. In a highly compact deploy-
ment, assuming sufficient cooling, the typical 1U rack enclo-
sure (39×19×1.75in) can contain 200 Edison micro servers.
Therefore, the Edison micro cluster can be potentially more
compact than conventional clusters.

To determine the number of high-end Dell servers to com-
pare with the 35-node Edison cluster, Section 3.1 first con-
ducts a back-of-the-envelop calculation, providing a rough
estimation of the cluster size ratio to match the performance
of the Edison cluster against the Dell cluster. Section 3.2
presents our measurement methodologies and testbed con-
figuration.

Figure 1: The Edison testbed (partial).

3.1 A Back-of-the-envelope Feasibility Argu-
ment

In order to quantitatively estimate the number of Edi-
son servers to replace a high-end server, we compare with
a typical conventional server in cost, power, size, and per-
formance. More specifically, the comparison employs Dell
PowerEdge R620 server (1U), with a purchasing cost of ap-
proximately $2.5K. Its basic configuration includes an Intel
Xeon E5-2620 processor of six 2GHz cores (hyper-threaded)

and 16GB memory, and comes with a 1 Gigabit Ethernet
interface. We have access to a 40-machine testbed featuring
the Dell PowerEdge 620R server [1].

From the perspective of resource capacity, we need 16
GB/1 GB = 16 Edison nodes to match server memory,
(6 cores * 2GHz)/(2 cores * 0.5GHz) = 12 Edison nodes
to match total CPU speed (without hyper-threading), and
1Gbit/0.1Gbit = 10 Edison nodes to match the network in-
terface speed. Shown in Table 2, we estimate that the raw
resource capacity of the Dell R620 server can be matched
by as few as 16 Edison nodes.

Therefore, given 35 Edison servers, we choose 2 to 3 Dell
servers to compare with under various datacenter workloads.
Note that the size of the Dell cluster also depends on the
workload type and job division among the servers, which
will be further explained in evaluation sections.

Table 2: Comparing Edison micro servers to Dell Servers
Resource Edison Dell R620 To Replace a Dell

CPU 2×500MHz 6×2GHz 12 Edison servers
RAM 1GB 4×4GB 16 Edison servers
NIC 100Mbps 1Gbps 10 Edison servers

Estimated number of Edison servers: Max (12, 16, 10) = 16

3.2 Measurement Methodology
Datacenter workloads stress CPU, memory, disk and net-

work I/O, so in Section 4 we first evaluate the performance of
individual Edison node and Dell server using various bench-
marking tools, and then run several datacenter workloads
on both clusters. For individual performance evaluation, we
employ benchmarks that are widely used in industry and
academia. Specifically, we use Dhrystone [52] to evaluate
CPU, and Linux tools such as dd [5], ioping [6] to test disk
throughput and latency, and iperf3 [7], ping [8] to test net-
work throughput and latency. We also use Sysbench [9] to
evaluate system components such as CPU and memory.

Then we run two major datacenter workloads on a cluster
of up to 35 Edison nodes and compare with results on up to
3 Dell servers. The two major types of workloads are web
service applications (Section 5.1) and Hadoop MapReduce
jobs (Section 5.2), each consisting of several subtests with
different loads and optimizations. For web service applica-
tions, we validate the possibility that substituting 3 Dell
servers with 35 Edison nodes functioning as web servers and
cache servers can preserve the same level of throughput and
comparable response delay at peak throughput. For MapRe-
duce workloads, we show that the 35-node Edison cluster
achieves higher work-done-per-joule than a 2-node Dell clus-
ter under data-intensive workloads after equally optimized
manual tuning on both clusters.

The power consumption of Edison micro servers and Dell
servers is measured and presented in Table 3. On the Edison
cluster, the power is measured by Mastech HY1803D DC
power supply (7V) and individual node power draw is taken
as the average of power consumption of 10 nodes. On the
Dell cluster, the power consumption is measured by rack
mount Power Distribution Unit (PDU) accessed with SNMP
protocol.

Table 3: Power consumption of Edison and Dell servers.
Server state Idle Busy

1 Edison without Ethernet adaptor 0.36W 0.75W
1 Edison with Ethernet adaptor 1.40W 1.68W

Edison cluster of 35 nodes 49.0W 58.8W
1 Dell server 52W 109W

Dell cluster of 3 nodes 156W 327W
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Surprisingly, each USB Ethernet adaptor draws around
1W of power when plugged in each Edison device, which is
significantly more than the power consumed by the Edison
device itself. However, we do include the power consump-
tion of Ethernet adaptors, even if an integrated Ethernet
component would only consume 0.1W [50]. Since includ-
ing the Ethernet adaptors already over-estimates the total
power consumption, we do not further include the power
consumption of switches. Also, we do not take into account
the power of cooling (fans, air conditioning) for both plat-
forms in all comparisons, which is actually in favor of the
Dell servers as they rely on a dedicated power-hungry com-
puter room air conditioning (CRAC), whereas the Edison
cluster only uses two low power fans.

The softwares used in the performance test are listed in
Table 4. The first five benchmark software systems are
widely adopted as standard tools to test computer system
components [38], which makes it easier to compare with re-
lated work. In web service applications, we use Lighttpd as
the web server software due to its high popularity and effi-
ciency [4]. HAProxy is chosen since it is widely used in in-
dustry as a reliable, high performance TCP/HTTP load bal-
ancer [3]. MySQL, PHP, and Memcached are all renowned
tools that have long been industry standard in web service
deployment [28]. In MapReduce test, we use Hadoop Yarn
[2] which is one of the most popular frameworks for process-
ing of large data sets.

