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Abstract—This paper develops a simplified dependency model
for sources on social networks that is shown to improve the
quality of fact-finding – assessing veracity of observations shared
on social media. Recent literature developed a mathematical
approach for exploiting social networks, such as Twitter, as noisy
sensor networks that report observations on the state of the
physical world. It was shown that the quality of state estimation
from such noisy data, known as fact-finding, was a function of
assumptions made regarding the independence of sources or lack
thereof. When sources propagate information they hear from
others (without verification), correlated errors may arise that
degrade fact-finding performance. This work advances the state
of the art by developing a simplified model of dependencies
between sources and designing an improved dependency-aware
estimator to assess veracity of observations, taking into account
the observed dependency structure. A fundamental error bound
is derived for this estimator to understand the gap in its
performance from optimal. It is shown that the new estimator
outperforms state of the art fact-finders and, in some cases, yields
an accuracy close to the fundamental error bound.

Index Terms—Social Sensing; Error Bound; Source Depen-
dency; EM;

I. INTRODUCTION

This paper contributes to social sensing literature by de-

veloping a source dependency model that leads to an im-

proved fact-finder for social network data. We take Twitter

as the social network of choice and design a new (source

dependency-aware) fact-finding algorithm that is shown to

outperform the state of the art [16] both in simulations and

based on empirical Twitter data. The work is motivated by the

proliferation of social networks and the wealth of information

that is voluntarily broadcast on them, which generates interest

in fact-finding algorithms that assess veracity of observations

reported on social media.

The paper builds on recent work on social sensing. Early

fact-finders used heuristic solutions inspired by data min-

ing literature to iteratively assess veracity of sources and

claims [15], [22]. More recently, estimation-theoretic mod-

els were developed that represent social networks as noisy

sensor networks [16] leading to a generation of maximum-

likelihood truth estimation approaches with well-understood

analytic properties. In these models, sources (the sensors)

generate statements that convey claims about the state of

their environment, thereby committing acts of sensing. A

particularly attractive model is one that treats these statements

as true or false, leading to a simple, yet expressive binary

sensor abstraction, where each statement is treated as an

information “bit” that may be correct or not. Since data

are noisy, the goal of the fact-finder is to identify those

bits that are actually true in the physical world. The binary

model is expressive because a bit can represent any arbitrary

statement, such as “#BREAKINGNEWS Bomb threat prompts

schoolwide evacuation at Mira Costa High School in Manhat-

tan Beach http://abc7.la/1m74xAc,” or “Students beginning to

gather at 16th/Mission for walkout to protest SFPD killing

of #MarioWoods” (actual tweets, each modeled as a binary

claim). An estimation-theoretic solution was proposed where

a maximum-likelihood estimator was designed to assess the

probability of correctness of individual claims.

The paper advances this maximum-likelihood estimation

approach, instead of competing alternatives [15], in view

of its appealing analytic properties. Specifically, under this

approach, it becomes possible not only to offer optimal (in

the sense of maximum-likelihood) guesses of truth values of

claims, but also compute the fundamental error bound on claim

misclassifications (i.e., labeling correct claims as false and vice

versa). This error bound is the first contribution of the paper.

Prior work demonstrated that a key factor that affects

the quality of fact-finding, under the maximum-likelihood

estimation approach, lies in the assumptions made regarding

source dependencies. Early work assumed that sources are

independent [18]. The resulting fact-finders favored claims

supported by a larger number of sources, since the probability

that all of them would be wrong deminishes quickly with

increased support (under the independence assumption). Those

fact-finders were thus prone to believing rumors in cases where

all sources would repeat information they heard from someone

they trusted without independent verification. Subsequent work

used retweet behaviors and other indicators to empirically

construct a dependency network among sources [16], where a

link indicated that a source tends to repeat claims of another.

The work assumed that claims repeated by dependent sources

do not offer value from the perspective of truth estimation.

The second contribution of this paper lies in an improved
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(yet simple) model of source dependencies that offers a middle

ground between assuming independence among sources and

assuming that dependent sources offer no information. The

model is shown to lead to an improved fact-finder. It stems

from the intuition that, in reality, all sources fall somewhere

in between the above two extremes. When a source repeats

something that another source had previously shared on the

social medium, the new observation is not necessarily an

automatic repeat that carries no value. The source may or

may not have verified the information first. We do not know

which is the case, but that uncertainty can be added as another

variable to estimate by the maximum-likelihood estimator.

Hence, a more nuanced model is possible, leading to an

extended estimator.

The novel estimation algorithm developed in this paper

has been integrated into a previous fact-finding tool, called

Apollo.1 We carried out simulation experiments to evaluate our

algorithm’s performance against various existing baseline al-

gorithms [15], [16], [18], [22]. In addition, we also conducted

real-world empirical evaluation using new Twitter datasets that

we collected on various topics/events from January through

November 2015. From the results we observed that our new

estimator consistently outperforms the state of the art [16].

The rest of this paper is organized as follows. Section

II provides the outline of problem formulation. Section III

describes our fundamental error bound on claim misclassifica-

tions. A practical estimator considering source dependencies

is described in Section IV and evaluated in Section V. Section

VI surveys related work. Section VII concludes.

