
DeepSense: a Unified Deep Learning Framework for
Time-Series Mobile Sensing Data Processing

Shuochao Yao†
syao9@illinois.edu

Shaohan Hu‡
shaohan.hu@ibm.com

Yiran Zhao†
zhao97@illinois.edu

Aston Zhang†
lzhang74@illinois.edu

Tarek Abdelzaher†
zaher@illinois.edu

†University of Illinois at Urbana-Champaign, Urbana, IL USA ‡IBM Research, Yorktown Heights, NY USA

ABSTRACT
Mobile sensing and computing applications usually require time-
series inputs from sensors, such as accelerometers, gyroscopes,
and magnetometers. Some applications, such as tracking, can use
sensed acceleration and rate of rotation to calculate displacement
based on physical system models. Other applications, such as ac-
tivity recognition, extract manually designed features from sensor
inputs for classification. Such applications face two challenges.
On one hand, on-device sensor measurements are noisy. For many
mobile applications, it is hard to find a distribution that exactly
describes the noise in practice. Unfortunately, calculating target
quantities based on physical system and noise models is only as
accurate as the noise assumptions. Similarly, in classification ap-
plications, although manually designed features have proven to be
effective, it is not always straightforward to find the most robust
features to accommodate diverse sensor noise patterns and het-
erogeneous user behaviors. To this end, we propose DeepSense,
a deep learning framework that directly addresses the aforemen-
tioned noise and feature customization challenges in a unified man-
ner. DeepSense integrates convolutional and recurrent neural net-
works to exploit local interactions among similar mobile sensors,
merge local interactions of different sensory modalities into global
interactions, and extract temporal relationships to model signal dy-
namics. DeepSense thus provides a general signal estimation and
classification framework that accommodates a wide range of ap-
plications. We demonstrate the effectiveness of DeepSense using
three representative and challenging tasks: car tracking with mo-
tion sensors, heterogeneous human activity recognition, and user
identification with biometric motion analysis. DeepSense signifi-
cantly outperforms the state-of-the-art methods for all three tasks.
In addition, we show that DeepSense is feasible to implement on
smartphones and embedded devices thanks to its moderate energy
consumption and low latency.

Keywords
Deep Learning; Mobile Computing; Mobile Sensing; Internet of
Things; Tracking; Activity Recognition; User Identification

c©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052577

.

1. INTRODUCTION
A wide range of mobile sensing and computing applications re-

quire time-series measurements from such sensors as accelerom-
eters, gyroscopes, and magnetometers to generate inputs for var-
ious signal estimation and classification applications [23]. Using
these sensors, mobile devices are able to infer user activities and
states [35, 39] and recognize surrounding context [31, 42]. These
capabilities serve diverse application areas including health and
wellbeing [20, 33, 24], tracking and imaging [25, 46], mobile se-
curity [29, 41], and vehicular road sensing [17, 19, 45].

Although mobile sensing is becoming increasingly ubiquitous,
key challenges remain in improving the accuracy of sensor ex-
ploitation. In this paper, we consider the general problem of es-
timating signals from noisy measurements in mobile sensing appli-
cations. This problem can be categorized into two subtypes: regres-
sion and classification, depending on whether prediction results are
continuous or categorical, respectively.

For regression-oriented problems, such as tracking and localiza-
tion, sensor inputs are usually processed based on physical models
of the phenomena involved. Sensors on mobile devices generate
time-series measurements of physical quantities such as accelera-
tion and angular velocity. From these measurements, other physical
quantities can be computed, such as displacement through double
integration of acceleration over time. However, measurements of
commodity sensors are noisy. The noise in measurements is non-
linear [3] and correlated over time [32], which makes it hard to
model. This makes it challenging to separate signal from noise,
leading to estimation errors and bias.

For classification-oriented problems, such as activity and context
recognition, a typical approach is to compute appropriate features
derived from raw sensor data. These hand-crafted features are then
fed into a classifier for training. This general workflow for classifi-
cation face the challenge that designing good hand-crafted features
can be time consuming; it requires extensive experiments to gener-
alize well to diverse settings such as different sensor noise patterns
and heterogeneous user behaviors [39].

In this work, we propose DeepSense, a unified deep learning
framework that directly addresses the aforementioned customiza-
tion challenges that arise in mobile sensing applications. The core
of DeepSense is the integration of convolutional neural networks
(CNN) and recurrent neural networks (RNN). Input sensor mea-
surements are split into a series of data intervals along time. The
frequency representation of each data intervals is fed into a CNN
to learn intra-interval local interactions within each sensing modal-
ity and intra-interval global interactions among different sensor in-
puts, hierarchically. The intra-interval representations along time
are then fed into an RNN to learn the inter-interval relationships.

351

The whole framework can be easily customized to fit specific mo-
bile computing (regression or classification) tasks by three simple
steps, as will be described later.

For the regression-oriented mobile sensing problem, DeepSense
learns the composition of physical system and noise model to yield
outputs from noisy sensor data directly. The neural network acts
as an approximate transfer function. The CNN part approximates
the computation of sensing quantities within the time interval, and
the RNN part approximates the computation of sensing quantities
across time intervals. Instead of using a model-based noise anal-
ysis method that assumes a noise model with experience or obser-
vations, DeepSense can be regarded as a model-free noise analysis
that learns the non-linear and correlated-over-time noises among
sensor measurements.

For the classification-oriented mobile sensing problem, the neu-
ral network acts as an automatic feature extractor encoding local,
global, and temporal information. The CNN part extracts local fea-
tures within each sensor modality and merges the local features of
different sensory modalities into global features hierarchically. The
RNN part extracts temporal dependencies.

We demonstrate the effectiveness of our DeepSense framework
using three representative and challenging mobile sensing prob-
lems, which illustrate the potential of solving different tasks with a
single unified modeling methodology:

• Car tracking with motion sensors: In this task, we use dead
reckoning to infer position from acceleration measurements.
One of the major contributions of DeepSense is its ability
to withstand nonlinear and time-dependent noise and bias.
We chose the car tracking task because it involves double-
integration and thus is particularly sensitive to error accumu-
lation, as acceleration errors can lead to significant deviations
in position estimate over time. This task thus constitutes a
worst-case of sorts in terms of emphasizing the effects of
noise on modelling error. Traditionally, external means are
needed to reset the error when possible [7, 17, 27]. We in-
tentionally forgo such means to demostrate the capability of
DeepSense for learning accurate models of target quantities
in the presence of realistic noise.

• Heterogeneous human activity recognition: Although human
activity recognition with motion sensors is a mature prob-
lem, Stisen et al. [39] illustrated that state-of-the-art algo-
rithms do not generalize well across users when a new user
is tested who has not appeared in the training set. This
classification-oriented problem therefore illustrates the capa-
bility of DeepSense to extract features that generalize better
across users in mobile sensing tasks.