Table 4: Test softwares.
Software Version on Edison Version on Dell

Dhrystone [52] 2.1 2.1
dd [5] 8.13 8.4

ioping [6] 0.9.35 0.9.35
iperf3 [7] 3.1 3.1

Sysbench [9] 0.5 0.5
PHP [13] 5.4.41 5.3.3

Lighttpd [4] 1.4.31 1.4.35
Memcached [11] 1.0.8 0.31

Hadoop [2] 2.5.0 2.5.0
MySQL [12] 5.5.44 5.1.73
HAProxy [3] 1.5.8 1.5.2

4. INDIVIDUAL SERVER TEST
This section helps us understand the performance gap be-

tween an Edison micro server and a Dell server. Since the
types of datacenter workloads used in our paper stress all
system components, it is necessary to first evaluate the ca-
pacity of each component.

The results in the following sections basically show that
the CPU gap between a Dell server and an Edison server is
the largest (around 100 times), followed by memory band-
width (16 times) and network bandwidth (10 times). The
storage I/O gap is the smallest, which infer that Edison
nodes may be more suitable for data-intensive but less suit-
able for pure computational workloads.

4.1 CPU test
We measure CPU performance in terms of million instruc-

tions per second (MIPS) using Dhrystone. We compile the
source code with gcc using maximum optimization level -O3
and specify memory clock speed for Edison (800 MHz) and
Dell (1333 MHz) server. Then we start the benchmark on
one core (one thread) with the number of runs being 100
million, and divide the result by 1757 to get the Dhrystone
MIPS (DMIPS). The Dell server yields 11383 DMIPS, while

Edison node has 632.3 DMIPS. We are surprised by this
huge discrepancy (1 Edison core only has 5.6% performance
of 1 Dell core). So we verify the CPU performance with Sys-
bench. Sysbench tests CPU by calculating all prime num-
bers smaller than 20000, using specified number of threads.
The test completion time shown in Figure 2 and Figure 3
confirms the result from Dhrystone: when comparing 1 core
1 thread, a Dell server is 15-18 times faster than an Edi-
son server, which means when combining all cores on one
machine, a Dell server (hyper-threaded) is 90 to 108 times
faster than a single Edison node! This is because the more
sophisticated pipeline and cache structures in Xeon CPU
achieve much higher instructions per cycle (IPC) [45].
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Figure 2: Edison CPU test.
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Figure 3: Dell CPU test.

4.2 Memory test
To measure memory bandwidth, we use Sysbench running

memory transferring in specified block size with specified
number of threads. We iterate over typical block sizes from
4KB to 1MB, each tested with different numbers of threads
ranging from 1 to 16. We find that the transfer rates on
both the Edison server and Dell server saturate from block
size 256KB to 1MB. And the transfer rate stops increasing
beyond 2 threads on Edison server and beyond 12 threads
on Dell server. Results show that the Dell server has a
maximum memory bandwidth of 36 GB/s while an Edison
server only has 2.2 GB/s.

4.3 Storage test
The storage on the Dell server is a 1TB SAS hard disk

with 15K RPM, while the Edison server uses a 8GB microSD
card. Linux tools dd and ioping are used to test the stor-
age I/O throughput and latency. We measure direct write
with oflag=dsync option to make sure that every block is
committed to disk before making another write request. We
also measure buffered write by running without oflag=dsync

option.

Table 5: Storage I/O test comparison.

Edison Dell
Write throughput 4.5 MB/s 24.0 MB/s

Buffered write throughput 9.3 MB/s 83.2 MB/s
Read throughput 19.5 MB/s 86.1 MB/s

Buffered read throughput 737 MB/s 3.1 GB/s
Write latency 18.0 ms 5.04 ms
Read latency 7.0 ms 0.829 ms

Results in Table 5 show that the speed of direct write
on Dell is 5.3 times faster than on Edison, and buffered
write is 8.9 times faster. For read operations, since OS
tends to cache files in memory for faster access, we first
test buffered read speed and then flush the cache to test di-
rect read throughput. The buffered read on Dell server is
4.3 times faster than Edison and direct read throughput is
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4.4 times faster on Dell. We use ioping to measure the read
and write latency on both platforms. The read and write
latencies on Edison are 8.4 and 3.6 times larger than on the
Dell server, respectively.

4.4 Network test
We use iperf and ping to test network I/O throughput

and latency, respectively. On Edison devices, the NIC has
bandwidth of 100 Mbps while on Dell servers the bandwidth
is 1 Gbps. So we would expect a 10-time gap between them.
We transfer 1GB in total over TCP as well as UDP in the
following three cases: Dell server to Dell server, Dell server
to Edison server, and Edison server to Edison server. The
speed of TCP and UDP for the first case is 942 Mbits/s
and 948 Mbits/s, respectively. And for both the latter two
cases, the speed of TCP and UDP is 93.9 Mbits/s and 94.8
Mbits/s, respectively, which is consistent with the Edison
NIC capacity. The network latency between Dell servers is
0.24 ms on average, while pinging between Dell and Edison
nodes yields an average of 0.8 ms. And the latency between
Edison nodes themselves is around 1.3 ms. This is reason-
able since the network bandwidth between Dell servers is 1
Gbps, and that all tested Dell servers are under the same
rack. The bandwidth between Dell top-of-rack switch and
Edison top-of-rack switch is also 1 Gbps, but between Edi-
son nodes themselves, the bandwidth is limited by the NIC
capacity.

5. CLUSTER PERFORMANCE TEST
Datacenter workloads can be categorized into online ser-

vices and offline data analyses. To evaluate both categories,
we choose web service application and MapReduce jobs as
representatives respectively. For the web service application,
we deploy a typical Linux + Lighttpd + MySQL + PHP
(LLMP) stack, where Lighttpd runs as the web server en-
abled with FastCGI, and PHP as the language for web page
that accesses the MySQL database. For MapReduce work-
loads running on Hadoop Yarn (v2.5.0), we run both data-
intensive and computation-intensive workloads with tuned
parameters. Scalability evaluations are carried out for all
types of workloads by re-running the same tests in different
cluster sizes.