II. PROBLEM FORMULATION

To formulate the problem of dependency-aware social sens-

ing, we first define the basic terminology, then intrduce our

model of dependent sources that leads to the problem ad-

dressed in the paper.

A. Basic Terminology

Consider a set of n sources, S = {S1, S2, · · · , Sn} who

jointly report a set of m statements, we call assertions,

C = {C1, C2, · · · , Cm}. As assertion could be anything that

evaluates to true or false. For example, a tweet that says

“Gunshots, explosion as insurgents attack Spanish embassy in
Kabul, Afghanistan http://s.rplr.co/ezyVQ3K” could be viewed

as an assertion, because it can be evaluated as true or false.2

Our model associates a single binary variable with each

assertion. That is true if the assertion is correct (i.e., the

statement of the assertion is true in the physical world) and

false otherwise. We assume that truth values of assertions are

not known.

The same assertion may be reported by one or more sources.

We call the act of “a source reporting an assertion”, a claim
made by that source. If a source Si reports assertion Cj , we

say that the source made claim SiCj , denoted by SiCj = 1.

1http://apollo3.cs.illinois.edu/
2For the sake of simplicity, in this paper, we consider partially true

assertions as false.

Otherwise, SiCj = 0, meaning that Si did not make the claim.

Note that, the set of all claims made can be represented by a

matrix, SC, of dimensions n×m, where element SC[i, j] =
SiCj . We call it the source-claim matrix. We also denote SC[:
, j] as SCj .

In general, a source, Si, may see and be influenced by

claims made by a subset of other sources (e.g., by following

them on Twitter). We call those sources the ancestors of Si.

We say that a claim by Si is independent if no ancestor of Si

made the same assertion before. Otherwise, the claim is called

dependent. We use the indicator Dij to denote dependent

claims. We say Dij = 1 if the claim (by source Si, asserting

Cj) is dependent. Otherwise, we say that Dij = 0.

• Example: To illustrate our notations, consider the exam-

ple in Figure 1. John (denoted by source S1 in Figure 1)

follows Sally (denoted by source S2) on Twitter, but does

not follow Heather (denoted by source S3). The three are

in the habit of reporting which streets they find congested

during their commute (hopefully not while driving). On

a particular morning, at time, t1, Sally tweeted “Main

Street, Urbana, IL is congested”. Let us denote this

assertion by C1. We say that S2C1 = 1. At the same

time, Heather tweeted “University Ave., Urbana, IL is

congested”. Let us denote this assertion by C2. We say

that S3C2 = 1. Later, at time t2, John tweeted “Main

Street, Urbana, IL is congested” then at time, t3, he

tweeted “University Ave., Urbana, IL is congested”. They

are denoted by S1C1 = 1 and S1C2 = 1, respectively.

The remaining entries in the source-claim matrix are zero.

According to our model, we consider the second of John’s

tweets to be independent because no person who John

follows made the same assertion earlier. (Note that, John

does not follow Heather.) Hence, D1,2 = 0. We also

say that Sally’s and Heather’s tweets are independent,

because none of their ancestors asserted the same. Hence,

D2,1 = 0 and D3,2 = 0. However, the first of John’s

tweets is dependent according to our model because Sally,

who John follows, made the same assertion at an earlier

time. Hence, D1,1 = 1, as shown in the figure.

S
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Fig. 1: An illustrative example.

B. A Model for Social Sources
With a slight abuse of notation, in the rest of this paper, we

shall refer to an assertion and its truth value (true or false) by
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the same variable. Hence, we say that Ci = 1 if assertion Ci

is true, and Ci = 0 otherwise. We define the behavior of each

source, Si, by a model that defines four different probabilities

that are unknown to the fact-finder:

• The probability of making independent claims that are

true, denoted by ai = P (SiCj = 1|Ci = 1, Dij = 0).
• The probability of making independent claims that are

false, denoted by bi = P (SiCj = 1|Cj = 0, Dij = 0).
• The probability of making dependent claims that are true,

denoted by fi = P (SiCj = 1|Cj = 1, Dij = 1).
• The probability of making dependent claims that are false,

denoted by gi = P (SiCj = 1|Cj = 0, Dij = 1).

In addition we denote z = P (C = 1) as the probability of

a general assertion C to be true.

We define the parameter set, θi, for each source Si to be the

set of unknowns {ai, bi, fi, gi}. The union of these sets over

all sources and z constitutes the set of unknowns θ. Similarly,

the collection of all dependency indicators, Dij , is denoted

by set, D. The goal is to estimate those unknowns in set θ
together with the most likely truth value for each assertion, Cj ,

given the source claim matrix, SC, and the set of indicators,

D.

In the next two sections, we provide an estimator error

bound and a practical estimator based on the model and

parameters we defined in this section.

III. ESTIMATOR ERROR BOUND

Our goal is to estimate the truth value of individual as-

sertions given the data received from the social network, and

given the influence relations, D, determined (for example) by

the network of retweets. We begin by computing a lower bound

on expected error of the optimal estimator. By optimal, we

mean that the estimator makes the best true/false judgement

that is feasible given the data available to it.