• User identification with biometric motion analysis: Biomet-
ric gait analysis can be used to identify users when they are
walking [13, 35]. We extend walking to other activities, such
as biking and climbing stairs, for user identification. This
classification-oriented problem illustrates the capability of
DeepSense to extract distinct features for different users or
classes.

We evaluate these three tasks with collected data or existing
datasets. We compare DeepSense to state-of-the-art algorithms that
solve the respective tasks, as well as to three DeepSense variants,
each presenting a simplification of the algorithm as described in
Section 5.3. For the regression-oriented problem: car tracking with
motion sensors, DeepSense provides an estimator with far smaller
tracking error. This makes tracking with solely noisy on-device
motion sensors practical and illustrates the capability of DeepSense

to perform accurate estimation of physical quantities from noisy
sensor data. For the other two classification-oriented problems,
DeepSense outperforms state-of-the-art algorithms by a large mar-
gin, illustrating its capability to automatically learn robust and dis-
tinct features. DeepSense outperforms all its simpler variants in
all three tasks, which shows the effectiveness of its design com-
ponents. Despite a general shift towards remote cloud processing
for a range of mobile applications, we argue that it is intrinsically
desirable that heavy sensing tasks be carried out locally on-device,
due to the usually tight latency requirements, and the prohibitively
large data transmission requirement as dictated by the high sensor
sampling frequency (e.g. accelerometer, gyroscope). Therefore,
we also demonstrate the feasibility of implementing and deploy-
ing DeepSense on mobile devices by showing its moderate energy
consumption and low overhead for all three tasks on two different
types of smart devices.

In summary, the main contribution of this paper is that we de-
velop a deep learning framework, DeepSense, that solves both
regression-oriented and classification-oriented mobile computing
tasks in a unified manner. By exploiting local interactions within
each sensing modality, merging local interactions of different sens-
ing modalities into global interactions, and extracting temporal re-
lationships, DeepSense learns the composition of physical laws and
noise model in regression-oriented problems, and automatically ex-
tracts robust and distinct features that contain local, global, and
temporal relationships in classification-oriented problems. Impor-
tantly, it outperforms the state of the art, while remaining imple-
mentable on mobile devices.

The rest of this paper is organized as follows. Section 2 intro-
duces related work on deep learning in the context of mobile sens-
ing and computing. We describe the technical details of DeepSense
in Section 3 and the way to customize DeepSense to mobile com-
puting problems in Section 4. The evaluation is presented in Sec-
tion 5. Finally, we discuss the results in Section 6 and conclude in
Section 7.

2. RELATED WORK
Recently, deep learning [5] has become one of the most popular

methodologies in AI-related tasks, such as computer vision [16],
speech recognition [10], and natural language processing [4]. Lots
of deep learning architectures have been proposed to exploit the
relationships embedded in different types of inputs. For exam-
ple, Residual nets [16] introduce shortcut connections into CNNs,
which greatly reduces the difficulty of training super-deep models.
However, since residual nets mainly focus on visual inputs, they
lose the capability to model temporal relationships, which are of
great importance in time-series sensor inputs. LRCNs [11] apply
CNNs to extract features for each video frame and combine video
frame sequences with LSTM [14], which exploits spatio-temporal
relationships in video inputs. However, it does not consider mod-
eling multimodal inputs. This capability is important to mobile
sensing and computing tasks, because most tasks require collab-
oration among multiple sensors. Multimodal DBMs [38] merge
multimodal inputs, such as images and text, with Deep Boltzmann
Machines (DBMs). However, the work does not model temporal
relationships and does not apply tailored structures, such as CNNs,
to effectively and efficiently exploit local interactions within input
data. To the best of our knowledge, DeepSense is the first architec-
ture that possesses the capability for both (i) modelling temporal
relationships and (ii) fusing multimodal sensor inputs. It also con-
tains specifically designed structures to exploit local interactions in
sensor inputs.

352

GRU

GRU

............

............

............

............

K sensor inputs

Individual Convolutional Layer 1

Individual Convolutional Layer 2

Individual Convolutional Layer 3

Flatten & Concatenation

GRU

GRU......

......

T time intervals with width τ

Output Layer

τ

Recurrent Layer 1

Recurrent Layer 2

Type-Speci�c Output Layer

Single/Multiple Outputs

...K �attened features ...

............

............

............

............

K sensor inputs

τ
...K �attened features ...

Flatten & Concatenation

Merge Convolutional Layer 1

Merge Convolutional Layer 2

Merge Convolutional Layer 3

X..t
(k)

X..t
(k,1)

X..t
(k,2)

X..t
(k,3)

X..t
(3)

X..t
(4)

X..t
(5)

X..t
(6)

x ..t
(c)

Figure 1: Main architecture of the DeepSense framework.

There are several illuminating studies, applying deep neural
network models to different mobile sensing applications. Deep-
Ear [22] uses Deep Boltzmann Machines to improve the perfor-
mance of audio sensing tasks in an environment with background
noise. RBM [6] and MultiRBM [34] use Deep Boltzmann Ma-
chines and Multimodal DBMs to improve the performance of het-
erogeneous human activity recognition. IDNet [13] applies CNNs
to the biometric gait analysis task. DeepX [21], RedEye [26], and
ConvTransfer [30] reduce the energy consumption or training time
of deep neural networks, based on software and hardware, respec-
tively. However, these studies do not capture the temporal relation-
ships in time-series sensor inputs, and, with the only exception of
MultiRBM, lack the capability of fusing multimodal sensor inputs.
In addition, these techniques focus on classification-oriented tasks
only. To the best of our knowledge, DeepSense is the first frame-
work that directly solves both regression-based and classification-
based problems in a unified manner.

3. DEEPSENSE FRAMEWORK
We introduce DeepSense, a unified framework for mobile ap-

plications with sensor data inputs, in this section. We separate our
description into three parts. The first two parts, convolutional layers
and recurrent layers, are the main building blocks for DeepSense,
which are the same for all applications. The third part, the output
layer, is the specific layer for two different types of applications;
regression-oriented and classification-oriented.

For the rest of this paper, all vectors are denoted by bold lower-
case letters (e.g., x and y), while matrices and tensors are repre-
sented by bold upper-case letters (e.g., X and Y). For a vector x,
the jth element is denoted by x[j]. For a tensor X, the tth matrix
along the third axis is denoted by X··t, and other slicing denota-
tions are defined similarly. We use calligraphic letters to denote
sets (e.g., X and Y). For any set X , |X | denotes the cardinality of
X .

