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In this article, we describe a general methodology for enhancing sensing accuracy in cyber-physical systems
that involve structured human interactions in noisy physical environment. We define structured human
interactions as domain-specific workflow. A novel workflow-aware sensing model is proposed to jointly correct
unreliable sensor data and keep track of states in a workflow. We also propose a new inference algorithm to
handle cases with partially known states and objects as supervision. Our model is evaluated with extensive
simulations. As a concrete application, we develop a novel log service called Emergency Transcriber, which
can automatically document operational procedures followed by teams of first responders in emergency
response scenarios. Evaluation shows that our system has significant improvement over commercial off-the-
shelf (COTS) sensors and keeps track of workflow states with high accuracy in noisy physical environment.
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1. INTRODUCTION

Tasks executed by teams of first responders are often critical and risky, where failures
may cause serious damage or even loss of life. Examples include medical emergency
[Link et al. 2015], firefighting [Kastner et al. 2009], and disaster response [Avanes and
Freytag 2008]. Since it is often stressful to handle these tasks, human teams must
follow well-established workflows to reduce risk and improve efficiency.
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In these critical tasks, a log service is often required to keep track of the operations
that human teams perform as well as record the parameters and outputs at each stage.
It is useful for (i) early detection of procedure mistakes, (ii) log of events for future
reference, and (iii) better collaboration among team members, providing a consistent
joint understanding of execution steps in the procedure workflow.

Traditionally, the procedure steps are manually logged by human, which is labor
intensive. Nowadays, there is an increasing popularity in deploying cyber-physical
systems with a set of sensors to log and monitor states and parameters [Talcott 2008;
Lee and Sokolsky 2010]. However, since critical tasks are often performed in noisy or
extreme physical environment, commercial off-the-shelf (COTS) sensors may have low
accuracy when directly deployed, especially for those with complex outputs, such as
voice recognition and computer vision. On the other hand, it can be expensive to get
custom-made sensors adaptive to the new environment. In this article, we propose a
general approach, by treating the COTS sensors as a blackbox, and correct the sensor
outputs in a postprocessing manner by considering physical constraints and situation
awareness according to the workflow followed by human teams. Besides, our approach
can infer the states of the workflow that human teams have operated, offering a high
level states tracking service.

In this article, we assume that human interactions with cyber-physical systems
evolve according to a predefined workflow. The workflow can be obtained, for example,
from an operations manual. Each state of the workflow is associated with actions that
team members are allowed to perform. These actions have sensory signatures. Hence,
a different expectation for sensor values exist in different states. It therefore becomes
possible to use the sequence of received sensor measurements to jointly estimate both
(i) the state transitions experienced by individuals following the workflow, and (ii) the
most likely measured values given the obtained noisy measurements and the expected
state-specific ground-truth value distribution, that is, correcting the unreliable sensor
outputs. In this article, we focus on discrete sensor outputs. We show how this prob-
lem can be formulated with a novel workflow-aware sensing model and evaluate its
effectiveness on improving the accuracy of raw sensor measurements.

We first evaluate the performance of workflow-aware sensing model through simu-
lations, where abstract workflow states are associated with sets of possible measured
values in the physical world, and a noisy sensor with unreliable outputs is simulated to
emit values. As a concrete application of our model, we develop a novel log service for
teams of first responders, called emergency transcriber. It constitutes an audio interface
for reliably recording and disseminating situation progress as extracted from the team’s
audio communications. As noted above, such teams typically follow predefined collabo-
rative workflow as dictated by the relevant engagement protocols, specifying their roles
and communications. Given the critical nature of the situation, the vocabulary used is
often constrained and dependent on the current stage of the workflow being executed.
The emergency transcriber documents the sequence of procedure steps executed by the
team as well as their parameters, if any (e.g., dosage of medications administered). As a
case study, we conduct a physical experiment involving a medical scenario based on the
adult cardiac arrest workflow. Our evaluation demonstrates that we are able to achieve
80% accuracy in workflow state identification and when relying on a COTS sensor of
only 40% accuracy in noisy voice recognition. When the accuracy of the underlying
acoustic sensor grows to 77%, our state estimation is close to 100% correct.