5.1 Web service workload

5.1.1 Test setup
We deploy web applications on both the 35-node Edison

cluster and 3-node Dell cluster. In each cluster, the servers
are divided into web servers (running Lighttpd) and cache
servers (running memcached). The web servers in each clus-
ter are about twice as many as cache servers, as web servers
would both fetch data from cache servers and assemble data
to answer user requests, resulting in twice network traffic
compared to cache servers. Web service workloads can ex-
haust network resources very fast, so in order to fully utilize
server capacity, we turn on tcp port reuse option, expand ip
local port range, and raise the limit for the number of file
descriptors and simultaneous connections.

There are 8 client machines running httperf to generate
sustained high-rate HTTP requests, which are evenly dis-
tributed to all web servers by another 8 machines running

HAProxy [3] as a TCP-layer load-balancer. Using an ex-
cessive number of request generators and load-balancers en-
sures that the benchmarking tool itself never becomes a bot-
tleneck of throughput. Among the parameters of httperf,
concurrency means the number of new TCP connections
per second, and we increase the concurrency to increase
the load. Under each concurrency level, we fine tune the
number of calls per connection to allow the httperf-reported
concurrency to match the target concurrency level without
client-side errors such as unavailable file descriptors. When
the concurrency is too large, web servers will be overloaded
and return error code 500 (server error). Experiment results
with server-side errors are excluded from our evaluation. We
apply the same httperf parameters to all clients and coordi-
nate them via remote procedure call so that each test starts
and ends almost at the same time on all clients. The test
duration under each concurrency level is around 3 minutes,
and results show that the run time difference between clients
is less than 1s.

Linear scale-up is expected in this type of service since
web servers seldom interact with each other. To confirm
this behavior, we test and compare between 35-node Edi-
son cluster and 3-node Dell cluster, 18-node Edison cluster
and 2-node Dell cluster, and further scale down the Edison
cluster to 1/4 and 1/8. The server count configuration and
scale factor of both clusters are shown in Table 6.

Table 6: Cluster configuration and scale factor.
Cluster size Full 1/2 1/4 1/8

# Edison web servers 24 12 6 3
# Edison cache servers 11 6 3 2

# Dell web servers 2 1 N/A N/A
# Dell cache servers 1 1 N/A N/A

Both the Edison cluster and the Dell cluster share the
same MySQL database running on 2 other Dell R620 servers.
This configuration helps us devote as many Edison servers
as possible to middle tier services, without overwhelming the
database. So in all our tests that involve accessing MySQL
database, the requests are randomly directed to the 2 Dell
database servers. The data stored in the 2 database servers
are imported from the database dumps of the wikipedia
website [14] and images crawled from Amazon, Newegg and
Flickr websites (totaling 20GB). The database consists of
15 tables, 11 of which contains simple fields (INT, VARCHAR,

VARBINARY) and the other 4 contain image blobs. The average
image size is 30KB.

Upon receiving a request from the client, the web server
first randomly chooses a database table and a row number,
and then requests the cache server for the contents. If hit,
the data is directly retrieved from the cache server without
further consulting the database. Otherwise the web server
will retrieve the data from one of the database servers. Each
test consists of a warm-up stage and a test stage. During
the warm up stage, the web servers first retrieve requested
data from the database, and then feed the same data to
cache servers. After the warm-up, cache misses in the test
stage will not lead to insertion into cache servers to ensure
consistent cache hit ratio during the test stage. We control
the cache hit ratio by adjusting the warm-up time, and the
hit ratio is calculated from memcached service statistics.

We test the web server performance under different work-
loads. The heaviness of the workload is controlled by the
percentage of image query in the requests, which also af-
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fects average reply sizes. To control the percentage of image
requests, we assign different weights to image tables and
non-image tables to control their probability to be selected.
In our tests, the probabilities of accessing image tables are
0%, 6%, 10%, and 20%, and the average reply sizes are
1.5KB, 3.8KB, 5.8KB and 10KB, respectively.

Apart from the average response delay from httperf re-
port, we also want to obtain the response delay distribution.
So we set up 30 other Dell servers as clients running Python
code to repeatedly generate HTTP requests to random web
servers. Each time a request is sent using Python module
urllib2, a separate thread logs the timestamps of sending
the request and receiving the reply without interfering with
the requesting thread. The distribution of response delay is
obtained from the aggregated log results from the clients.

5.1.2 Web service test results
We first compare the performance of the two clusters un-

der the lightest load (93% cache hit ratio and 0% image).
The httperf benchmark results for throughput and delay
under different cluster sizes are shown in Figure 4 and Fig-
ure 7. The numbers in the legend are the numbers of web
servers under different cluster sizes, which can be found in
Table 6. In terms of throughput, we have 4 observations:
1. Under high concurrency (number of connections per sec-
ond), the maximum number of requests per second scales
linearly with cluster size on both platforms. 2. The peak
throughput is almost the same on both Edison cluster and
Dell cluster, in both full cluster size and half cluster size.
3. Server error (5xx) occurs sooner on Edison cluster (be-
yond 1024 concurrency), while Dell cluster can handle more
concurrency although the throughput drops (but error also
occurs beyond 2048 concurrency). 4. When we further scale
down on Edison cluster (to 6 and 3 web servers), the maxi-
mum throughput and maximum concurrency level both scale
down linearly.