To obtain a lower bound, we assume that the estimator deter-

mines all model parameters in the set θ perfectly. Remember

that these parameters describe the probabilistic behavior of

sources. Hence, any resulting error in assessing the true/false

values of assertions is attributed solely to the inherent un-

certainty resulting from the lack of source reliability in the

given social network, as opposed to modeling error. Figure 2

shows an example, where sources who presumably witnessed

an event report their observations. For simplicitly, the example

shows only one assertion, Cj , reported by a subset of sources.

In general, there may be many different assertions, some of

which are true (they really happenned) and some are false

(they did not).

Consider determining the veracity of assertion Cj by our

hypothetical optimal estimator. There are only two possibilities

for the value of ground truth: either Cj is true, or it is false.

Given n sources, each of which either reports Cj or not, there

are 2n possible combinations of claims that may be observed

(we will solve this exponential complexity problem in Section

III-B). Let SCj denote the set of actual claims observed. The

optimal estimator with an exact knowledge of parameter set,

θ, and dependency relations, D, will compare two values;

Physical 
Event 

1: True event 
0: False  

Social 
Network 

Source 
(silent) 
Source 
(not silent) 

Assertion 

Claim 
Influence 
relation 

Cj 

Fig. 2: An Example Assertion.

namely, P (Cj = 1|SCj , D, θ) and P (Cj = 0|SCj , D, θ),
then decide on the truth value of Cj according to the higher

of the two probabilities. The smaller of the two probabilities

will then become the error probability in this case (i.e., the

probability that ground truth differs from the estimate), given

the set of received claims, SCj , and the perfect knowledge of

model parameters, θ, and dependencies, D. Let us denote this

error by P opt(error|SCj , D, θ). Hence:

P opt(error|SCj)=min{P (Cj = 1|SCj ;D, θ),

P (Cj = 0|SCj ;D, θ)} (1)

By definition of statistical expectation, the expected error

probability of the optimal estimator, denoted Eopt(error) is

thus simply the weighted sum of the above probabilities (each

weighted by the likelihood of observing the corresponding

SCj). Let the set of all 2n possible combinations of received

claims, SCj , be denoted by A. Hence:

Eopt(error)=
∑

SCj∈A

min{P (Cj = 1|SCj ;D, θ),

P (Cj = 0|SCj ;D, θ)}P (SCj |θ) (2)

We can now use the Bayesian rule to rewrite P (Cj =
1|SCj ;D, θ) and P (Cj = 0|SCj ;D, θ), used above, in terms

of P (SCj |Cj = 1;D, θ) and P (SCj |Cj = 0;D, θ). After

simplification, this yields:

Eopt(error)=
∑

SCj∈A

min{P (SCj |Cj = 1;D, θ)P (Cj = 1),

P (SCj |Cj = 0;D, θ)P (Cj = 0)} (3)

In Equation (3), we have:

P (SCj |Cj = 1;D, θ)=
∏
i

P (SiCj |Cj = 1;Dij , θ) (4)

P (SCj |Cj = 0;D, θ)=
∏
i

P (SiCj |Cj = 0;Dij , θ) (5)

where, P (SiCj |Cj = 1;Dij , θ), P (SiCj |Cj = 0;Dij , θ),
and P (Cj) are explicit parameters in set θ, according to the

model described in Section II-A. (Specifically, P (SiCj |Cj =
1;Dij , θ) is ai if Dij = 0 and fi if Dij = 1. Similarly,

P (SiCj |Cj = 0, Dij , θ) is bi if Dij = 0 and gi if Dij = 1.

And P (Cj) = z).
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Since, in general, the parameter set θ may not be estimated

exactly, the above constitutes a minimum bound on expected

error of an optimal estimator. The approach used above is a

fairly standard textbook technique, called Bayes risk. The con-

tribution lies in expressing it in terms of the model parameters

of the social channel.

A. A Walk-through Example

We use a simple example to illustrate the definition of the

above bound. Suppose we have three sources, {S1, S2, S3}.

Table I lists the probabilities SCj for each possible com-

bination of received claim. The first column defines the

combination. For example, ”101” means that sources S1 and

S3 reported Cj , but source S2 did not. The second and third

columns show the probabilities P (SCj |Cj = 1, D, θ) and

P (SCj |Cj = 0, D, θ), respectively. We further assume, for

simplicity, that P (Cj = 1) = P (Cj = 0) = 0.5.

TABLE I: Computing the Error Bound: An Example
SCj P (SCj |Cj = 1, D, θ) P (SCj |Cj = 0, D, θ)
000 0.18546216 0.05851677
001 0.17606773 0.05300123
010 0.00033244 0.12803859
011 0.01971855 0.16032756
100 0.24427898 0.14231588
101 0.19063986 0.08222352
110 0.02321803 0.18716734
111 0.16028224 0.18840910

According to Equation (3), the error bound in this case

should be:

Err=0.5× (0.05851677 + 0.05300123 + 0.00033244

+0.01971855 + 0.14231588 + 0.08222352

+0.02321803 + 0.16028224)

=0.26980433

Therefore for the given system model and parameters gener-

ating Table I, the expected error probability of any fact-finding

algorithm is no less than 26.98%.

B. A Tractable Approximation

One obvious drawback of our error bound expression, de-

rived above, is that it has exponential complexity in the number

of sources. In order to make this computation scalable, a lower-

complexity solution trading off accuracy against complexity is

desired.