The main contributions of this article are listed as follows:

—We exploit structured human interactions (i.e., workflows) to enhance sensing ac-
curacy and keep track of states in cyber-physical systems. A novel workflow-based
sensing model is proposed to solve the problem.
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Fig. 1. An example workflow.

—We extend the basic model with a new inference algorithm to handle cases with
partially known states and/or objects as supervision.

—Our model is evaluated with extensive simulations, which shows its effectiveness in
different conditions based on 100,000 randomly generated workflows.

—We have developed a novel log service for human teams of first responders to keep
track of executed workflow states and recognize communication keywords.

The rest of the article is organized as follows. We formulate our problem in Section 2
and introduce our workflow-aware sensing model in Section 3. Some practical issues of
applying this model are presented in Section 4. Our model is evaluated with extensive
simulations in Section 5. A case study evaluation with a novel application of emergency
transcriber in medical environment is presented in Section 6. Related work is covered
in Section 7. The article concludes in Section 8.

2. PROBLEM FORMULATION

Figure 1 shows a simple abstract workflow topology of an emergency procedure. The
nodes represent states (or stages) of the procedure in the workflow. We assume state
transitions take place as a Markov chain. The number on the edge indicates the prob-
ability of state transitions. Each state is associated with a probability of emitting
certain ground-truth data objects. For example, in a medical workflow of inspecting a
person’s airway, physicians may utter words such as “air,” “breath,” “lung,” “airway,”
“obstructed,” “clear,” and so on. These words correspond to the ground truth objects
emitted in the aforementioned state. They are recorded and recognized by a voice
recognition sensor in cyber-physical systems. However, since the physical environment
is noisy, the performance of the COTS sensor may not be reliable. For example, it may
recognize “lung” as “long” by mistake. Our goal is to correct the sensor data as well
as infer the sequence of states (i.e., steps that human teams have executed) given the
noisy values emitted from the COTS sensors. In this article, we focus on discrete sensor
values and cast the challenge as a classification problem.

Formally, we define the workflow as a directed graph with a set of states S that
follows a states transition probability matrix T , where Ti, j indicates the probability of
state Si to state Sj . Each state is associated with a distribution of emitted objects O.
The objects emission distribution for each state is denoted as E, where Ei, j indicates
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Table I. Summary of Notations

S States space
O Objects space
I Initial states probability distribution
T States transition probability matrix
E Objects emission probabilities at each state
C Sensor objects confusion probability matrix
x Variables of ground-truth objects
y Variables of raw sensor outputs
z Variables of states sequence

the probability of object Oj emitted from state Si. We also define a confusion matrix C,
where Ci, j is the probability that object Oi is recognized as Oj by the COTS sensor.

In practice, based on different conditions, not all states are covered in one execution
of critical tasks. We define a path as a sequence of states that are actually executed
by human teams, denoted as z = (z1, z2, . . . , zN) for the time t = 1, . . . , N, where each
zi is chosen from the state space S according to state transition probability matrix T .
We use I to denote the initial states probability distribution at time t = 1. An object is
emitted from each state as ground-truth value, that is, x = (x1, x2, . . . , xN), where each
xi is chosen from the object space O following the objects emission probability matrix
E. A COTS sensor will recognize the objects as outputs y = (y1, y2, . . . , yN), where each
yi is also chosen from the object space O, by following the confusion matrix C. Table I
shows a summary of notations.

The parameters of the model can be obtained from domain knowledge or learned
from historical data. For example, the state transition probability can be calculated as

Tij = count(zk = Si ∧ zk+1 = Sj)
count(zk = Si)

.

Intuitively, it means the probability of state Si transiting to state Sj equals the number
of times that state Sj is the next state of state Si divided by number of times that state
Si appears. Similarly, object omission probability can be calculated as

Eim = count(zk = Si ∧ xk = Om)
count(zk = Si)

.

Intuitively, it means the probability of object Om emitted from state Si equals the
number of times that object Om emitted from state Si divided by number of times that
state Si appears. Sensor confusion probability may be difficult to learn from the sparse
raw data, which can be approximated with sensor accuracy or objects similarities.

As noted above, only raw sensor outputs are observed while sequence of states and
actual objects are hidden. Our goal is to find the sequence of states z and the sequence
of objects x that maximize the posterior probability p(zx|y), based on inaccurate mea-
surement of y. Mathematically, we write this as follows:

zx = arg max
zx

p(zx|y).

