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How can the advantages of deep learning be brought to 

the emerging world of embedded IoT devices? The authors 

discuss several core challenges in embedded and mobile 

deep learning, as well as recent solutions demonstrating 

the feasibility of building IoT applications that are powered 

by effective, efficient, and reliable deep learning models.

The proliferation of internetworked mobile and 
embedded devices leads to visions of the Inter-
net of Things (IoT), giving rise to a sensor-rich 
world where physical things in our everyday 

environment are increasingly enriched with computing, 
sensing, and communication capabilities. Such capabil-
ities promise to revolutionize the interactions between 
humans and physical objects.

Indeed, significant research efforts have been spent 
toward building smarter and more user-friendly appli-
cations on mobile and embedded devices and sensors. 
At the same time, recent advances in deep learning have 
greatly changed the way that computing devices process 
human-centric content such as images, video, speech, 
and audio. Applying deep neural networks to IoT devices 
could thus bring about a generation of applications 

Deep Learning for the
Internet of Things
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capable of performing complex sens-
ing and recognition tasks to support 
a new realm of interactions between 
humans and their physical surround-
ings. This article discusses four key 
research questions toward the realiza-
tion of such novel interactions between 
humans and (deep-) learning-enabled 
physical things, namely: What deep 
neural network structures can effec-
tively process and fuse sensory input 
data for diverse IoT applications? How 
to reduce the resource consumption 
of deep learning models such that 
they can be efficiently deployed on 
resource-constrained IoT devices? How 
to compute confidence measurements 
in the correctness of deep learning pre-
dictions for IoT applications? Finally, 
how to minimize the need for labeled 
data in learning?

To elaborate on the above chal-
lenges, first, observe that IoT appli-
cations often depend on collabora-
tion among multiple sensors, which 
requires designing novel neural net-
work structures for multisensor data 
fusion. These structures should be 
able to model complex interactions 
among multiple sensory inputs over 
time and effectively encode features 
of sensory inputs that are pertinent to 
desired recognition and other tasks. 
We review a general deep learning 
framework for this purpose, called 
DeepSense,1 that provides a unified yet 
customizable solution for the learn-
ing needs of various IoT applications. 
It demonstrates that certain combi-
nations of deep neural network topol-
ogies are particularly well-suited for 
learning from sensor data. 

Second, IoT devices are usually low-
end systems with limited computa-
tional, energy, and memory resources. 
One key impediment in deploying 
deep neural networks on IoT devices 

therefore lies in the high resource 
demand of trained deep neural net-
work models. While existing neu-
ral network compression algorithms 
can effectively reduce the number 
of model parameters, not all of these 
models lead to matrix representa-
tions that can be efficiently imple-
mented on commodity IoT devices. 
Recent work describes a particularly 
effective deep learning compression 
algorithm, called DeepIoT,2 that can 
directly compress the structures of 
commonly used deep neural net-
works. The compressed model can be 
deployed on commodity devices. A 
large proportion of execution time, 
energy, and memory can be reduced 
with little effect on the final predic-
tion accuracy.

Third, reliability assurances are 
important in cyber-physical and IoT 
applications. The need for offering 
such assurances calls for well-calibrated 
estimation of uncertainty associated 
with learning results. We present 
simple methods for generating well- 
calibrated uncertainty estimates for 
the predictions computed in deep neu-
ral networks, called RDeepSense.3 It 
achieves accurate and well-calibrated 
estimations by changing the objective 
function to faithfully reflect predic-
tion correctness.

 Finally, labeling data for learn-
ing purposes is time-consuming. One 
must teach sensing devices to recog-
nize objects and concepts without the 
benefit of (many) examples, where 
ground truth values for such objects 
and concepts are given. Unsupervised 
and semisupervised solutions are 
needed to solve the challenge of learn-
ing with limited labeled (and mostly 
unlabeled) samples, while approach-
ing the performance of learning from 
fully labeled data.

We elaborate on these core problems 
and their emerging solutions to help 
lay a foundation for building IoT sys-
tems enriched with effective, efficient, 
and reliable deep learning models.

ON DEEP LEARNING MODELS 
FOR SENSOR DATA
A key research challenge toward the 
realization of learning-enabled IoT 
systems lies in the design of deep neu-
ral network structures that can effec-
tively estimate outputs of interest 
from noisy time-series multisensor 
measurements.1

Despite the large variety of embed-
ded and mobile computing tasks in IoT 
contexts, one can generally categorize 
them into two common subtypes: esti-
mation tasks and classification tasks, 
depending on whether prediction 
results are continuous or categorical, 
respectively. The question therefore 
becomes whether or not a general neu-
ral network architecture exists that 
can effectively learn the structure of 
models needed for estimation and 
classification tasks from sensor data. 
Such a general deep learning neural 
network architecture would, in princi-
ple, overcome disadvantages of today’s 
approaches that are based on analyti-
cal model simplifications or the use of 
hand-crafted engineered features.