Our proposed error bound (3) can be regarded as a kind of

marginal distribution, obtained by marginalizing over variable

SCj . Therefore well-studied marginal distribution approxi-

mation methods can be applied to make the error bound

computing tractable.

Among all these choices [2], [3], Markov chain Monte

Carlo methods are a class of algorithms for sampling from

a probability distribution based on constructing a Markov

chain that has the desired distribution as its equilibrium

distribution [2], [7]. Therefore, we do not need to marginalize

over all possible SCj to provide the exact bound. It suffices

to obtain a sufficiently large number, T , of samples to provide

an approximate error bound instead.

In this paper, we use Gibbs sampling [5], [6] to approxi-

mate the marginal distribution Eopt(error). Gibbs sampling

obtains the samples based on the conditional probability of

each variable. It generates an instance of variable SiC
(t)
j ∈

{S1Cj , · · · , SnCj} from the distribution of each variable in

turn, conditioned on the current values of the other variables.

In each sampling loop, Gibbs sampling provide a sample

s(t) = {S1C
(t)
j , · · · , SnC

(t)
j } for marginal distribution esti-

mation.

Gibbs sampling can provide a sequence of sampled ob-

servable claims efficiently. Therefore we can compute the

approximated error bound by marginalizing over all samples

S = {s(t)}.

Eopt(error)≈
( ∑

s(t)∈S

min{P (SC
(t)
j |Cj = 1, D, θ)P (Cj = 1),

P (SC
(t)
j |Cj = 0, D, θ)P (Cj = 0)}

)
/P (S)

(6)

where P (S) =
∑

s(t)∈S P (SC
(t)
j |Cj = 1, D, θ)P (Cj = 1) +

P (SC
(t)
j |Cj = 0, D, θ)P (Cj = 0).

The details of Gibbs sampling and approximate error bound

computation method are given in Algorithm 1.

Algorithm 1 Approximate Error Bound

1: Initialize initial sample {S1C0, · · · , SnC0}
2: t = 0, Err = 0.0, Total = 0.0, and ErrPart = 0.0
3: while Err not convergent do
4: t← t+ 1
5: for 1 ≤ i ≤ n do
6: sample SiC

(t)
j from conditional probability

P (SiC
(t)
j |S1C

(t)
j , · · · , Si−1C

(t)
j , Si+1C

(t−1)
j

7: , · · · , SnC
(t−1)
j ; θ)

8: end for
9: if P (SiCj , C = 1; θ) > P (SiCj , C = 0; θ) then

10: ErrPart← ErrPart+ P (SiCj , C = 0; θ)
11: else
12: ErrPart← ErrPart+ P (SiCj , C = 1; θ)
13: end if
14: Total← Total + P (SiCj , C = 1; θ) + P (SiCj , C = 0; θ)
15: Err = ErrPart/Total
16: end while

IV. A PRACTICAL ESTIMATOR

It remains to develop an estimator that solves our fact-

finding problem with no knowledge of set θ. Such a fact-

finder will need to estimate θ together with estimating the truth

values of all assertions, Cj , given only the source claim matrix,

SC, and the dependency indicators, D, as input. We model

the problem posed above as a maximum likelihood estimation

problem, where the log likelihood function is given by:

L=ln
(
P (SC; θ)

)
=ln

(
m∑
j=1

∑
Cj∈{0,1}

P (SCj |Cj ;D, θ)P (Cj ; θ)

)
(7)
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where P (SCj |Cj ;D, θ) is expressed in (4) (5).
The maximum likelihood estimator must find a solution that

satisfies:

argmax
θ

ln(L) (8)

The general way of solving maximum likelihood estimation

problems with hidden variables is to use the expectation-

maximization (EM) algorithm, composed of an expectation

step and a maximization step. These steps are presented in the

Appendix, where it is shown that they reduce to the following

iterative computation:

P (Cj = 1|SCj ;D, θ) =
P (SCj |Cj = 1;D, θ)P (Cj = 1; θ)∑
Cj∈{0,1} P (SCj |Cj ;D, θ)P (Cj ; θ)

(9)

where the values of P (SiCj |Cj ; θ,Dij), under different pa-

rameter settings, are shown in Table II.

TABLE II: Values of P (SiCj |Cj ; θ,Dij)
Cj Dij SiCj P (SiCj |Cj ; θ,Dij)
1 0 1 ai
1 0 0 1− ai
0 0 1 bi
0 0 0 1− bi
1 1 1 fi
1 1 0 1− fi
0 1 1 gi
0 1 0 1− gi

P (SCj |Cj ;D, θ) is calculated similar as (4) (5), and

ai=

∑
SiCj∈SiC

D0
1

P (Cj = 1|SiCj ;D, θ)∑
SiCj∈SiC

D0
1

⋃
SiC

D0
0

P (Cj = 1|SiCj ;D, θ)
(10)

fi=

∑
SiCj∈SiC

D1
1

P (Cj = 1|SiCj ;D, θ)∑
SiCj∈SiC

D1
1

⋃
SiC

D1
0

P (Cj = 1|SiCj ;D, θ)
(11)

bi=

∑
SiCj∈SiC

D0
1

P (Cj = 0|SiCj ;D, θ)∑
SiCj∈SiC

D0
1

⋃
SiC

D0
0

P (Cj = 0|SiCj ;D, θ)
(12)