For a particular application, we assume that there areK different
types of input sensors S = {Sk}, k ∈ {1, · · · ,K}. Take a sen-
sor Sk as an example. It generates a series of measurements over
time. The measurements can be represented by a d(k) × n(k) ma-
trix V for measured values and n(k)-dimensional vector u for time
stamps, where d(k) is the dimension for each measurement (e.g.,
measurements along x, y, and z axes for motion sensors) and n(k) is
the number of measurements. We split the input measurements V
and u along time (i.e., columns for V) to generate a series of non-
overlapping time intervals with width τ , W = {(V(k)

t ,u
(k)
t)},

where |W| = T . Note that, τ can be different for different in-
tervals, but here we assume a fixed time interval width for suc-
cinctness. We then apply Fourier transform to each element inW ,
because the frequency domain contains better local frequency pat-
terns that are independent of how time-series data is organized in
the time domain [36]. We stack these outputs into a d(k) × 2f × T
tensor X(k), where f is the dimension of frequency domain con-
taining f magnitude and phase pairs. The set of resulting tensors
for each sensor, X = {X(k)}, is the input of DeepSense.

As shown in Fig. 1, DeepSense has three major components;
the convolutional layers, the recurrent layers, and the output layer,
stacked from bottom to top. In the following subsections, we detail
these components, respectively.

3.1 Convolutional Layers
The convolutional layers can be further separated into two parts:

an individual convolutional subnet for each input sensor tensor
X(k), and a single merge convolutional subnet for the output of
K individual convolutional subnets’ outputs.

Since the structures of individual convolutional subnet for differ-
ent sensors are the same, we focus on one individual convolutional
subnet with input tensor X(k). Recall that X(k) ∈ Rd(k)×2f×T ,
where d(k) is the sensor measurement dimension, f is the dimen-
sion of frequency domain, and T is the number of time intervals.
For each time interval t, the matrix X

(k)
··t will be fed into a CNN

353

architecture (with three layers in this paper). There are two kinds
of features/relationships embedded in X

(k)
··t we want to extract. The

relationships within the frequency domain and across sensor mea-
surement dimension. The frequency domain usually contains lots
of local patterns in some neighbouring frequencies. And the in-
teraction among sensor measurement usually including all dimen-
sions. Therefore, we first apply 2d filters with shape (d(k), cov1) to
X

(k)
··t to learn interaction among sensor measurement dimensions

and local patterns in frequency domain, with the output X(k,1)
··t .

Then we apply 1d filters with shape (1, cov2) and (1, cov3) hierar-
chically to learn high-level relationships, X(k,2)

··t and X
(k,3)
··t .

Then we flatten matrix X
(k,3)
··t into vector x(k,3)

··t and concat all
K vectors {x(k,3)

··t } into a K-row matrix X
(3)
··t , which is the input

of the merge convolutional subnet. The architecture of the merge
convolutional subnet is similar as the individual convolutional sub-
net. We first apply 2d filters with shape (K, cov4) to learn the
interactions among all K sensors, with output X(4)

··t , and then ap-
ply 1d filters with shape (1, cov5) and (1, cov6) hierarchically to
learn high-level relationships, X(5)

··t and X
(6)
··t .

For each convolutional layer, DeepSense learns 64 filters, and
uses ReLU as the activation function. In addition, batch normaliza-
tion [18] is applied at each layer to reduce internal covariate shift.
We do not use residual net structures [16], because we want to sim-
plify the network architecture for mobile applications. Then we
flatten the final output X(6)

··t into vector x(f)
··t ; concatenate x

(f)
··t and

time interval width, [τ], together into x
(c)
t as inputs of recurrent

layers.

3.2 Recurrent Layers
Recurrent neural networks are powerful architectures that can

approximate function and learn meaningful features for sequences.
Original RNNs fall short of learning long-term dependencies. Two
extended models are Long Short-Term Memory (LSTM) [14] and
Gated Recurrent Unit (GRU) [8]. In this paper, we choose GRU,
because GRUs show similar performance as LSTMs on various
tasks [8], while having a more concise expression, which reduces
network complexity for mobile applications.

DeepSense chooses a stacked GRU structure (with two layers in
this paper). Compared with standard (single-layer) GRUs, stacked
GRUs are a more efficient way to increase model capacity [5].
Compared to bidirectional GRUs [37], which contain two time
flows from start to end and from end to start, stacked GRUs can
run incrementally, when there is a new time interval, resulting in
faster processing of stream data. In contrast, we cannot run bidi-
rectional GRUs until data from all time intervals are ready, which
is infeasible for applications such as tracking. We apply dropout
to the connections between GRU layers [43] for regularization and
apply recurrent batch normalization [9] to reduce internal covariate
shift among time steps. Inputs {x(c)

t } for t = 1, · · · , T from pre-
vious convolutional layers are fed into stacked GRU and generate
outputs {x(r)

t } for t = 1, · · · , T as inputs of the final output layer.

3.3 Output Layer
The output of recurrent layer is a series of vectors {x(r)

t } for
t = 1, · · · , T . For the regression-oriented task, since the value of
each element in vector x(r)

t is within ±1, x(r)
t encodes the output

physical quantities at the end of time interval t. In the output layer,
we want to learn a dictionary Wout with a bias term bout to decode
x
(r)
t into ŷt, such that ŷt = Wout · x(r)

t + bout. Therefore, the
output layer is a fully connected layer on the top of each interval
with sharing parameter Wout and bout.

For the classification task, x(r)
t is the feature vector at time inter-

val t. The output layer first needs to compose {x(r)
t } into a fixed-

length feature vector for further processing. Averaging features
over time is one choice. More sophisticated methods can also be
applied to generate the final feature, such as the attention model [4],
which has illustrated its effectiveness in various learning tasks re-
cently. The attention model can be viewed as weighted averaging
of features over time, but the weights are learnt by neural networks
through context. In this paper, we still use averaging features over
time to generate the final feature, x(r) = (

∑T
t=1 x

(r)
t)/T . Then

we feed x(r) into a softmax layer to generate the predicted cate-
gory probability ŷ.

4. TASK-SPECIFIC CUSTOMIZATION
In this section, we first describe how to trivially customize the

DeepSense framework to different mobile sensing and computing
tasks. Next, we instantiate the solution with three specific tasks
used in our evaluation.

4.1 General Customization Process
In general, we need to customize a few parameters of the main

architecture of DeepSense, shown in Section 3, for specific mobile
sensing and computing tasks. Our general DeepSense customiza-
tion process is as follows:

1. Identify the number of sensor inputs, K. Pre-process the sensor
inputs into a set of tensors X = {X(k)} as input.

2. Identify the type of the task. Whether the application is regres-
sion or classification-oriented. Select one of the two types of
output layer according to the type of task.

3. Design a customized cost function or choose the default cost
function (namely, mean square error for regression-oriented
tasks and cross-entropy error for classification-oriented tasks).

Therefore, if opt for the default DeepSense configuration, we
need only to set the number of inputs, K, preprocess the input sen-
sor measurements, and identify the type of task (i.e., regression-
oriented versus classification-oriented).