3. WORKFLOW-AWARE SENSING MODEL

Our workflow-aware sensing model is motivated by Hidden Markov Model (HMM)
[Rabiner 1989], which is widely used in sequence labeling tasks. In HMM, the states
are hidden and the objects emitted at each state are observed. The goal of HMM is
to infer the sequence of states based on sequence of objects observed. Compared with
HMM, our task is more complicated. We only observe the sensor outputs, while the
actual emitted objects and states are hidden, and our goal is to infer both of them. The
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Fig. 2. Workflow-aware sensing model.

general idea is to exploit workflow information (state transition and object emission
matrix) and sensor information (confusion matrix) as constraints to achieve optimal
solution.

Our workflow-aware sensing model is shown in Figure 2. The states sequence z =
{z1, z2, . . . , zn} is generated by following initial states probability distribution I and
states transition probability matrix T , that is,

p(z1 = Si) = Ii, i = 1...|S|,

p(zk = Sj |zk−1 = Si) = Ti, j, i, j = 1...|S|, k = 2...N.

At each state, an object is emitted according to objects emission probability matrix E,
that is,

p(xk = Om|zk = Si) = Ei,m, i = 1...|S|, m = 1...|O|, k = 1...N.

For each object, the sensor will generate a corresponding output according to the con-
fusion matrix C, that is,

p(yk = On|xk = Om) = Cm,n, m, n = 1...|O|, k = 1...N.

According to Bayes’s theorem and conditional independence in our model, we would
like to infer the most likely states and objects sequence zx based on the observed objects
sequence y, that is,

zx = arg max
zx

p(zx|y)

= arg max
zx

p(zxy)

= arg max
zx

[
p(z1)

N∏
k=2

p(zk|zk−1)
N∏

k=1

p(xk|zk)
N∏

k=1

p(yk|xk)

]
.

Solving the above equation by exhaustively listing all possible states and objects
sequence will require O((|S| × |O|)N) operations. Instead, we propose a dynamic pro-
gramming algorithm as shown in Algorithm 1. The algorithm takes the observed objects
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sequence y, states space S, objects space O, initial states distribution I, states tran-
sition matrix T , objects emission matrix E, and sensor confusion matrix C as input.
The output of the algorithm is the optimal sequence of states z and objects x. We use
MPk,i to denote the maximum joint probability of reaching state i at sequence k. MSk,i
denotes the previous state that transits to state i at sequence k to achieve MPk,i. MOk,i
denotes the object emitted in state i at sequence k to achieve MPk,i.

ALGORITHM 1: Workflow-aware Sensing Model Inference
WSM-INFER(S, O, I, T , E, C, y) return (z, x)
1: for i ← 1...|S| do
2: MP1,i ← Ii ∗ maxm=1...|O|{Ei,m ∗ Cm,y1}
3: MS1,i ← 0
4: MO1,i ← m, which achieves MP1,i .
5: end for
6: for k ← 2...N do
7: for i ← 1...|S| do
8: MPk,i ← max j=1...|S|,m=1...|O|{MPk−1, j ∗ Tj,i ∗ Ei,m ∗ Cm,yk}
9: MSk,i ← j, which achieves MPk,i
10: MOk,i ← m, which achieves MPk,i
11: end for
12: end for
13: zN ← arg maxi MPN,i
14: xN ← MON,zN
15: for k ← N − 1...1 do
16: zk ← MSk+1,zk+1
17: xk ← MOk,zk
18: end for

First, we initialize MP1,i, MS1,i, MO1,i in Lines 1–5. MP1,i equals with initial prob-
ability Ii times the maximum value of Ei,m ∗ Cm,y1 by comparing all possible objects
m = 1...|O|. MO1,i equals with the object m, which achieves MP1,i. Since it is the first
state, we can simply set MS1,i to be 0.

Lines 6–10 show the recursion of our algorithm, with the core formula in line 8. To
calculate MPk,i, we need to consider all previous states j = 1...|S| that can transit to
state i at sequence k as well as all possible objects m = 1...|O| emitted at state i and
use the maximum value of MPk−1, j ∗ Tj,i ∗ Ei,m ∗ Cm,yk as MPk,i.