gi=

∑
SiCj∈SiC

D1
1

P (Cj = 0|SiCj ;D, θ)∑
SiCj∈SiC

D1
1

⋃
SiC

D1
0

P (Cj = 0|SiCj ;D, θ)
(13)

z=

∑m
j=1 P (Cj = 1|SCj ;D, θ)

m
(14)

where SiC
D0
1 = {SiCj : ∀SiCj ∈ SC&SiCj = 1&Dij = 0},

SiC
D1
1 = {SiCj : ∀SiCj ∈ SC & SiCj = 1 & Dij = 1},

SiC
D0
0 = {SiCj : ∀SiCj ∈ SC & SiCj = 0 & Dij = 0},

and SiC
D1
0 = {SiCj : ∀SiCj ∈ SC & SiCj = 0 &Dij = 1}.

Denote that SCD0
1

⋃
SCD1

1

⋃
SCD0

0

⋃
SCD1

0 = SC.
Hence, we jointly estimate the truth values of assertions

and model parameters by iteratively solving Equation (9) and

(10) - (14) until they converge. The convergence of EM

algorithm is beyond the scope of this paper and well-studied

in other work [20]. We summarize the estimator psuedocode

in Algorithm 2.

V. EVALUATION

In this section, we evaluate our proposed methods both via

simulation experiments and through real-world datasets.

Algorithm 2 Joint Estimator

1: Initialize parameter set {θ(t)} with random probability
2: while {θ} are not convergent do
3: for j in xrange(m) do
4: compute P (Cj = 1|SCj ; θ

(t)) according to Equ. (9)
5: end for
6: for i in xrange(n) do
7: compute ai, fi(ai, �γT ), bi, and gi(bi, �γF ) according to

Equ. (10), (11), (12), and (13) respectively.
8: end for
9: t+ = 1

10: end while

A. Simulation for Approximate Error Bound

We first generate synthetic data of fictional events. The

synthetic data generator is parameterized to generate claims

for n sources collectively making m different assertions.

In order to capture the different dependency characteristics

of claims in a systematic way, we generate source dependency

graph as a forest of τ level-two trees, where each source

appears only once in this dependency graph. Therefore, source

dependency ranges from a single source being followed by all

other sources, to all sources stand independent.

The total set of assertions {C1, C2, · · · , Cm} is divided into

two pools, a “True Assertion” pool and a “False Assertion”

pool, according to a value, d, that controls the ratio of true and

false assertions. The total set of sources {S1, S2, · · · , Cn} is

divided into two subsets, a “Root Sources” subset containing

the independent nodes in the dependency graph, and “Leaf

Sources” the dependent.

We first start with the “Root Sources”. All sources in this

set make independent claims. Whether source Si makes an

assertion or not is controlled by a probability poni . When a

source decides to participate in making the current assertion,

a parameter pindepTi indicates whether Si will make a true

assertion, as opposed to a false one. The generator will

then pick one assertion from the “True Assertion” or “False

Assertion” accordingly.

For “Leaf Sources”, whether source Si makes an assertion

is still controlled by the probability, poni . For each leaf source,

its candidate assertion set consists of a “Dependent Assertion”

subset containing assertions that have already been made by

its root, and an “Independent Assertion” subset containing

assertions that have not been previously made by its root.

These two subsets are controlled by two different probability

parameters, pdepTi and pindepTi , deciding whether Si will make

a true assertion or a false assertion. The generator will then

pick one assertion from “True Assertion” or “False Assertion”

from the corresponding subset accordingly.

Hence, each source is personalized by a different degree of

participation, poni , and different reliabilities pdepTi and pindepTi .

In order to evaluate the precision of our approximate error

bound compared to the exact one, we run approximated and

exact error bound algorithms for different model parameter set-

tings. We take n = 20, m = 50, poni ∈ [0.5, 0.7], τ ∈ [8, 10],
pdepi ∈ [0.4, 0.6], d ∈ [0.55, 0.75], pindepTi ∈ [7/12, 3/4],
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Fig. 3: Bound with varying # of sources.
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Fig. 4: Bound with varying # of dependency trees.
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Fig. 5: Bound with varying varying source reliability.
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Fig. 6: Bound Computation Time.

and pdepTi ∈ [0.4, 0.6] as default values except where specifi-

cally mentioned. Parameters with ranges are chosen uniformly

within the range. We conduct 20 independent experiments for

each simulation.

In following simulations, false positive bound and false

negative bound represent the portion of error bound caused

by regarding false assertions as true and true assertions as

false respectively.

In the first simulation, we change the total number of

sources, n, while keeping other parameters at default values.

We change n from 5 to 25 in steps of 5. The precision of

the approximate error bound compared with exact value is

shown in Figure 3. The maximum difference between exact

and approximated error bound is 0.0064 when n = 20.

In the second simulation, we vary the number of dependency

trees from 1 to 11 in steps of 1, while keeping other parameters

at their default values. From Figure 4, the maximum difference

between exact and approximated error bound is 0.0127 when

τ = 1, indicating that approximated values are acceptable.

In the third simulation, we keep pindepTi /(1−pindepTi ) = 2,

and change pdepTi /(1 − pdepTi ) from 1.1 to 2.0 with steps

of 0.1, while keeping other parameters at default values.