The pre-processing is simple, as stated at the beginning of Sec-
tion 3. We just need to align and chunk the sensor measurements,
and apply Fourier transform to each sensor chunk. For each sen-
sor, we stack these frequency domain outputs into d(k) × 2f × T
tensor X(k), where d(k) is the sensor measurement dimension, f
is the frequency domain dimension, and T is the number of time
intervals.

To identify the number of sensor inputs K, we usually set K
to be the number of different sensing modalities available. If
there exist two or more sensors of the same modality (e.g., two
accelerometers or three microphones), we just treat them as one
multi-dimensional sensor and set its measurement dimension ac-
cordingly.

For the cost function, we can design our own cost function other
than the default one. We denote our DeepSense model as function
F(·), and a single training sample pair as (X ,y). We can express
the cost function as:

L = `(F(X),y) +
∑
j

λjPj (1)

where `(·) is the loss function, Pj is the penalty or regularization
function, and λj controls the importance of the penalty or regular-
ization term.

354

4.2 Customize Mobile Sensing Tasks
In this section, we provide three instances of customizing

DeepSense for specific mobile computing applications used in our
evaluation.
Car tracking with motion sensors (CarTrack): In this task, we
apply accelerator, gyroscope, and magnetometer to track the trajec-
tory of a car without initial speed. Therefore, according to our gen-
eral customization process, carTrack is a regression-oriented prob-
lem with K = 3 (i.e. accelerometer, gyroscope, and magnetome-
ter). Instead of applying default mean square error loss function,
we design our own cost function according to Equation (1).

During the training step, the ground-truth 2D displacement of car
in each time interval, y, is obtained by GPS signal, where y[t] de-
notes the 2D displacement in time interval t. Yet a problem is that
GPS signal also contains noise. Training the DeepSense model to
recover the displacement obtained from by GPS signal will gener-
ate sub-optimal results. We apply Kalman filter to covert displace-
ment y[t] into a 2D Gaussian distribution Y[t](·) with mean value
y(t) in time interval t. Therefore, we use negative log likelihood as
loss function `(·) with additional penalty terms:

L=− log
(
Y[t]

(
F(X)[t]

))
+

T∑
t=1

λ ·max
(
0, cos(θ)− Sc

(
F(X)[t],y(t)))

where Sc(·, ·) denotes the cosine similarity, the first term is the neg-
ative log likelihood loss function, and the second term is a penalty
term controlled by parameter λ. If the angle between our predicted
displacement F(X)[t] and y(t) is larger than a pre-defined margin
θ ∈ [0, π), the cost function will get a penalty. We introduce the
penalty, because we find that predicting a correct direction is more
important during the experiment, as described in Section 5.4.1.
Heterogeneous Human activity recognition (HHAR): In this
task, we perform leave-one-user-out cross-validation on human ac-
tivity recognition task with accelerometer and gyroscope measure-
ments. Therefore, according to our general customization pro-
cess, HHAR is a classification-oriented problem with K = 2 (ac-
celerometer and gyroscope). We use the default cross-entropy cost
function as the training objective.

L = H(y,F(X))
where H(·, ·) is the cross entropy for two distributions.
User Identification with motion analysis (UserID): In this task,
we perform user identification with biometric motion analysis. We
classify users’ identity according to accelerometer and gyroscope
measurements. Similarly, according to our general customization
process, UserID is a classification-oriented problem with K = 2
(accelerometer and gyroscope). Similarly as above, we use the de-
fault cross-entropy cost function as the training objective.

For further adapting the DeepSense architecture for a specific
mobile sensing task, please refer to Section 6 for the discussion
about architecture modification.

5. EVALUATION
In this section, we evaluate DeepSense on three mobile com-

puting tasks. We first introduce the experimental setup for each,
including datasets and baseline algorithms. We then evaluate the
three tasks based on accuracy, energy, and latency. We use the ab-
breviations, CarTrack, HHAR, and UserID, as introduced in Sec-
tion 4.2, to refer to the aforementioned tasks.

5.1 Data Collection and Datasets
For the CarTrack task, we collect 17,500 phone-miles worth of

driving data. Namely, we collect around 500 driving hours in to-
tal using three cars fitted with 20 mobile phones in the Urbana-
Champaign area. Mobile devices include Nexus 5, Nexus 4, Galaxy
Nexus, and Nexus S. Each mobile device collects measures of ac-
celerometer, gyroscope, magnetometer, and GPS. GPS measure-
ments are collected roughly every second. Collection rates of other
sensors are set to their highest frequency. After obtaining the raw
sensor measurements, we first segment them into data samples.
Each data sample is a zero-speed to zero-speed journey, where
the start and termination are detected when there are at least three
consecutive zero GPS speed readings. Each data sample is then
separated into time intervals according to the GPS measurements.
Hence, every GPS measurement is an indicator of the end of a time
interval. In addition, each data sample contains one additional time
interval with zero speed at the beginning. Furthermore, for each
time interval, GPS latitude and longitude are converted into map
coordinates, where the origin of coordinates is the position at the
first time interval. Fourier transform is applied to each sensor mea-
surement in each time interval to obtain the frequency response of
the three sensing axes. The frequency responses of the accelerator,
gyroscope, and magnetometer at each time interval are then com-
posed into the tensors as DeepSense inputs. At last, for evaluation
purposes, we apply a Kalman filter to coordinates obtained by the
GPS signal, and generate the displacement distribution of each time
interval. The results serve as ground truth for training.

For both the HHAR and UserID tasks, we use the dataset col-
lected by Allan et al. [39]. This dataset contains readings from
two motion sensors (accelerometer and gyroscope). Readings were
recorded when users executed activities scripted in no specific or-
der, while carrying smartwatches and smartphones. The dataset
contains 9 users, 6 activities (biking, sitting, standing, walking,
climbStair-up, and climbStair-down), and 6 types of mobile de-
vices. For both tasks, accelerometer and gyroscope measurements
are model inputs. However, for HHAR, activities are used as la-
bels, and for UserID, users’ unique IDs are used as labels. We seg-
ment raw measurements into 5-second samples. For DeepSense,
each sample is further divided into time intervals of length τ , as
shown in Figure 1. We take τ = 0.25 s. Then we calculate the
frequency response of sensors for each time interval, and compose
results from different time intervals into tensors as inputs.

5.2 Evaluation Platforms
Our evaluation experiments are conducted on two platforms:

Nexus 5 with Qualcomm Snapdragon 800 SoC [2] and Intel Edison
Compute Module [1]. We train DeepSense on Desktop with GPU.
And trained DeepSense models are run solely on mobile with CPU:
quad core 2.3 GHz Krait 400 CPU on Nexus 5 and dual-core 500
MHz Atom processor on Intel Edison. In this paper, we do not
exploit the additional computation power of mobile GPU and DSP
units [21].