Traditionally, for estimation-oriented 
problems such as tracking and localiza-
tion, sensor inputs are processed based 
on the physical models of the phenom-
ena involved. Sensors generate mea-
surements of physical quantities such 
as acceleration and angular velocity. 
From these measurements, other phys-
ical quantities are derived (such as dis-
placement through double integration 
of acceleration over time). However, 
measurements of commodity sensors 
are noisy. The noise in measurements 
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is nonlinear and might be correlated 
over time, which makes it hard to 
model. It is therefore challenging to 
separate signal from noise, leading to 
estimation errors and bias.

For classification-oriented prob-
lems, such as activity and context 
recognition, a typical approach is to 
compute appropriate features derived 
from raw sensor data. These hand- 
crafted features are then fed into 
a classifier for training. Designing 
good hand-crafted features can be 
time-consuming; it requires exten-
sive experiments to generalize well to 
diverse settings such as different sen-
sor noise patterns and heterogeneous 
user behaviors.

A general deep learning frame-
work can effectively address both of 
the aforementioned challenges by 

automatically adapting the learned 
neural network to complex correlated 
noise patterns while, at the same time, 
converging on the extraction of max-
imally robust signal features that are 
most suited for the task at hand. A 
recent framework, called DeepSense, 
demonstrates a case for feasibility of 
such a general solution.

As shown in Figure 1, DeepSense 
integrates convolutional neural net-
works (CNNs) and recurrent neural 
networks (RNNs). Sensory inputs are 
aligned and divided into time inter-
vals for processing time-series data. 
For each interval, DeepSense first 
applies an individual CNN to each sen-
sor, encoding relevant local features 
within the sensor’s data stream. Then, 
a (global) CNN is applied on the respec-
tive outputs to model interactions 

among multiple sensors for effective 
sensor fusion. Next, an RNN is applied 
to extract temporal patterns. At last, 
either an affine transformation or a 
softmax output is used, depending on 
whether we want to model an estima-
tion or a classification task.

This architecture solves the gen-
eral problem of learning multisensor 
fusion tasks for purposes of estimation 
or classification from time-series data. 
For estimation-oriented problems, 
DeepSense learns the physical system 
and noise models to yield outputs from 
noisy sensor data directly. The neu-
ral network acts as an approximate 
transfer function. For classification- 
oriented problems, the neural network 
acts as an automatic feature extractor 
encoding local, global, and temporal 
information.
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FIGURE 1. Main architecture of the DeepSense framework.
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As a unified model, DeepSense can 
be easily customized for a specific IoT 
application. The application designer 
needs only to decide on the number of 
sensory inputs, input/output dimen-
sions, and the training objective func-
tion. The detailed mathematical for-
mulation of DeepSense can be found in 
a related article.1

Encouraging results were reported 
on applying DeepSense in two repre-
sentative sensing tasks: heterogeneous 
human activity recognition (HHAR) 
and user identification with biometric 
motion analysis (UserID). HHAR is a 
motion-sensor-based activity recog-
nition task. It is tested on new users 
who have not appeared in the training 
set. In contrast, UserID uses motion 
sensors for user identification from 
activities such as walking, biking, and 
climbing stairs.

To understand the contributions of 
different architectural components, 
variants of the DeepSense model were 
introduced by removing some design 
component(s) from the general archi-
tecture. DS-singleGRU simplifies the 
RNN by replacing its two-layer stacked 
GRU architecture with a single-layer 
GRU of a larger dimension, while 
keeping the number of parameters 
the same. DS-noIndvConv skips the 
convolutional subnets for individual 
sensors, keeping a single CNN that 
merges data from all sensors in each 
time window. Finally, DS-noMerge-
Conv skips the global convolutional 
subnet that merges sensor data. 
Instead, it f lattens the output of each 
individual convolutional subnet and 
concatenates them into a single vec-
tor as the input to the RNN.

These models (together with the 
overall DeepSense model) were com-
pared to various custom-designed 
or hand-crafted baselines for each 

application, including HAR-RF,4 HAR-
SVM,4 HRA-RBM, and HRA-MultiRBM5 
for activity recognition, and GaitID6 
and IDNet7 for used identification.