In terms of average response delay shown in Figure 7, we
have 3 observations: 1. When the throughput (or concur-
rency level) is low, the delay on Edison cluster is around 5
times larger than on Dell cluster. 2. When the concurrency
level reaches a threshold, the delay on Dell cluster increases
significantly, exceeding the delay on Edison cluster. 3. The
change of delay is much higher on Dell cluster (increased
200 times) than on Edison cluster (increased 10 times).

The two green lines in Figure 4 are the power consumption
of the 3-node Dell cluster and the 35-node Edison cluster
under each concurrency level. The power on Edison clus-
ter steadily holds from 56W to 58W (but more than half
is consumed by the Ethernet adaptors), while the power of
the Dell cluster ranges from 170W to 200W. So at peak
throughput, the Edison cluster achieves 3.5 times more en-
ergy efficiency than the Dell cluster.

The above results come from the lightest workload in that
the proportion of image query is zero and the cache hit ra-
tio is the highest (93%). The following 4 tests evaluate in-
creased workloads on the 35-node Edison cluster and the
3-node Dell cluster. First we decrease the cache hit ratio
down from 93% to 77% and 60% while keeping the image
proportion to zero percent. Then we increase the image
proportion from 0% to 6% and 10% while keeping the 93%
cache hit ratio. The rest of the settings are the same as
the previous test and the throughput and delay results are
shown in Figure 5 and Figure 8, respectively.

The increase in image percentage from 0% to 10% enlarges
the average reply size from 1.5KB to 5.8KB. Although the
peak throughput at 512 concurrency does not change much,
the throughput at 1024 concurrency drops significantly on
both clusters. We see this drop as the result of network re-
source depletion and the inability to create enough threads.
Also, the delays on both platforms nearly double even under
low concurrency, and show similar trend when concurrency
reaches maximum. But in general, the small increase of
workload does not cause too much performance penalty in
terms of maximum number of requests per second.

Before taking on the heaviest load, we need to determine
the maximum image percentage that still ensures fair com-
parison. The Edison cluster physically locates in a differ-
ent room from the clients that generate HTTP requests,
and the total bandwidth between the clients and the Edison
web servers is 1Gbps. However, the 2 Dell web servers and
the clients are in the same server room interconnected by
ToR switches so that their aggregated bandwidth is 2Gbps.
Thus, when the network bandwidth is half utilized on the
24 Edison web servers (around 50Mbps on each node), the
aggregated throughput already reaches the 1Gbps capacity.
While for the Dell cluster, half utilized bandwidth (0.5Gbps
each web server) amounts to just 1Gbps, still half of its total
bandwidth. Thus, for fairness, we choose the proper image
proportion so that it only utilizes half of individual Edison
node’s NIC capacity, which turns out to be 20%.

Thus, with 20% image proportion and 93% cache hit ra-
tio, we re-run the httperf tests with different scale factors
and show the throughput and delay results in Figure 6 and
Figure 9. Under peak throughput, on average each Dell web
server and each Edison web server shows 45% and 86% CPU
usage, 50% and 25% memory usage, 60MB/s and 5MB/s
network I/O, respectively. And each Dell cache server and
each Edison cache server shows 1.6% and 9% CPU usage,
40% and 54% memory usage, 50MB/s and 4MB/s network
I/O, respectively. Although the utilizations of major sys-
tem components stay under 100%, both clusters are still
fully utilized as the throughput is limited by the ability to
create new TCP ports and new threads.

Figure 6 and Figure 9 show similar throughput and de-
lay trends, but overall the number of requests per second is
only 85% of that under lightest workload. The throughputs
on both Edison cluster and Dell cluster drop significantly
when the concurrency reaches 1024, and the half-sized Edi-
son cluster can no longer handle that level of concurrency
without generating errors. In addition, the overall through-
put of Edison cluster changes from slightly better than Dell
cluster (Figure 4) to a little worse than Dell cluster. But
since the throughput scales linearly with cluster size, the
performance gap could be compensated by adding a few
more Edison nodes. But still, the Edison cluster achieves
3.5 times more energy efficiency than Dell cluster.

To see the delay distribution histogram under heaviest
workload (20% image) and high request rate (around 6000),
we run python program on 30 other Dell servers to make
the same HTTP requests and log the response delay. The
response delay distribution for Edison cluster and Dell clus-
ter is shown in Figure 10 and Figure 11, respectively. We do
see that under heavy workload, Edison cluster shows larger
average delay. But interestingly, the delay distribution on
Dell cluster spikes 1s, 3s, and 7s, which seem to follow a
exponential back off pattern. Results from httperf report
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Figure 4: Cluster throughput, no image
query.
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Figure 5: Cluster throughput, higher im-
age percentage and lower cache hit ratio.
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Figure 6: Cluster throughput, 20% image
query.
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Figure 7: Response delay, no image query.
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Figure 9: Response delay, 20% image
query.

under similar request rate also show high deviation of con-
nection time, some as large as 15 seconds. So we reason
that the spikes of delay distribution on Dell cluster is a re-
sult of the re-connection delay of the python module urllib2

when SYNC packets are dropped. Since the number of web
servers in Edison cluster is much larger, the re-connection
phenomenon is less severe. This would also highlight the
advantage that Edison cluster has much more TCP port re-
sources simply because of larger server count.
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Figure 10: Delay distribution
on Edison cluster
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Figure 11: Delay distribution
on Dell cluster

To break down the proportion of time spent on fetch-
ing from database and from cache, we log the timestamp of
the start and end of getting results from MySQL database
servers and cache servers. When calculating database query
delay, the log entries of cache-hit requests (thus no database
access) are ignored. The image query percentage is 20% and
cache hit ratio is 93%, and the time delay is the average of
aggregated results from all web servers. The delay decompo-
sition is listed in Table 7. Note that the total delay excludes
re-connection delay, since the timestamp is logged on web
servers.