5.3 Algorithms in Comparison
We evaluate our DeepSense model and compare it with other

competitive algorithms in three tasks. There are three global base-
lines, which are the variants of DeepSense model by removing
one design component in the architecture. The other baselines are
specifically designed for each single task.
DS-singleGRU: This model replaces the 2-layer stacked GRU with
a single-layer GRU with larger dimension, while keeping the num-
ber of parameters. This baseline algorithm is used to verify the
efficiency of increasing model capacity by staked recurrent layer.
DS-noIndvConv: In this mode, there are no individual convolu-
tional subnets for each sensor input. Instead, we concatenate the

355

input tensors along the first axis (i.e., the input measurement di-
mension). Then, for each time interval, we have a single matrix as
the input to the merge convolutional subnet directly.
DS-noMergeConv: In this variant, there are no merge convolu-
tional subnets at each time interval. Instead, we flatten the output
of each individual convolutional subnet and concatenate them into
a single vector as the input of the recurrent layers.
CarTrack Baseline:
• GPS: This is a baseline measurement that is specific to the

CarTrack problem. It can be viewed as the ground truth for the task,
as we do not have other means of more accurately acquiring cars’
locations. In the following experiments, we use the GPS module in
Qualcomm Snapdragon 800 SoC.
• Sensor-fusion: This is a sensor fusion based algorithm. It

combines gyroscope and accelerometer measurements to obtain the
pure acceleration without gravity. It uses accelerometer, gyroscope,
and magnetometer to obtain absolute rotation calibration. Android
phones have proprietary solutions for these two functions [28]. The
algorithm then applies double integration on pure acceleration with
absolute rotation calibration to obtain the displacement.
• eNav (w/o GPS): eNav is a map-aided car tracking algo-

rithm [17]. This algorithm constrains the car movement path ac-
cording to a digital map, and computes moving distance along the
path using double integration of acceleration derived using princi-
pal component analysis that removes gravity. The original eNav
uses GPS when it believes that dead-reckoning error is high. For
fairness, we modified eNav to disable GPS.
HHAR Baselines:
•HAR-RF: This algorithm [39] selects all popular time-domain

and frequency domain features from [12] and ECDF features
from [15], and uses random forest as classifier.
• HAR-SVM: Feature selection of this model is same as the

HAR-RF model. But this model uses support vector machine as
classifier [39].
• HRA-RBM: This model is based on stacked restricted Boltz-

mann machines with frequency domain representations as in-
puts [6].
• HRA-MultiRBM: For each sensor input, the model processes

it with a single stacked restricted Boltzmann machine. Then it uses
another stacked restricted Boltzmann machine to merge the results
for activity recognition [34].
UserID Baselines:
• GaitID: This model extracts the gait template and identifies

user through template matching with support vector machine [40].
• IDNet: This model first extracts the gait template, and extracts

template features with convolutional neural networks. Then this
model identifies user through support vector machine and integrates
multiple verifications with Wald’s probability ratio test [13].

5.4 Effectiveness
In this section, we will discuss the accuracy and other related

performance metrics of the DeepSense model, compared with other
baseline algorithms.

5.4.1 CarTrack
We use 253 zero-speed to zero-speed car driving examples to

evaluate the CarTrack task. The histogram of evaluation data driv-
ing distance is illustrated in Fig. 2.

During the whole evaluation, we regard filtered GPS signal as
ground truth. CarTrack is a regression problem. Therefore, we first
evaluate all algorithms with mean absolute error (MAE) between
predicted and true final displacements with 95% confidence inter-
val except for the eNav (w/o GPS) algorithm, which is a map-aided

0 500 1000 1500 20000

10

20

30

40

50

60

Fr
eq

ue
nc

y

Driving Distant (m)

Figure 2: Histogram of Driving Distance.

Table 1: CarTrack Task Accuracy

MAE (meter) Map-Aided Accuracy
DeepSense 40.43± 5.24 93.8%

DS-SingleGRU 44.97± 5.80 90.2%
DS-noIndvConv 52.15± 6.24 88.3%

DS-noMergeConv 53.06± 6.59 87.5%
Sensor-fusion 606.59± 56.57

eNav (w/o GPS) 6.7%

algorithm without tracking real trajectories. The results about mean
absolute errors are illustrated in the second column of Table 1.

Compared with senior-fusion algorithm, DeepSense reduces the
tracking error by an order of magnitude, which is mainly attributed
to its capability to learn the composition of noise model and physi-
cal laws. Then, we compare our DeepSense model with three vari-
ants as mentioned before. The results show the effectiveness of
each designing component of our DeepSense model. The individ-
ual and merge convolutional subnets learn the interaction within
and among sensor measurements respectively. The stacked recur-
rent structure increases the capacity of model more efficiently. Re-
moving any component will cause performance degradation.

DeepSense model achieves 40.43 ± 5.24m mean absolute er-
ror. This is almost equivalent to half of traditional city blocks
(80m × 80m), which means that, with the aid of map and the as-
sumption that car is driving on roads, DeepSense model has a high
probability to provide accurate trajectory tracking. Therefore, we
propose a naive map-aided track method here. For each segment
of original tracking trajectory, we assign them to the most probable
road segment on map (i.e., the nearest road segment on map). We
then compare the resulted trajectory with ground truth. If all the tra-
jectory segments are the same as the ground truth, we regard it as a
successful tracking trajectory. Finally, we compute the percentage
of successful tracking trajectories as accuracy. eNav (w/o GPS) is
a map-aided algorithm, so we directly compare the trajectory seg-
ments. Sensor-fusion algorithm generates tracking errors that are
comparable to driving distances, so we exclude it from the compar-
ison. We show the accuracy of map-aided versions of algorithms
in the third column of Table 1. DeepSense outperforms eNav (w/o
GPS) with a large margin, because eNav (w/o GPS) intrinsically
depends on occasional on-demand GPS samples to correct tracking
error.

We next examine how tracking performance is affected by driv-
ing distances. We first sort all evaluation samples according to driv-
ing distance. Then we separate them into 10 groups with 200m
step size. Finally, we compute mean absolute error and accuracy
of map-aided track for DeepSense algorithm separately for each
group. We illustrate the results in Fig. 3. For the mean absolute er-

356

0 500 1000 1500 200020

40

60

80
M

ea
n

A
bs

ol
ut

e
Er

ro
r

(m
)

Driving Distance (m)
0 500 1000 1500 2000

0.85
0.9
0.95
1

M
ap

−A
id

ed
 T

ra
ck

 (%
)

Figure 3: Performance over driving distance.

ror metric, driving longer distance generally results in large error,
but the error does not accumulate linearly over distance. There are
mainly two reasons for this phenomenon. On one hand, we observe
that the error of our predicted trajectory usually occurs during the
beginning of the driving, where uncertainty in predicting driving
direction is the major cause. This is also the motivation that we add
the penalty term for cost function in Section 4.2. On the other hand,
longer-driving cases in our testing samples are more stable, because
we extract the trajectory from zero-speed to zero-speed. For the
map-aided track, longer driving distances even yields slightly bet-
ter accuracy. This is because long-distance trajectory usually con-
tains long trajectory segments, which can help to find the ground
truth on the map.