Last, from lines 13–18, we show how zx can be derived with the auxiliary variables
MP, MS, MO calculated above. zx is derived in reverse order from N to 1. We calculate
the last state first. MPN,i stores the maximum joint probability of reaching state i at
sequence N. To find most likely zN, we only need to compare all MPN,i, i = 1...|S|
and assign zN to the i, which achieves the maximum value. With last state zN, last
actual object xN is MON,zN . Next, we can derive zk and xk in reverse order, where zk is
MSk+1,zk+1 , as MSk+1,zk+1 stores the the previous state zk that transits to state zk+1 at
sequence k + 1 to achieve the maximum probability MPk+1,zk+1 . xk is just MOk,zk.

The complexity of Algorithm 1 is O(N × |S|2 × |O|), where N denotes number of
sequence, |S| denotes number of states, and |O| denotes number of objects. It is signif-
icantly lower than exhaustive search, which takes O((|S| × |O|)N) time.

4. PRACTICAL ISSUES

In this section, we discuss some practical issues to the workflow-aware sensing model
when applying it to real application scenarios.
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4.1. Partially Known States and Objects as Supervision

In practice, people may have already known or recorded some states and objects, such
as initial state/object, last state/object, or any states/objects along the path, providing
a supervision to our system, which can be utilized to guide the states and objects
inference. We modify Algorithm 1 to adapt to the changes, as shown in Algorithm 2.
We use KS to denote the input of known states, and KO to denote the input of known
objects. KSk = i means state is Si at sequence k, while KSk = 0 means state is unknown
at sequence k. Similarly, KOk = m means object is Om at sequence k, while KOk = 0
means object is unknown at sequence k.

ALGORITHM 2: Workflow-aware Sensing Model Inference with Known States and Objects
WSM-INFER(S, O, I, T , E, C, y, KS, KO) return (z, x)
1: if KS1 > 0 then
2: for i ← 1...|S| do
3: Ii ← 0
4: end for
5: IKS1 ← 1
6: end if
7: for i ← 1...|S| do
8: if KO1 > 0 then
9: MP1,i ← Ii ∗ Ei,KO1 ∗ CKO1,y1
10: MO1,i ← KO1
11: else
12: MP1,i ← Ii ∗ maxm=1...|O|{Ei,m ∗ Cm,y1 }
13: MO1,i ← m, which achieves MP1,i .
14: end if
15: MS1,i ← 0
16: end for
17: for k ← 2...N do
18: for i ← 1...|S| do
19: if KSk > 0 and KSk �= i then
20: MPk,i ← 0
21: else if KOk > 0 then
22: MPk,i ← max j=1...|S|{MPk−1, j ∗ Tj,i ∗ Ei,KOk ∗ CKOk,yk}
23: MSk,i ← j, which achieves MPk,i
24: MOk,i ← KOk
25: else
26: MPk,i ← max j=1...|S|,m=1...|O|{MPk−1, j ∗ Tj,i ∗ Ei,m ∗ Cm,yk}
27: MSk,i ← j, which achieves MPk,i
28: MOk,i ← m, which achieves MPk,i
29: end if
30: end for
31: end for
32: zN ← arg maxi MPN,i
33: xN ← MON,zN
34: for k ← N − 1...1 do
35: zk ← MSk+1,zk+1
36: xk ← MOk,zk
37: end for

If the first state is known (KS1), the initial states probabilities can be updated
for this particular inference by setting IKS1 to be 1 and others to be 0, as shown
in lines 1–6. If the first object is known (KO1), we can simply ignore other objects,
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that is MO1,i = KO1 and MP1,i = Ii ∗ Ei,KO1 ∗ CKO1,y1 , as shown in lines 8–10. If a
state at sequence k is known (KSk), the probability of reaching any state i except
KSk at sequence k should be 0, that is, MPk,i ← 0, shown in lines 19 and 20. If an
object at sequence k is known (KOk), then we can simply ignore other objects, that
is, MOk,i = KOk and MPk,i ← max j=1...|S|{MPk−1, j ∗ Tj,i ∗ Ei,KOk ∗ CKOk,yk}, as shown in
lines 21–24. The other parts of the algorithm remains the same. The time complexity
of Algorithm 2 is O(N × |S|2 × |O|).