Table 7: Time delay decomposition in millisecond under dif-
ferent throughput, the first and second number in each tuple is
measured on Edison and Dell cluster, respectively.

# Request/s Database delay Cache delay Total
480 (5.44, 1.61) (4.61, 0.37) (9.18, 1.43)
960 (5.25, 1.56) (9.37, 0.38) (14.79, 1.60)
1920 (5.33, 1.56) (76.7, 0.39) (83.4, 1.73)
3840 (8.74, 1.60) (105.1, 0.46) (114.7, 1.70)
7680 (10.99, 1.98) (212.0, 0.74) (225.1, 2.93)

From Table 7 we observe that for Edison cluster, the time
delay of retrieving from cache servers increases significantly
faster than the delay of database query does, as the request
rate rises from 480 to 7680. The reason is that the cache hit
ratio stays high throughout this test so that queries seldom
reach the database, but most requests would result in re-
trieving contents from cache servers, leading to larger cache
delay. Another factor is that the network latency within
the Edison cluster (1.3ms as mentioned in Section 4.4) is
much larger than that within the Dell cluster (0.24ms). The
fact that the Edison bandwidth is 10 times less than Dell
bandwidth also contributes to the large discrepancy of cache
retrieve delay between the two test subjects. From Table 7
we also see that under peak throughput, the total delay ob-
served on the Dell web servers is still small, so we confirm
that the large delay spikes in Figure 11 is due to the failure
of the client’s attempt to connect to web servers.

In summary, for web service workloads, the Edison cluster
shows linear scalability and much higher energy efficiency
than conventional brawny servers. This is largely due to the
massively parallel nature of web service applications, and
also because the network and OS resources for creating new
connections are more abundant in larger sized micro server
clusters.

5.2 MapReduce Workloads
In this section we explore the possibility of achieving high-

er energy efficiency on Edison cluster when running MapRe-
duce jobs. Initially we deployed Hadoop (Yarn) on all the
35-node Edison cluster, but we soon discovered that an Edi-
son node being a master (namenode for HDFS and resource-
manager for Yarn) would become the bottleneck of the whole
system. Sometimes jobs even fail to complete when an Edi-
son node is the master. This is because the namenode
and resource-manager are resource-hungry instances, as they
keep track of the global status, meta-data and resource al-
location. Due to the limited amount of resources, a single
Edison node cannot fulfill resource-intensive tasks. Thus we
adopt a hybrid solution where the namenode and resource-
manager run on one Dell server (master) and the datanode
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and node-manager run on the 35 Edison nodes (slaves). We
also seek to understand the scalability of Hadoop on Edison
cluster, since [30] points out that the overhead of coordina-
tion and data shipping causes “friction loss” that dilutes the
benefits of a low-power cluster.

Thus, for the rest of our tests, the configuration on the
Edison cluster is 1 Dell master plus 35 Edison slaves, while
for the Dell cluster it is one Dell master plus other 2 Dell
slaves. Therefore, in the Edison cluster there are 35 nodes
running MapReduce jobs while in Dell cluster there are 2.
To calculate energy consumption, we exclude the Dell mas-
ter on both platforms, as the power consumed by the Dell
master can be considered as a static offset due to its steady
and low resource utilization (1% CPU and 53% memory).

It is confirmed in Section 4 that the aggregated CPU
speed on 1 Dell server is around 100 times faster than on
1 Edison server. So the Edison cluster may not excel at
computationally intensive workloads. Thus, we first focus
on data-intensive but computationally light jobs, including
wordcount and logcount [10]. We also optimize server uti-
lization by combining small input files and analyze the per-
formance improvement on both platforms.

First, we give a system capacity overview to help decide
how to configure resources for MapReduce jobs. The Edison
server has 960MB total physical memory. When it is in idle
state, the memory usage is around 260MB, and when run-
ning HDFS datanode and Yarn node-manager (without any
tasks), the memory usage is around 360MB in total. This
means we have around 600MB memory available to run map
and reduce tasks. On a Dell server, the total physical mem-
ory is 16GB, and when running only HDFS datanode and
Yarn node-manager, there is about 4GB memory used. So
on each Dell server we have around 12GB available memory
to run MapReduce tasks. In Yarn resource configuration
file, we allocate 100MB for Application Master on Edison
cluster and 500MB on Dell cluster, and set the nameplate
available memory resource to run map/reduce tasks to be
600MB on Edison server and 12GB on Dell server. The
number of vcore is 2 on Edison cluster and 12 on Dell clus-
ter, thus the container size could be 300MB for Edison and
1GB for Dell. For larger input datasets, the map task input
size is often the same as HDFS block size, so we want it
to be proportional to the container memory. Thus we set
the block size to be 16MB on Edison cluster and 64MB on
Dell cluster, unless otherwise specified. The HDFS replica-
tion number on Dell cluster is 1, otherwise all map tasks
on Dell cluster would be data-local because there are only
2 datanodes. Then we set the replication number to be 2
on Edison cluster, so that on both clusters, the percentage
of data-local map tasks is around 95% according to Hadoop
log files.

For each MapReduce job on both clusters, we manually
tune the parameters to reach the highest utilization and
shortest run time. If the job’s finish time does not change
more than 5% after 3 consecutive fine tuning, its result and
log file are adopted for comparison.

5.2.1 Wordcount
Wordcount is relatively computationally light, data-inten-

sive and generating a considerable amount of map output
records. There are 200 input files stored in HDFS, total-
ing 1GB. The original wordcount comes with no combiner
class, nor does it merge input files to reduce the number of

map containers. So, each container will only process one
original input file, resulting in 200 map containers in to-
tal. Since each input split is small, we discover that running
two or even more containers simultaneously on each virtual
core (vcore) sometimes better utilizes CPU and memory re-
sources, especially when the task is not computationally in-
tensive and when there is abundant memory left to run more
Java programs.