Accuracy results in performing 
HHAR and UserID tasks are illus-
trated in Figures 2 and 3, respectively. 
The DeepSense based algorithms 
(including DeepSense and its three 
variants) outperform other baseline 
algorithms by a large margin (that 
is, at least 10 percent for HHAR and 
at least 20 percent for UserID). The 
results offer anecdotal evidence that 
a general deep learning architecture 

can beat hand-crafted solutions 
designed for the individual applica-
tion spaces. Although current work is 
by no means a consummate proof of 
generalizability, this property (if true) 
would be very important, because a 
main appeal of applying deep learn-
ing in IoT contexts lies in obviating 
the need for per-application custom-
ization of theoretical derivations and 
hand-crafted features. More research 
is needed to substantiate or refute the 
early evidence and to understand the 
limits of generalizability of learning 
models across IoT systems.
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FIGURE 2. Performance metrics of heterogeneous human activity recognition (HHAR) 
task with the DeepSense framework. 
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FIGURE 3. Performance metrics of UserID task with the DeepSense framework.
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COMPRESSING NEURAL 
NETWORK STRUCTURES
Resource constraints of IoT devices 
remain an important impediment 
toward deploying deep learning mod-
els. A key question is therefore whether 
it is possible to compress deep neu-
ral networks, such as those described 
in the previous section, to a point 

where they fit comfortably on low-end 
embedded devices, enabling real-time 
“intelligent” interactions with their 
environment. Can a unified approach 
compress commonly used deep learn-
ing structures, including fully con-
nected, convolutional, and recurrent 
neural networks, as well as their com-
binations? To what degree does the 

resulting compression reduce energy, 
execution time, and memory needs in 
practice?2

An illustration of such a compres-
sion framework, called DeepIoT,2 is 
shown in Figure 4. DeepIoT borrows 
the idea of dropping hidden elements 
from a widely used deep learning regu-
larization method called dropout. The 
dropout operation gives each hidden 
element a dropout probability. During 
the dropout process, hidden elements 
can be pruned according to their drop-
out probabilities. A “thinned” network 
structure can thus be generated. The 
challenge is to set these dropout proba-
bilities in an informed manner to gen-
erate the optimal slim network struc-
ture that preserves the accuracy of 
sensing applications while maximally 
reducing their resource consumption. 
An important purpose of DeepIoT is 
thus to find the optimal dropout prob-
ability for each hidden element in the 
neural network.

To obtain the optimal dropout 
probabilities for nodes in the neural 
network, DeepIoT exploits the net-
work parameters themselves. From 
the perspective of model compres-
sion, an element that is more redun-
dant should have a higher probabil-
ity of being dropped. A contribution 
of DeepIoT lies in exploiting a novel 
compressor neural network to solve 
this problem. It takes model param-
eters of each layer as input, learns 
parameter redundancies, and gener-
ates the dropout probabilities accord-
ingly. The compressor neural network 
is optimized jointly with the original 
neural network to be compressed in 
an iterative manner that tries to min-
imize the loss function of the original 
IoT application. 

Evaluation shows that the Deep-
IoT compression algorithm is able to 
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FIGURE 4. Overall DeepIoT system framework. Orange boxes represent dropout opera-
tions. Green boxes represent parameters of the original neural network. 
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greatly reduce the network size, exe-
cution time, and energy consump-
tion without hurting the prediction 
accuracy.2 We continue to use UserID 
as the running application examples, 
and compare compression efficacy 
to that of several baselines; namely, 
DyNS,8 SparseSep,9 and DyNS-Ext. 
DyNS is a magnitude-based net-
work pruning algorithm that prunes 
weights in convolutional kernels and 
fully connected layers based on their 
magnitude. SparseSep simplifies the 
fully connected layer by the sparse 
coding technique, and compresses 
the convolutional layer with matrix 
factorization. DyNS-Ext extends the 
magnitude-based method used in 
DyNS to recurrent layers. Just like 
DeepIoT, DyNS-Ext can be applied 
to all commonly used deep network 
modules, including fully connected 
layers, convolutional layers, and 
recurrent layers. All models use 
32-bit f loats without quantization. 
Experiments are conducted on the 
Intel Edison platform.

The detailed tradeoff between 
testing accuracy and memory con-
sumption of the resulting models is 
illustrated in Figure 5. We compress 
the original DeepSense neural net-
work with different compression 
ratios and observe the final testing 
accuracy. DeepIoT achieves the best 
tradeoff.