(a) Trajectory a
(b) Trajectory b

(c) Trajectory c

(d) Trajectory d

Figure 4: Examples of tracking trajectory without the help of map:
Blue trajectory (DeepSense) and Red trajectory (GPS)

Finally, some our DeepSense tracking results (without the help
of map and with downsampling) are illustrated in Fig. 4.

5.4.2 HHAR
For HHAR task, we perform leave-one-user-out evaluation (i.e.,

leaving the whole data from one user as testing data) on datasets
consisting of 9 users, which are labelled from a to i. We illus-
trate the result of evaluations according to three metrics: accuracy,

macro F1 score, and micro F1 score with 95% confidence interval
in Fig. 5.

Accuracy Macro F1 Micro F1
0.5

0.6

0.7

0.8

0.9

1

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
HAR−MultiRBM
HAR−RF
HAR−SVM
HAR−RBM

Figure 5: Performance metrics of HHAR task.

Figure 6: Confusion matrix of HHAR task.

The DeepSense based algorithms (including DeepSense and
three variants) outperform other baseline algorithms with a large
margin (i.e., at least 10%). Compared with two hand-crafted fea-
ture based algorithms HAR-RF and HAR-SVM, DeepSense model
can automatically extract more robust features, which generalize
better to the user who does not appear in the training set. Compared
with a deep model, such as HAR-RBM and HAR-MultiRBM,
DeepSense model exploit local structures within sensor measure-
ments, dependency along time, and relationships among multi-
ple sensors to generate better and more robust features from data.
Compared with three variants, DeepSense still achieves the best
performance (accuracy: 0.942± 0.032, macro F1: 0.931± 0.041,
and micro F1: 0.942± 0.032). This reinforces the effectiveness of
our design components in DeepSense model.

Then we illustrate the confusion matrix of best-performing
DeepSense model in Fig. 6. Predicting Sit as Stand is the largest
error. It is hard to classify these two, because two activities should
have similar motion sensor measurements by nature, especially
when we have no prior information about testing users. In addi-
tion, the algorithm has a minor error about misclassification be-
tween ClimbStair-up and ClimbStair-down.

5.4.3 UserID
This task focuses on user identification with biometric motion

analysis. We evaluate all algorithms with 10-fold cross validation.
We illustrate the result of evaluations according to three metrics:
accuracy, macroF1 score, and microF1 score with 95% confidence
interval in Fig. 7. Specifically, Fig. 7a shows the results when algo-
rithms observe 1.25 seconds of evaluation data, Fig. 7b shows the
results when algorithms observe 5 seconds of evaluation data.

357

Accuracy Macro F1 Micro F1
0.4

0.5

0.6

0.7

0.8

0.9

1

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
IDNet
GaitID

(a) 5 time intervals: 1.25s

Accuracy Macro F1 Micro F1
0.4

0.5

0.6

0.7

0.8

0.9

1

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
IDNet
GaitID

(b) 20 time intervals: 5s

Figure 7: Performance metrics of UserID task.

5 10 15 20
0.94

0.96

0.98

1

Number of input time intervals

A
cc

ur
ac

y

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv

Figure 8: Accuracy over input measurement length of UserID task.

Figure 9: Confusion matrix of UserID task.

Figure 10: Confusion matrix of HHAR and UserID tasks.

DeepSense and three variants outperform other baseline algo-
rithms with a large margin again (i.e. at least 20%). Compared with
the template extraction and matching method, GaitID, DeepSense
model can automatically extract distinct features from data, which
fit well to not only walking but also all other kinds of activities.
Compared with method that first extracts templates and then ap-
ply neural network to learn features, IDNet, DeepSense solves the
whole task in the end-to-end fashion. We eliminate the manually
processing part and exploit local, global, and temporal relationships
through our architecture, which results better performance. In this
task, although the performance of different variants is similar when
observing data with 5 seconds, DeepSense still achieves the best
performance (accuracy: 0.997± 0.001, macro F1: 0.997± 0.001,
and micro F1: 0.997± 0.001).

We further compare DeepSense with three variants by changing
the number of evaluation time intervals from 5 to 20, which corre-
sponds to around 1 to 5 seconds. We compute the accuracy for each
case. The results illustrated in Fig. 8 suggest that DeepSense per-
forms better than all the other variants with a relatively large mar-
gin when algorithms observe sensing data with shorter time. This
indicates the effectiveness of design components in DeepSense.

Then we illustrate the confusion matrix of best-performing
DeepSense model when observing sensing data with 5 seconds in
Fig. 9. It shows that the algorithm gives a pretty good result. On
average, only about two misclassifications appear during each test-
ing.

5.5 Latency and Energy
Final, we examine the computation latency and energy con-

sumption of DeepSense—stereotypical deep learning models are
traditionally power hungry and time consuming—we illustrate,
through our careful measurements in all three example application
scenarios, the feasibility of directly implementing and deploying
DeepSense on mobile devices without any additional optimization.

Figure 11: Test Platforms: Nexus5 and Intel Edison.

0

50

100

150

Po
w

er
 (m

W
)

GPS
DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
Sensor−fusion
eNav (w/o GPS)

(a) Power

0

1

2

3

4

La
te

nc
y

(m
S)

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
Sensor−fusion
eNav (w/o GPS)

(b) Latency

Figure 12: Power and Latency of carTrack solutions on Nexus 5

0

50

100

150

200

250

En
er

gy
 (m

J)

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
HAR−RF
HAR−SVM
HAR−MltiRBM
HAR−RBM

(a) Energy

0

10

20

30

40

50

60

La
te

nc
y

(m
S)

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
HAR−RF
HAR−SVM
HAR−MltiRBM
HAR−RBM

(b) Latency

Figure 13: Energy and Latency of HHAR solutions on Nexus 5

0

100

200

300

400

500

600

En
er

gy
 (m

J)

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
IDNet
GaitID

(a) Energy

0

20

40

60

80

100

La
te

nc
y

(m
S)

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
IDNet
GaitID

(b) Latency

Figure 14: Energy and Latency of UserID solutions on Nexus 5

Experiments measure the whole process on smart devices includ-
ing reading the raw sensor inputs and are conducted on two kinds
of devices: Nexus 5 and Intel Edison, as shown in Fig. 11. The
energy consumption of applications on Nexus 5 is measured by
PowerTutor [44], while the energy consumption of Intel Edison is
measured by an external power monitor. The evaluations of en-
ergy and latency on Nexus 5 are shown in Fig. 12, 13, and 14, and