On Edison cluster, the map task memory is set to 150MB,
so that on each server, the 2 vcores run 4 map contain-
ers at the same time. Average map output record size
is around 10 bytes so we decide to set io.sort.mb=70 and
io.sort.record.percent=0.6. The option for Java program
memory inside each map container is 140MB (map.java.
opts=-Xmx140m). The map output is partitioned into 70 re-
duce tasks so that each Edison vcore gets one reduce con-
tainer. The reduce task memory is set to 300MB, and
the rest of parameters are set accordingly: io.sort.mb=100,
reduce.java.opts=-Xmx260m.

Similarly, on Dell cluster, each server has 12 vcores and
can run 24 map containers, so that the map task memory is
set to 500MB, with io.sort.mb=100, map.java.opts=-Xmx450m.
So the cluster of 2 Dell workers will run 48 map containers at
the same time. The output records of mapping phase is par-
titioned into 24 reduce tasks so that each Dell vcore will han-
dle one reduce container. The reduce memory task is set to
1GB, with io.sort.mb=200, io.sort.factor=20, reduce.java.
opts=-Xmx800m.

We use python module psutil (which consumes less than
1% of CPU and memory) to log the resource utilization per-
centage on both platforms. Results are shown in Figure
12 and Figure 15 together with cluster power consumption
and progress percentage of map/reduce phases. The rise of
CPU usage (at 45s on Edison and 20s on Dell) is sooner
than the rise of memory usage (at 90s on Edison and 35s on
Dell) since the calculation of container allocation takes place
before the reading of the input files from disk. The dive of
memory (at 150s on Edison and 50s on Dell) usage indicates
that the map output records are spilled to the disk. Due to
limited space, the disk and network I/O usage is omitted.

Observation: 1. Wordcount has a relatively CPU-hungry
map phase (splitting up lines into words), especially on Dell
cluster, where CPU utilization stays at 100% persistently
throughout the map phase. 2. The resource allocation time
before the rise of CPU utilization is about 2.3 times longer
on Edison cluster than on Dell cluster. 3. The reduce phase
starts much sooner on Dell cluster (at 28% of execution time)
than on Edison cluster (at 61% of execution time).

Because there are a large number of small input files for
this job, the Dell cluster suffers more overhead of container
allocation. The total time and total energy spent on Dell
cluster are 213s and 40214J, respectively. While on Edison
cluster the numbers are 310s and 17670J. Therefore, the
Edison cluster spent 45.5% more time, but achieves 2.28
times higher energy efficiency.

Optimized wordcount (wordcount2): Then we seek
to optimize the wordcount example (and name it word-
count2) to reduce the container allocation overhead and
shuffle workload. We implemented the CombineFileInput-
Format class that combines the 200 input files into larger
files to reduce the number of map containers. The maxi-
mum split size is 15MB for Edison cluster and 44MB for Dell
cluster so that in mapping phase, each vcore gets only one
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Figure 12: Wordcount on Edison cluster.

0 50 100 150
0

20

40

60

80

100

P
e
rc

e
n

ta
g

e
 (

%
)

Time (s)

 

 

30

40

50

60

70

80

90

C
lu

s
te

r 
p

o
w

e
r 

c
o

n
s
u

m
p

ti
o

n
 (

W
)

CPU

Mem

Map

Reduce

Power

Figure 13: Wordcount2 on Edison cluster.
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Figure 14: Estimate pi on Edison cluster.
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Figure 15: Wordcount on Dell cluster.
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Figure 16: Wordcount2 on Dell cluster.
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Figure 17: Estimate pi on Dell cluster.

container (much less overhead). In this way, the memory al-
located for map task and reduce task is the same (300MB on
Edison, 1GB on Dell). In addition, we set the Combiner class
to be the same as Reducer class to reduce the size of spilled
records and shuffling traffic. The results of wordcount2 are
shown in Figure 13 and Figure 16.

Observation: First of all, both clusters achieve signifi-
cant reduction in job completion time (41% on Edison and
69% on Dell). The CPU and memory utilization curves
on both clusters are surprisingly similar, and the Dell clus-
ter shows more improved memory usage. The map task
progress bars on both clusters show a stagnation at around
70%. Combined with high network I/O during the stag-
nation (omitted), we reason that during that period, the
partitioned map output records are being transferred to re-
ducers.

The optimization brings greater benefits to the Dell clus-
ter as it combines the map input into much fewer containers
on Dell servers, which dwarfs the energy efficiency advantage
of the Edison cluster. The energy spent on Edison cluster
and Dell cluster is 10370J and 11695J, respectively, which
means Edison cluster achieves only 11.3% more work-done-
per-joule.

Discussion: Combining a large number of small input
files into a large file for map task seems to dilute the bene-
fits of parallelism and high energy efficiency on the Edison
cluster. But first of all, the maximum combined file size is
limited by the HDFS block size. So, unless the Dell clus-
ter employs excessively large block sizes, which negatively
impacts failure recovery, it is still inevitable to use a large
number of mappers. Second, not all jobs can be optimized
in this way. If the generation of those small input files is
concurrently running along with the MapReduce jobs, it is
not optimal to wait for all input files to be ready and com-
bine them together. Some other scenarios may require that
input files be processed individually and combining them
could lose information about the source of the input. There-
fore, unless carefully engineered by developers to allow such
optimization, combining input files is not prevalent.

5.2.2 Logcount
Logcount [10] job is to extract from each log entry the

date and debug level pair as key, and count the number of
occurrences of each key. An illustration of the map output
is <‘2016-02-01 INFO’,1> and the reduce task is to sum up
the number of the same date and debug level. Compared
to wordcount, the logcount map task is much lighter and
produces fewer output records, and thus the reduce task
takes fewer input records. The input files used in this test
are 500 log files generated by Yarn and Hadoop, totaling
1GB. The reason to run this test is that we can observe
the most “friction loss” or coordination overhead when the
cluster size increases (shown in Section 5.3).