This parameter indicates how effectively one can discriminate

true and false assertions, which will be fully discussed in

the next subsection. From Figure 5, the differences between

approximate and exact error bounds are still acceptable, where

the maximum is 0.0116 at pdepTi /(1− pdepTi ) = 2.0.

Figure 6 shows that computing the approximate error bound

is much faster than computing the exact error bound. The

latter quickly becomes intractable as the number of sources

n increases. Both computing times remain constant under

different dependency structure and source reliability settings.

B. Simulation of Dependency-Aware Estimator

In order to systematically evaluate our proposed estimation

method, we generate synthetic data with a wide range of

parameters and compare the performance of the following four

algorithms:

• EM-Ext: Our proposed estimator as described in this

paper.

• EM (IPSN 2012): This algorithm jointly estimates source

reliability and assertion truth value, assuming all sources

472



are independent.
• EM-Social (IPSN 2014): This algorithm improves upon

EM (IPSN 2012) by ignoring dependent claims, reason-

ing that they do not add new information pertinent to

truth determination.

• Optimal: This value refers to a transformed error bound,

(i.e., 1 − Err), introduced earlier. No fact-finder can

outperform this bound on average. (Some estimators may

perform better on false negatives or false positives but not

on overall accuracy).

Model parameter settings are the same as in Section V-A

except that now we take n = 50 for default. We conduct 300

independent experiments for each simulation experiment and

take the average.

In the first simulation, we change the total number of

sources, n, while keeping other parameters at default values.

We change n from 20 to 50 in steps of 5. Simulation results

are illustrated in Figure 7. We can see that increasing the

number of sources improves performance of most algorithms

except for EM. As shown in Figure 7-(b), the false positive rate

grows with the number of sources, because the EM algorithm

has no ways of dealing with dependencies. Increasing the

number of sources without adding more assertions creates the

illusion of more substantiated assertions if dependencies are

not considered. In Figure 7-(b), although the false negative rate

of EM-Ext is large than other two EM algorithm, the absolute

value is relatively small. And the false negative rate of EM-

Ext is similar as that of the optimal bound, while other two

algorithm seem to be a little biased to predict assertion to be

true.

In the second simulation, we change the total number

of assertions, m, and set n = 100, while keeping other

parameters at default values. We change m from 10 to 100
in steps of 10. Simulation results are illustrated in Figure 8.

We see that increasing the number of assertions improves the

performance of all algorithms. The difference between EM-Ext

and the optimal algorithm shrinks as the number of assertions

increases.

In the third simulation, we see how the number of depen-

dency trees affects the performance of each algorithm. We

change the number of dependency trees, τ from 1 to 11 in steps

of 1, while keeping other parameters at default values. Results

are shown in Figure 9. The EM-Ext algorithm outperforms the

other two algorithms across the board.

In the final simulation, we vary the parameter pindepTi and

pdepTi to see how reliability of sources affects fact-finding

performance. We choose
pdepT
i /(1−pdepT

i )

pindepT
i /(1−pindepT

i )
as our tuning

knob, as pdepTi /(1 − pdepTi ) and pindepTi /(1 − pindepTi ) are

good indicators of how effectively one can distinguish true and

false assertions. For this simulation, we keep pindepTi /(1 −
pindepTi ) = 2 and change pdepTi /(1 − pdepTi ) from 1.1

to 2.0 in steps of 0.1, as illustrated in Figure 10. When

pdepTi /(1− pdepTi ) increases, the dependent claims contribute

additional information for telling true and false assertions

apart, thus all algorithms benefit, except EM-social, as it

“deletes” dependent claims. Another interesting observation

is that when pdepTi /(1 − pdepTi ) ≈ pindepTi /(1 − pindepTi ),
EM algorithm tends to perform similarly or even slightly

better than EM-Social. The reason is that dependent and

independent claims tend to be equivalent in this case. So the

EM algorithm, which treats all claims as independent, uses

more data to learn less latent parameters more accurately.

When pdepTi /(1 − pdepTi ) ≈ 1, EM-Ext tends to perform

similarly as EM-Social. The reason is that dependent claims

provide very less information at that time. Therefore ignoring

the dependent claims leads to little information loss.

C. Empirical Evaluation

In this section we provide empirical evaluation of our EM-

Ext algorithm on five Twitter datasets3 that we collected in

2015 with different keyword triplets and geo-locations. Table

III provides a brief summarization of these five tasks, (i)

Ukraine, (ii) Kirkuk, (iii) Superbug, (iv) LA Marathon, and

(v) Paris Attack, detailed as follows:

• Ukraine: On March 14th 2015, The Russian President

Vladimir V. Putin has not shown in public for more than

one week. During that week, he had postponed a treaty

signing with representatives from South Ossetia and

canceled the trip to Kazakhstan. Speculations appeared in

news and social media. Some rumors even said that the

Russian president was dead, which was not true. These

noisy messages provide a good environment for testing

our state estimator.

• Kirkuk: On March 10th 2015, Kurdish forces attacked the

Islamic State of Iraq and Syria (ISIS) locations around

the oil-rich city of Kirkuk in northern Iraq. A lot of

commentaries were posted and followed on social media.