358

0

200

400

600

800

Po
w

er
 (m

W
)

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
Sensor−fusion
eNav (w/o GPS)

(a) Power

0

10

20

30

40

La
te

nc
y

(m
S)

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
Sensor−fusion
eNav (w/o GPS)

(b) Latency

Figure 15: Power and Latency of carTrack solutions on Edison

0

200

400

600

800

En
er

gy
 (m

J)

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
HAR−RF
HAR−SVM
HAR−MltiRBM
HAR−RBM

(a) Energy

0

50

100

150

200

250

300

La
te

nc
y

(m
S)

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
HAR−RF
HAR−SVM
HAR−MltiRBM
HAR−RBM

(b) Latency

Figure 16: Energy and Latency of HHAR solutions on Edison

0

200

400

600

800

1000

En
er

gy
 (m

J)

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
IDNet
GaitID

(a) Energy

0

50

100

150

La
te

nc
y

(m
S)

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
IDNet
GaitID

(b) Latency

Figure 17: Energy and Latency of UserID solutions on Edison

Intel Edison Fig. 15, 16, and 17. Since algorithms for carTrack
are designed to report position every second, we show the power
consumption in Fig. 12a and 15a. Other two tasks are not period-
ical tasks by nature. Therefore, we show the per-inference energy
consumption in Fig. 13a, 16a, 14a, and 17a. For experiments on
Intel Edison, notice that we measured total energy consumption,
containing 419mW idle-mode power consumption.

For the carTrack task, all DeepSense based models consume a
bit less energy compared with 1-Hz GPS samplings on Nexus 5.
The running times are measured in the order of microsecond on
both platforms, which meets the requirement of per-second mea-
surement.

For the HHAR task, all DeepSense based models take moder-
ate energy and low latency to obtain one classification prediction
on two platforms. An interesting observation is that HHAR-RF, a
random forest model, has a relatively longer latency. This is due to
the fact that random forest is an ensemble method, which involves
combining a bag of individual decision tree classifiers.

For the UserID task, except for the IDNet baseline, all other algo-
rithms show similar running time and energy consumption on two
platforms. IDNet contains both a multi-stage pre-processing pro-
cess and a relative large CNN, which takes longer time and more
energy to compute in total.

6. DISCUSSION
This paper focuses on solving different mobile sensing and com-

puting tasks in a unified framework. DeepSense is our solution. It
is a framework that requires only a few steps to be customized into
particular tasks. During the customization steps, we do not tailor
the architecture for different tasks in order to lessen the requirement
of human efforts while using the framework. However, particular
changes to the architecture can bring additional performance gains
to specific tasks.

One possible change is separating noise model and physical
laws for regression-oriented tasks. The original DeepSense directly

learns the composition of noise model and physical laws, providing
the capability of automatically understanding underlying physical
process from data. However, if we know exactly the physical pro-
cess, we can use DeepSense as a powerful denoising component,
and apply physical laws to the outputs of DeepSense.

The other possible change is removing some design components
to trade accuracy for energy. In our evaluations, we show that
some variants take acceptable degradation on accuracy with less
energy consumption. The basic principle of removing design com-
ponents is based on their functionalities. Individual convolutional
subnets explore relationship within each sensor; merge convolu-
tional subnet explores relationship among different sensors; and
stacked RNN increases the model capacity for exploring relation-
ship over time. We can choose to omit some components according
to the demands of particular tasks.

In addition, although our three evaluation tasks focus mainly on
motion sensors, which are the most widely deployed sensors, we
can directly apply DeepSense to almost all other sensors, such as
microphone, Wi-Fi signals, Barometer, and light sensor. We need
further study on applying DeepSense to explore new applications
on smart devices.

At last, for a particular sensing task, if there is drastic change in
the physical environment, DeepSense might need to be re-trained
with new data. However, on one hand, the traditional solution with
pre-defined noise model and physical laws (or hand-crafted fea-
tures) would also need redesigns anyways. On the other hand, an
existing trained DeepSense framework can serve as a good initial-
ization stage for the new training process that aids in optimization
and reduce generalization error [10].

7. CONCLUSION
In this paper we introduced our unified DeepSense framework

for mobile sensing and computing tasks. DeepSense integrates con-
volutional and recurrent neural networks to exploit different types
of relationships in sensor inputs, thanks to which, it is able to learn
the composition of physical laws and noise model for regression-
oriented problems, and automatically extract robust and distinct
features on local, global, and temporal domains to effectively carry
out classification tasks—the two major focuses in mobile sensing
literature. We evaluated DeepSense via three representative mo-
bile sensing tasks, where DeepSense outperformed state of the art
baselines by significant margins while still claiming its mobile-
feasibility through moderate energy consumption and low latency
on both mobile and embedded platforms. Our experience with
the multiple DeepSense variants also provided us with valuable
insights and promising guidelines in the opportunities of further
framework adaptation and customization for a wide range of appli-
cations.

8. ACKNOWLEDGMENTS
We sincerely thank the anonymous reviewers for their invaluable

comments. Research reported in this paper was sponsored in part
by NSF under grants CNS 16-18627 and CNS 13-20209 and in part
by the Army Research Laboratory under Cooperative Agreement
W911NF-09-2-0053. The views and conclusions contained in this
document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of
the Army Research Laboratory, NSF, or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation
here on.

359

9. REFERENCES
[1] Intel edison compute module. http://www.intel.

com/content/dam/support/us/en/documents/
edison/sb/edison-module_HG_331189.pdf.

[2] Qualcomm snapdragon 800 processor.
https://www.qualcomm.com/products/
snapdragon/processors/800.

[3] W. T. Ang, P. K. Khosla, and C. N. Riviere. Nonlinear
regression model of a low-g mems accelerometer. IEEE
Sensors Journal, 2007.

[4] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
translation by jointly learning to align and translate.
arXiv:1409.0473, 2014.

[5] I. G. Y. Bengio and A. Courville. Deep learning. Book in
preparation for MIT Press, 2016.

[6] S. Bhattacharya and N. D. Lane. From smart to deep: Robust
activity recognition on smartwatches using deep learning. In
PerCom Workshops, 2016.

[7] G. Chandrasekaran, T. Vu, A. Varshavsky, M. Gruteser, R. P.
Martin, J. Yang, and Y. Chen. Tracking vehicular speed
variations by warping mobile phone signal strengths. In
PerCom, 2011.

[8] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. arXiv:1412.3555, 2014.

[9] T. Cooijmans, N. Ballas, C. Laurent, and A. Courville.
Recurrent batch normalization. arXiv:1603.09025, 2016.