Observation: The original logcount program does not
combine input files, but does set the Combiner class to be
the same as Reducer class. As expected, the memory usage
is only around 60% on both platforms, and the Dell clus-
ter consumes at most 83% of its peak power. Because of the
large number of map containers (500), the execution time on
the 35-node Edison cluster is 279s, which is even closer to
that on the Dell cluster (206s). Finally, in this test the Edi-
son cluster achieves 2.57 times more work-done-per-joule.

Optimized logcount (logcount2): Similar to word-
count2, in this optimized logcount2 test, the small input
files are combined so that each vcore only gets one map
container. Again, the Dell cluster dramatically reduces the
execution time to 59s, but the Edison cluster took 115s to
finish the job. However, the Edison cluster still achieves
44.7% more work-done-per-joule.

5.2.3 Estimate Pi
The measurement results in Section 4.1 show that it is

cumbersome for the Edison cluster to execute CPU-intensive
tasks. In this section, we check whether the same claim
holds for computationally intensive MapReduce jobs. The
total number of samples is 10 billion and the number of map
containers is 70 on Edison cluster and 24 on Dell cluster.
The number of reducers is 1 by default for both clusters.
The results are shown in Figure 14 and Figure 17.
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Observation: We observe that both CPU and memory
reach full utilization on both clusters. Given the large gap of
computation capacity, Edison cluster spends 200s to finish
the job while Dell cluster only needs 50s. In consequence,
the energy consumption on the Edison cluster is 11445J,
which is 2160J more than that on Dell cluster.Therefore, the
Edison cluster actually yields 23.3% less energy efficiency.

5.2.4 Terasort
Terasort is composed of three parts: Teragen, Terasort,

and Teravalidate. Neither the Edison cluster nor the Dell
cluster has enough storage to store 1TB input dataset, so
we scale down to 10GB of data. Teragen is a map-only job,
which generates input data and stores them in HDFS for
Terasort. Since the data generated by Teragen is split to the
HDFS block size, to be fair we set the block size to be 64MB
on both clusters, so that the total number of input files is
168. TeraSort was configured with 168 map tasks, 24 reduce
tasks for Dell cluster, and 70 reduce tasks for Edison cluster.
Each vcore is allocated 1 map container and the number of
reducers is set to the total number of vcores. Teravalidate
validates the results from Terasort, where the mapper num-
ber is equal to the reducer number of the Terasort, and the
reducer number is one. We only compare the execution time
and energy consumption of the Terasort stage.

Observation: From the resource utilization log we find
that the Terasort stage is more memory-hungry than CPU-
hungry. The average CPU and memory usage is around
60% and 95%, respectively, on both clusters. The Terasort
stage on Edison cluster takes 750s, and on Dell cluster it
takes 331s. During this period, the Edison cluster consumes
43440J, while Dell cluster consumes 64210J. So the Edison
cluster again achieves 32% higher energy efficiency.
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Figure 18: Job finish time.
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Figure 19: Energy consump-
tion.

5.3 Scalability test
To investigate the execution time and energy consump-

tion when the Edison cluster scales up, we run the same set
of tests on both platforms in different cluster sizes. All the
MapReduce jobs are tuned to best utilize the resources when
the number of servers changes. For example, when running
wordcount2 or logcount2 on half-scale Edison cluster, we in-
crease the HDFS block size (to 32MB for example) in order
to still allocate just one map container to each vcore. The
job finish time and total energy consumption of both clus-
ters are shown in Figure 18 and Figure 19, respectively. A
summary is also shown in Table 8, where the bold numbers
represent the least energy consumption case.

We can see that except estimating pi, the Edison cluster
achieves more work-done-per-joule in all other MapReduce
jobs. From wordcount and logcount tests, we observe that
the huge parallelism helps the Edison cluster to outperform

the Dell cluster more when there are higher container alloca-
tion overheads. Also, heavier jobs with more map containers
are more likely to yield higher energy efficiency to run on
larger cluster sizes (eg. Terasort). But the “friction loss” or
coordination overhead begins to dilute the benefit of larger
cluster size when container allocation overhead is reduced,
so smaller cluster size actually yields higher efficiency (eg.
estimating pi). In cases where the job (such as logcount2) is
so light-weight that smaller clusters can also finish in short
period of time, larger cluster actually consumes more energy.

For every MapReduce job, we calculate the mean speed-up
when the cluster size doubles, and then derive the average
speed-up of all jobs. The average speed-up is 1.90 on the
Edison cluster and 2.07 on the Dell cluster. In some cases the
linear speed-up is achieved, and we believe that it is because
the parameter tuning happens to find the comfort spot for
that particular input size and cluster size. In other cases
like logcount2, larger cluster size actually only yields limited
speed-up since the job is light-weight and the coordination
overhead becomes dominant. But overall, the scalability of
Edison cluster is satisfactory even if the speed-up is slightly
less than on Dell cluster.

6. TCO ANALYSIS
To compare the total cost of ownership (TCO) of data-

centers built upon Edison micro servers and Dell servers, we
employ a simple model considering the equipment cost and
electricity cost [38]. We assume that there exists a server
utility lower bound and upper bound, and that the server is
consuming peak power when active, while consuming mini-
mum power when idling. Using the notations in Table 9, we
derive the estimated TCO as:

C = Cs+Ce =Cs+Ts ·Ceph ·(U ·Pp+(1− U)·Pi) (1)

Table 9: TCO notations and values.