• Superbug: On Mar 4th 2015, Second Los Angeles Hos-

pital Reports four patients have been infected with an

antibiotic-resistant “superbug”.

• LA Marathon: Los Angeles 2015 Marathon was on Mar

15th. A lot of people posted event of Marathon on social

media along its route from Dodger Stadium to Santa

Monica Pier.

• Paris Attack: We show results from Nov 14th. On the

night of November 13th, a series of coordinated terrorist

attacks occurred in Paris.

We apply seven different algorithms to evaluate these

datasets. Besides the “EM-Ext”, “EM-Social”, and “EM”

algorithms introduced earlier, four additional heuristics are

included, as follows:

• Voting: This algorithm ranks assertions according to the

total number of times being made (e.g., total number

of tweets making the same statement). The larger this

number, the more credence is given to the assertion.

• Sums: An iterative algorithm [15]. It estimates the reli-

ability of assertions and sources in turn by counting the

number of sources and assertions that support them.

3Available for download at http://apollo3.cs.illinois.edu/
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Fig. 7: Varying # of sources.
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Fig. 8: Varying # of assertions.
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Fig. 9: Varying # of dependency trees.
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Fig. 10: Varying source reliability.

• Average.Log: A variant of Sums. It makes a trade-off to

trust more on sources who make more true assertions.

During each iteration, source reliability is weighted by

claims it has made.

• Truth-Finder: An iterative algorithm [22]. It utilizes the

relationship between source and assertion reliabilities to

find trustworthy sources and true assertions.

For actual evaluation, we collected the top-100 tweets as

identified by each algorithm according to their computed

truth probabilities, and merged and mixed them together, with

the generating algorithms anonymized. Human graders then

manually graded all tweets without knowing which algorithm

generated which tweet to prevent bias. Graders were required

to do background research on each tweet and mark it as

“True”, “False”, or “Opinion” according to the following rule:

• True: Tweets making a verifiable assertion that was

confirmed to be true by the grader

• False: Tweets making a verifiable assertion that was

confirmed to be false by the grader.

• Opinion: Tweets making a subjective assessment such

as “President Arthur is good” or tweets that do not

constitute an act of sensing (e.g., “Please support dolphins

in Australia”).

The algorithms were then de-anonymized, and we computed

the percentage of assertions found True in the output of each

algorithm. That is to say, we computed the ratio #True/(#True

+ #False + #Opinion).
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TABLE III: Information Summary of Twitter Datasets.
Total Start Time (UTC) Total End Time (UTC) Evaluation Day #Assertions #Sources #Total Claims #Original Claims Locations

Ukraine Feb 20 12:15:28 2015 Mar 31 23:10:12 2015 Mar 14 2015 3703 5403 7192 4242 Ukraine
Kirkuk Jan 31 01:47:25 2015 Apr 02 02:41:15 2015 Mar 10 2015 2795 4816 6188 3079 Kirkuk

Superbug Feb 19 17:42:39 2015 Apr 09 18:29:01 2015 Mar 4 2015 2873 7764 9426 5831 LA
LA Marathon Mar 12 01:38:29 2015 Mar 18 02:14:42 2015 Mar 15 2015 3537 5174 7148 4332 LA
Paris Attack Nov 14 18:17:14 2015 Nov 24 17:28:02 2015 Nov 14 2015 23513 38844 41249 38794 Paris

The accuracy of each algorithm is shown in Figure 11. As

seen, the EM-Ext algorithm outperforms all other algorithms.

Let us now take a closer look at Figure 11. The basic EM

algorithm performs better than Voting, because it takes source

reliability into consideration, providing better estimation ac-

curacy than majority vote.

The EM-Social algorithm usually performs better than other

baseline algorithms, but is beaten by our EM-Ext algorithm.

Although EM-Social takes source dependencies into consid-

eration, it simply ignores dependent claims as an additional

data cleaning process. This flaw limits the amount of data it

can use, resulting in less accurate estimation.

Three iterative algorithms: Sums, Average.Log, and Truth

Finder perform with high variance. In different datasets, they

sometimes perform better than EM and Social EM algorithms,

but other times not. The main reason is that their models

fail to take source dependencies into consideration, and use

suboptimal algorithms to estimate source reliability.
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Fig. 11: Empirical Accuracy Results.

VI. RELATED WORK

Due to the proliferation of mobile sensor and smart devices

as well as the popularity of social media, social sensing has

become a key research topic in sensor networks research

attracting growing attentions. During social sensing processes,

people act as sensor carriers [4] or sensors themselves [16].

We focus on humans as sensors in this work.

Quality and trustworthiness of data is a key problem for so-

cial sensing. Human sensor can easily bring noise to reported

data via distortion, fabrication, omissions, and duplication.

Recent work focus on estimating reliability of reported sensing

data, which can found in both recent machine learning data

mining literature [11], [12], [22], crowd sourcing literature [8],

[9], [14] and sensor network literature [16], [18], [19], [21].

The basic fact-finder [10] is one of the earliest efforts in

this domain. Later Yin et al. introduced an unsupervised fact-

finder, TruthFinder [22], for analyzing veracity of providers-

facts networks. Pasternack et al. proposed several extended

algorithms [15]. Wang et al. [18] first proposed an algo-

rithm that jointly estimates assertion and source reliability,

and further extended the maximum-likelihood estimation by

assuming that claims repeated by dependent sources do not

offer added values from the perspective of truth estimation

[16]. Yao et al. propose a recursive estimator for sensing

streaming data [21] The above work on reliability estimation

fails to fully capture source dependencies. This paper takes

into account the observed source dependency structure, devel-

ops a simplified dependency model, and designs an improved

dependency-aware estimator to assess veracity of observations.