[10] G. E. Dahl, D. Yu, L. Deng, and A. Acero.
Context-dependent pre-trained deep neural networks for
large-vocabulary speech recognition. IEEE TASLP, 2012.

[11] J. Donahue, L. Anne Hendricks, S. Guadarrama,
M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell.
Long-term recurrent convolutional networks for visual
recognition and description. In CVPR, 2015.

[12] D. Figo, P. C. Diniz, D. R. Ferreira, and J. M. Cardoso.
Preprocessing techniques for context recognition from
accelerometer data. Pers. Ubiquit. Comput., 2010.

[13] M. Gadaleta and M. Rossi. Idnet: Smartphone-based gait
recognition with convolutional neural networks.
arXiv:1606.03238, 2016.

[14] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and
J. Schmidhuber. Lstm: A search space odyssey.
arXiv:1503.04069, 2015.

[15] N. Y. Hammerla, R. Kirkham, P. Andras, and T. Ploetz. On
preserving statistical characteristics of accelerometry data
using their empirical cumulative distribution. In ISWC, 2013.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. arXiv:1512.03385, 2015.

[17] S. Hu, L. Su, S. Li, S. Wang, C. Pan, S. Gu, M. T. Al Amin,
H. Liu, S. Nath, et al. Experiences with enav: a low-power
vehicular navigation system. In UbiComp, 2015.

[18] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv:1502.03167, 2015.

[19] L. Kang, B. Qi, D. Janecek, and S. Banerjee. Ecodrive: A
mobile sensing and control system for fuel efficient driving.
In MobiCom, 2015.

[20] J. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis,
and M. Welsh. Wireless sensor networks for healthcare.
Proc. IEEE, 2010.

[21] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi,
L. Jiao, L. Qendro, and F. Kawsar. Deepx: A software
accelerator for low-power deep learning inference on mobile
devices. In IPSN, 2016.

[22] N. D. Lane, P. Georgiev, and L. Qendro. Deepear: robust
smartphone audio sensing in unconstrained acoustic
environments using deep learning. In UbiComp, 2015.

[23] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury,
and A. T. Campbell. A survey of mobile phone sensing.
IEEE Commun. Mag., 2010.

[24] C.-Y. Li, C.-H. Yen, K.-C. Wang, C.-W. You, S.-Y. Lau,
C. C.-H. Chen, P. Huang, and H.-H. Chu. Bioscope: an
extensible bandage system for facilitating data collection in
nursing assessments. In UbiComp, 2014.

[25] T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou. Human
sensing using visible light communication. In MobiCom,
2015.

[26] R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong.
Redeye: analog convnet image sensor architecture for
continuous mobile vision. In ISCA, pages 255–266, 2016.

[27] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao.
Energy-accuracy aware localization for mobile devices. In
MobiSys, 2010.

[28] G. Milette and A. Stroud. Professional Android sensor
programming. John Wiley & Sons, 2012.

[29] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R.
Choudhury. Tapprints: your finger taps have fingerprints. In
MobiSys, 2012.

[30] F. J. O. Morales and D. Roggen. Deep convolutional feature
transfer across mobile activity recognition domains, sensor
modalities and locations. In ISWC, 2016.

[31] S. Nath. Ace: exploiting correlation for energy-efficient and
continuous context sensing. In MobiSys, 2012.

[32] M. Park. Error analysis and stochastic modeling of
MEMS-based inertial sensors for land vehicle navigation
applications. Library and Archives Canada= Bibliothèque et
Archives Canada, 2005.

[33] M. Rabbi, M. H. Aung, M. Zhang, and T. Choudhury.
Personal sensing: Understanding mental health using
ubiquitous sensors and machine learning. In UbiComp, 2015.

[34] V. Radu, N. D. Lane, S. Bhattacharya, C. Mascolo, M. K.
Marina, and F. Kawsar. Towards multimodal deep learning
for activity recognition on mobile devices. In UbiComp:
Adjunct, 2016.

[35] Y. Ren, Y. Chen, M. C. Chuah, and J. Yang. Smartphone
based user verification leveraging gait recognition for mobile
healthcare systems. In SECON, 2013.

[36] O. Rippel, J. Snoek, and R. P. Adams. Spectral
representations for convolutional neural networks. In NIPS,
2015.

[37] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural
networks. IEEE Trans Sig. Process., 1997.

[38] N. Srivastava and R. R. Salakhutdinov. Multimodal learning
with deep boltzmann machines. In NIPS, 2012.

[39] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B.
Kjærgaard, A. Dey, T. Sonne, and M. M. Jensen. Smart
devices are different: Assessing and mitigatingmobile
sensing heterogeneities for activity recognition. In Sensys,
2015.

[40] H. M. Thang, V. Q. Viet, N. D. Thuc, and D. Choi. Gait
identification using accelerometer on mobile phone. In
ICCAIS, 2012.

[41] C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu. Friend or
foe?: Your wearable devices reveal your personal pin. In
AsiaCCS, 2016.

[42] C. Xu, S. Li, G. Liu, Y. Zhang, E. Miluzzo, Y.-F. Chen, J. Li,
and B. Firner. Crowd++: unsupervised speaker count with
smartphones. In UbiComp, 2013.

[43] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural
network regularization. arXiv:1409.2329, 2014.

[44] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M.
Mao, and L. Yang. Accurate online power estimation and
automatic battery behavior based power model generation
for smartphones. In CODES+ISSS, 2010.

[45] Y. Zhao, S. Li, S. Hu, L. Su, S. Yao, H. Shao, and
T. Abdelzaher. Greendrive: A smartphone-based intelligent
speed adaptation system with real-time traffic signal
prediction. In ICCPS, 2017.

[46] Y. Zhu, Y. Zhu, B. Y. Zhao, and H. Zheng. Reusing 60ghz
radios for mobile radar imaging. In MobiCom, 2015.

360

http://www.intel.com/content/dam/support/us/en/documents/edison/sb/edison-module_HG_331189.pdf
http://www.intel.com/content/dam/support/us/en/documents/edison/sb/edison-module_HG_331189.pdf
http://www.intel.com/content/dam/support/us/en/documents/edison/sb/edison-module_HG_331189.pdf
https://www.qualcomm.com/products/snapdragon/processors/800
https://www.qualcomm.com/products/snapdragon/processors/800

	Introduction
	Related Work
	DeepSense Framework
	Convolutional Layers
	Recurrent Layers
	Output Layer

	Task-Specific Customization
	General Customization Process
	Customize Mobile Sensing Tasks

	Evaluation
	Data Collection and Datasets
	Evaluation Platforms
	Algorithms in Comparison
	Effectiveness
	CarTrack
	HHAR
	UserID

	Latency and Energy

	Discussion
	Conclusion
	Acknowledgments
	References