The tradeoff between execution 
time and testing accuracy is shown 
in Figure 6. Similarly, the tradeoff 
between energy consumption and 
testing accuracy is shown in Figure 7. 
DeepIoT offers the best reduction in 
execution time (approximately 80.8 
percent) as well as the best reduc-
tion in energy consumption (approxi-
mately 83.3 percent) without apparent 
loss in accuracy.

The ability of compression algo-
rithms to significantly reduce net-
work size without affecting accuracy 
suggests that the underlying models 
of IoT applications are inherently low- 
dimensional, thus allowing for signif-
icant simplifications of learned neural 
network structures. This is good news 
in terms of feasibility of implementa-
tion on resource-limited hardware, 
such as the Edison board used on the 
above evaluation.

ESTIMATING UNCERTAINTY
The next problem concerns the reliabil-
ity of deep learning models. In particu-
lar, how to offer principled uncertainty 
estimates that can faithfully reflect 
the correctness of model predictions? 
Principled uncertainty estimation is 
critical when deep learning is used to 
support IoT applications that require 
quantified reliability assurances.

Recent work focused on two related 
challenges: 
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 › how to develop methods that 
provide accurate uncertainty 
estimates in prediction results 
obtained from deep learning 
models, and 

 › how to develop resource- 
efficient solutions for the uncer-
tainty estimation problem, such 
that they can be implemented on 
resource-limited IoT devices.

In this section, we introduce a 
simple, well-calibrated, and efficient 
uncertainty estimation algorithm for 
a multilayer perceptron (MLP) called 
RDeepSense.3 RDeepSense enables 
uncertainty estimation with theo-
retically proven error bounds for IoT 
applications. 

There are only two steps in com-
puting uncertainty for an arbitrary 
fully connected neural network. First, 
insert dropout operations to each 
fully connected layer. Second, adopt 
a proper scoring rule as the loss func-
tion and emit a distribution estimate 
instead of a point estimate at the out-
put layer.

Intuitively speaking, the drop-
out operations convert a traditional 
(deterministic) neural network with 
parameters into a random Bayesian 
neural network model with random 

variables, which equates a neural net-
work to a statistical model. Proper 
scoring rules (based on the loss func-
tion) then measure the accuracy of 
probabilistic predictions.

The loss function has a large effect 
on the final results. Taking a regres-
sion problem as an example, using the 
mean square error as the loss function 
tends to underestimate the uncertain-
ties. This is so because the training 
process is focused on predicting an 
accurate mean value without concern-
ing itself with the variance. At the same 
time, using negative log-likelihood as 
the loss function tends to overesti-
mate the uncertainties. The reason 
is that, during the early phase of 
training a neural network with log- 
likelihood loss, it is relatively hard 
to generate an accurate estimate of 
the mean. Increasing the value of 
estimated variance can consistently 
decrease the negative log-likelihood 
loss with a high probability. There-
fore, the predicted uncertainty tends 
to favor a larger variance that overes-
timates the true uncertainty.

RDeepSense applies a tunable func-
tion, based on a weighted sum of neg-
ative log-likelihood and mean square 
error, as the loss function. The under-
estimation effect of mean square error 

and the overestimation effect of nega-
tive log-likelihood are thus balanced 
by tuning the weighted sum. RDeep-
Sense was shown to generate well- 
calibrated uncertainty estimates.

Regarding resource efficiency, since 
RDeepSense emits a distribution esti-
mate instead of a point estimate at the 
output layer, it can do the uncertainty 
estimation in a single run. Compared 
with sampling-based and ensemble- 
based methods that require running 
a model k times for k samples, RDeep-
Sense results in much reduced execu-
tion time and energy consumption.

We evaluate the accuracy of uncer-
tainty estimation of RDeepSense and 
related baselines on the NYCommute 
task. NYCommute predicts commute 
times in New York City based on a data 
set of taxi-cab pick-up/drop-off times 
and locations.

We compare RDeepSense to three 
baseline algorithms. They are called 
MCDrop,10 SSP,11 and Gaussian Pro-
cess (GP). All deep-learning-based 
algorithms use a four-layer fully con-
nected neural network with 500 hid-
den dimensions. MCDrop is based on 
a Monte Carlo dropout. Compared 
with RDeepSense, the main difference 
is that MCDrop is not optimized by a 
proper scoring rule. MCDrop requires 
running the neural network multiple 
times to generate samples for uncer-
tainty estimation. We use MCDrop-k 
to represent MCDrop with k samples. 
SSP trains the neural network with 
proper scoring methods. Compared 
with RDeepSense, the main difference 
is that SSP uses the ensemble method 
instead of the dropout operation in 
each layer. SSP requires training mul-
tiple neural networks for the ensem-
ble. We use SSP-k to represent SSP with 
an ensemble of k individual neural net-
works. GP is a Gaussian-process-based 

TABLE 1. Mean absolute error (MAE) and negative log-
likelihood (NLL) for the NYCommute task.