What’s more, this work is also motivated by the goal of

providing performance bound for social sensing. Performance

and capacity bounds have been studied in communication and

networking systems [1], [13]. For the area of social sensing,

[17] provided a way of estimating error bounds for social

sensing algorithms, by computing the quantified confidence

of estimated parameters with Cramer-Rao lower bound with

attainable approximation to trade accuracy with scalability.

This paper is different from the former effort in that a

fundamental error bound, on claim misclassification rate, for

the performance of social social sensing models is derived.

The error bound helps to understand the gap between the

accuracy of proposed algorithm and the theoretical optimal

performance of social sensing model. The performance error

bound proposed in this paper is also a good indicator of what

performance gain can be achieved with advanced estimating

algorithms under the existing social sensing model.

VII. CONCLUSION

In this paper, we developed fundamental error bounds on

fact-finding accuracy in social channels, based on a novel

model that approximates social media as noisy communication

channels. While computing the exact bound takes an expo-

nential time in the number of sources, we also developed

a tractable approximation of the bound and demonstrated

its accuracy. A practical maximum-likelihood estimator was

then developed . It is evaluated both in simulation and using

empirical data. Results demonstrate improved performance

compared with state of the art fact-finders.
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APPENDIX

To solve the expectation maximization problem, we first

derive the expectation step:

Q(θ|θ(t)) =
∑

C∈{0,1}m

P (C|SC; θ(t−1)) ln
(
P (SC|C; θ)P (C; θ)

)
(15)

Since C and S can be separated into {C1, · · · , Cm} and

{S1, · · · , Sn} independently, we can converted equ. (15) into:

Q(θ|θ(t))=
m∑
j=1

P (Cj |SCj ; θ
(t))

∑
Cj∈{0,1}

ln(P (Cj ; θ))

( n∑
i=1

ln(P (SiCj |Cj ; θ,Dij)
)

(16)

where P (SiCj |Cj ; θ,Dij) is given by Table II, and

P (Cj = 1|SCj ; θ
(t)) =

P (SCj |Cj = 1; θ(t))P (Cj = 1; θ(t))∑
Cj∈{0,1} P (SCj |Cj ; θ(t))P (Cj ; θ(t))

(17)

Then we need to go through the maximisation step:

θ(t+1) = argmax
θ

Q(θ|θ(t)) (18)

To solve equ (18) analytically, the general solution is taking

gradient of all parameter θ with Equ. (15) and making them

equal to 0.

∂Q(θ|θ(t))
∂ai

=

∑
Cj∈SiC

D0
1

Zj

ai
−

∑
Cj∈SiC

D0
0

Zj

1− ai
(19)

∂Q(θ|θ(t))
∂fi

=

∑
Cj∈SiC

D1
1

Zj

fi
−

∑
Cj∈SiC

D1
0

Zj

1− fi
(20)

∂Q(θ|θ(t))
∂bi

=

∑
Cj∈SiC

D0
1

Yj

bi
−

∑
Cj∈SiC

D0
0

Yj

1− bi
(21)

∂Q(θ|θ(t))
gi

=

∑
Cj∈SiC

D1
1

Yj

gi
−

∑
Cj∈SiC

D1
0

Yj

1− gi
(22)

∂Q(θ|θ(t))
∂z

=

∑m
j=1 Zj

z
−

∑m
j=1 Yj

1− z
(23)

where Zj = P (Cj = 1|SCj ; θ
(t)) and Yj = P (Cj =

0|SCj ; θ
(t)).

We let gradient, Equ (19) - (23), of each parameter to be 0.

Then we are able to obtain the answer shown as follow,

a
(t+1)
i =

∑
Cj∈SiC

D0
1

P (Cj = 1|SiCj ; θ
(t))∑

Cj∈SiC
D0
1

⋃
SiC

D0
0

P (Cj = 1|SiCj ; θ(t))
(24)

f
(t+1)
i =

∑
Cj∈SiC

D1
1

P (Cj = 1|SiCj ; θ
(t))∑

Cj∈SiC
D1
1

⋃
SiC

D1
0

P (Cj = 1|SiCj ; θ(t))
(25)

b
(t+1)
i =

∑
Cj∈SiC

D0
1

P (Cj = 0|SiCj ; θ
(t))∑

Cj∈SiC
D0
1

⋃
SiC

D0
0

P (Cj = 0|SiCj ; θ(t))
(26)

g
(t+1)
i =

∑
Cj∈SiC

D1
1

P (Cj = 0|SiCj ; θ
(t))∑

Cj∈SiC
D1
1

⋃
SiC

D1
0

P (Cj = 0|SiCj ; θ(t))
(27)

z(t+1)=

∑m
j=1 P (Cj = 0|SiCj ; θ

(t))

m
(28)

Given the above description, we can estimate the assertion

and source reliabilities jointly with Equ (17) and (24) - (28)

iteratively until they converge.
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