Notation Description Value
Cs,Edison Cost of 1 Edison node $120
Cs,Dell Cost of 1 Dell server $2500
Ceph Cost of electricity $0.10/kWh
Cs Total servers cost To calculate
Ce Total electricity cost To calculate
Ts Server lifetime 3 years
Uh High Utilization rate 75%
Ul Low Utilization rate 10%

Pp,Dell Peak power of 1 Dell server 109W
Pp,Edison Peak power of 1 Edison node 1.68W
Pi,Dell Idle power of 1 Dell server 52W

Pi,Edison Idle power of 1 Edison node 1.40W

The cost of one Edison server is composed of the de-
vice and mini breakout ($68), plus a USB Ethernet adapter
($15), a micro SD card and extension board ($27) and amor-
tized switch and cables cost ($10), totaling Cs,Edison =
$120. Therefore the cost of the 35-node Edison cluster is
$4200, which is lower than the cost of the Dell cluster con-
sisting of either 2 or 3 servers. The electricity price is aver-
aged across United States [22], which is Ceph = $0.10/kWh.
We expect 3-year lifetime of Dell servers [22], and assume
that it is the same for Edison servers.

We calculate the TCO in two application scenarios: web
service and big data execution. For web service scenario, we
compare 35 Edison nodes to 3 Dell servers according to the
configuration in Section 5.1.1. We consider a typical utiliza-
tion lower bound Ul = 10% according to [37], and an upper
bound Uh = 75% observed in Google datacenters [22]. For
big data execution, we compare 35 Edison nodes to 2 Dell
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Table 8: Execution time and energy consumption under different cluster size.
Edison cluster Dell cluster

Cluster size 35 17 8 4 2 1
Wordcount 310s,17670J 1065s,29485J 1817s,23673J 3283s,21386J 213s,40214J 310s,30552J
Wordcount2 182s,10370J 270s,7475J 450s,5862J 1192s,7765J 66s,11695J 93s,8124J

Logcount 279s,15903J 601s,16860J 990s,12898J 2233s,14546J 206s,40803J 516s,53303J
Logcount2 115s,6555J 118s,3267J 125s,1629J 162s,1055J 59s,9486J 88s,6905J

Pi 200s,11445J 334s,9247J 577s,7517J 1076s,7009J 50s,9285J 77s,6878J
Terasort 750s,43440J 1364s,37763J 3736s,48675J 8220s,53547J 331s,64210J 1336s,111422J

servers according to Section 5.2. Since the Edison cluster
spends 1.35× to 4× as much time to finish a job as the Dell
cluster does, we assume the Edison cluster utilization to be
constantly 100%, and for the Dell cluster Uh = 74% and
Ul = 25%. The 3-year TCO comparison is shown in Table
10. It is clear that building a cluster based on ultra-low
power Edison servers can save the total cost up to 47%.

Table 10: TCO comparison.

Scenario Dell cluster Edison cluster
Web service, low utilization $7948.7 $4329.5
Web service, high utilization $8236.8 $4346.1

Big data, low utilization $5348.2 $4352.4
Big data, high utilization $5495.0 $4352.4

7. DISCUSSION
The high energy efficiency is the most salient and lucra-

tive property offered by the sensor-class micro server cluster.
Nevertheless, restricted by the limited per node capacity,
this high energy efficiency does not apply to all workloads.
Based on our evaluations, we summarize the advantages (+)
and limitations (−) of the sensor-class micro server cluster:

+ Massively parallelizable applications such as web ser-
vices can easily migrate to and comfortably run on mi-
cro servers, enjoying much higher (up to 3.5×) energy
efficiency.

+ Data-intensive batch-processing workloads can achieve
considerably higher (up to 2.6×) work-done-per-joule
on micro servers.

+ The total cost of the micro server cluster is much lower
due to much less sophisticated power and cooling in-
frastructure, as well as lower server purchase cost.

− The measured computational capability gap (≈ 100×)
between micro servers and conventional servers sur-
prisingly exceeds their nameplate CPU speed gap (12×)
by around one order of magnitude. Therefore, mi-
cro servers cannot win the competition when serving
computationally-intensive workloads.

− Concomitant with higher energy efficiency is prolonged
execution time, which makes the micro server cluster
less suitable for interactive and latency-sensitive appli-
cations.

− The limited resources in micro servers prevent them
from acting as the manager of the data processing
framework.

Given the limitations, micro server cluster alone cannot
offer a holistic solution for cloud computing. However, the
diversity in datacenter workloads exposes myriad chances for
micro servers to participate and play a role. Therefore, we
believe that a hybrid future datacenter design that orches-
trates micro servers and conventional servers would achieve
both high performance and low power consumption.

Lastly, during the 10-month deployment of the Edison
cluster, we only encountered one breakout board failure (but
the Edison SoC stacked on it is still functioning correctly).
We believe that failures caused by less reliable peripherals
can be reduced through improved system integration.

8. CONCLUSION
In this paper, we present an ultra-low power cluster built

upon the sensor-class Edison micro servers, and identify the
advantage of such low-power cluster in terms of work-done-
per-joule under various datacenter workloads. We show that
for web service applications and data-intensive MapReduce
jobs, the Edison cluster always achieves higher energy effi-
ciency compared to the conventional high-end cluster. We
also show that the micro server cluster scales linearly in web
service applications, and also achieves satisfactory scalabil-
ity in big data execution. However, through our experiments
we identify the limitations of the micro server cluster, and
conclude that it is not suitable for computationally inten-
sive and latency-sensitive cloud applications. Nevertheless,
the diversity of datacenter workloads offers numerous op-
portunities for micro server clusters to actively take on the
tasks that suit them most. Therefore, we envision a future
hybrid datacenter design that can harness both the energy-
efficiency of micro servers and the computational power of
conventional servers.
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