Deep learning algorithm MAE NLL

RDeepSense 5.64 7.7

SSP-1 8.15 4.86

SSP-3 7.90 4.67

SSP-5 7.51 4.84

SSP-10 7.03 4.81

MCDrop-3 5.69 19,995.6

MCDrop-5 5.64 1,335.73

MCDrop-10 5.61 640.35

MCDrop-20 5.61 640.35

Gaussian Process 11.84 7.46
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algorithm. It is used to illustrate the 
quality of uncertainty estimation gen-
erated by a statistical model. In test-
ing, we compute the z% confidence 
interval based on the predicted mean 
and variance of each algorithm. We 
then measure the fraction of the test-
ing data that falls into this confidence 
interval. For a well-calibrated uncer-
tainty estimation, the fraction of test-
ing data that falls into the confidence 
interval should be similar to z%.

The comparison result is shown 
in Table 1. MCDrop-k shows low MAE 
and high NLL, while SSP-k shows 
high MAE and low NLL. MCDrop-k 
tries to minimize the mean square 
error, while SSP-k tries to minimize 
the negative log-likelihood. There-
fore, MCDrop-k focuses more on the 
mean of predictive distribution, and 
SSP-k focuses more on the overall like-
lihood. RDeepSense combines two 
objective functions, mean square error 
and negative log-likelihood, to find a 
balance between these two.

The calibration curves are illus-
trated in Figures 8 and 9. Both 
MCDrop-k and SSP-k fail to generate 
high-quality uncertainty estimates, 
either underestimating or overesti-
mating the uncertainty. However, 
RDeepSense provides uncertainty esti-
mates with good quality, outperform-
ing GP by a significant margin. The 
results offer a path toward accurate 
estimation of uncertainty in outputs 
of deep learning models.

MINIMIZING LABELED DATA
A general disadvantage of deep learn-
ing methods lies in the need for large 
amounts of labeled data. To learn well 
from empirical measurements, the 
neural network must be given a suf-
ficient number of labeled examples 
from which network parameters are 

to be estimated. Since the number of 
parameters is large, so is the required 
number of labeled examples. This 
need for labeling offers a significant 
practical impediment to the use of 
deep learning in IoT contexts, where 
labeling cannot be easily done. 

Recently, generative adversarial 
networks (GAN) has been proposed 
as a promising deep learning tech-
nique for unsupervised and semisu-
pervised learning.12 The GAN training 

strategy is to define a game between 
two competing networks. The gener-
ator network maps a source of noise 
to the input space. The discriminator 
network receives either a generated 
sample or a true data sample and must 
distinguish between the two. The gen-
erator is trained to fool the discrimi-
nator. Here, we define the input prob-
abilistic space as the joint probabilistic 
distribution of input sensory data and 
classification label. The GAN training 
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strategy leverages the unlabeled data 
to increase the capacity of generator 
and discriminator networks, which 
explicitly improve the discriminating 
ability of classifier in return.

Evaluation shows that the semisu-
pervised strategy, called SenseGAN, 
greatly reduces the requirements 
of labeled data. We continue to use 
HHAR with DeepSense framework1 
as the running application example, 
where we take p% of the overall data-
set as labeled data.

As shown in Table 2, the semisu-
pervised training can preserve the 
classification accuracy with only 10 
percent of labeled data by leveraging 
90 percent of unlabeled data. How-
ever, extensive studies are still needed 
to explore the possibility of training 
with fewer number of labeled as well 
as unlabeled data in IoT context.

We introduced challenges 
and emerging solutions 
that suggest feasibility of 

building effective, efficient, and reli-
able IoT systems enriched with deep 
learning techniques. More studies are 
needed to further verify the applicabil-
ity of results. Can one build a unified 
deep learning framework for largely 
heterogeneous sensory inputs, such 
as audio signals, Wi-Fi signals, and 
motion inputs? What are the impact 
of neural network compression on 

system performance, such as execu-
tion time and energy consumption? 
Can one extend uncertainty mea-
surements to other deep learning 
models besides MLPs? How does one 
learn in highly dynamic environ-
ments where it is impossible to collect 
a large number of data samples? More 
investigation is needed to address 
these questions.  
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