4.2. Smoothing Model Parameters

Knowledge of workflow only helps if human teams follow it. However, in real applica-
tion, there may be some cases where human teams perform slightly different from the
original workflow, such as skipping a step. Besides, the COTS sensor may miss some
measurements as well. Take Figure 1 as an example, in which state 1 transits to state
3 with probability 2/3, but state 1 cannot transit to state 4 directly. Suppose we know
that the previous state is state 1, and object 1 is emitted and recognized. Suppose the
next state is state 3, and an object is emitted (e.g., object 5) but missed by the sensor.
The workflow then reaches state 4, where one of the objects, say object 6, is emitted
and classified correctly by the sensor. Therefore, the overall output from sensor is: ob-
ject 1 followed by object 6; implying that state 1 transits to state 4 directly, which is
impossible according to the predefined workflow. If we use the basic algorithm alone, it
will consider the measurement of object 6 to be an error and try to match it to objects
in state 3 according to the confusion matrix, thereby giving an erroneous classification
result.

Sometimes we do not have sufficient data to observe the workflow deviation and
missing measurements. To make our system more robust, we adopt Laplace smoothing
to the parameters of the model such as state transition matrix to avoid 0 probability.
The probability of state Si transiting to state Sj can be calculated as

Tij = count(zk = Si ∧ zk+1 = Sj) + 1
count(zk = Si) + |S| .

The left part count(zk=Si∧zk+1=Sj )
count(zk=Si )

is the empirical estimate from historical data, which
is the number of times that state Sj is the next state of state Si divided by number
of times that state Si appears. The right part 1

|S| is the uniform probability, which is
the smoothing factor considered as regularization to avoid overfitting. The resulting
estimate will be between the empirical estimate and uniform probability.

For example, a workflow has three states, S1, S2, S3, then |S| = 3. For simplicity, here
we use counti to denote count(zk = Si) and countij to denote count(zk = Si ∧ zk+1 = Sj). If
there are no historical data available, that is, count1 = count11 = count12 = count13 = 0,
then T11 = T12 = T13 = 1

3 . The uniform distribution makes sense, since we do not have
any prior knowledge. If we have small historical data, such as count1 = 3, count11 =
1, count12 = 2, count13 = 0, then the state transition parameters after smoothing would
be T11 = 1

3 , T12 = 1
2 , T13 = 1

6 . In this case, the Laplace smoothing factor takes the
effects of regularization to avoid T13 to be 0. The intuition would be that the state
transition from S1 to S3 may happen, but we just have too little data to observe it. On
the other hand, if we have a larger amount of data, such as count1 = 997, count11 =
349, count12 = 648, count13 = 0, then T11 = 0.35, T12 = 0.649, T13 = 0.001. The value of
the parameters would be closer to the empirical estimate from historical data and the
smoothing factor takes less effect.
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Fig. 3. Performance as sensor accuracy varies.

5. SIMULATION

In this section, we study the performance of our workflow-aware sensing model (WSM)
through extensive simulations. The simulator is implemented in C++. Below, we
present our simulation settings and results.

5.1. Methodology

The workflow is abstracted as a directed graph, where each node represents a state and
a directed edge means a possible transition between states. Each state is associated
with a set of objects. The parameters of state transition matrix and object emission
matrix are randomly generated. For each workflow, a ground truth path is randomly
generated based on state transition matrix, and ground truth object for each state is
randomly generated according to the object emission matrix.

The performance of the raw sensor is simulated by setting the values in the confusion
matrix parameters. We use sensor accuracy to capture the probability that a sensor
correctly classifies a given object. For simplicity in our simulation, we assume sensor
accuracy is the same for all objects, that is, the diagonal of the confusion matrix is
identical and equals with sensor accuracy. For a given object, the simulated sensor will
generate its classification result based on the confusion matrix. Our model will take
the sequence of sensor generated objects as inputs to infer the actual sequence of states
and objects. The performance of our model is evaluated by calculating the accuracy of
inferred states and objects.

The default parameters are set as follows. The workflow has 30 nodes (states) and 90
edges. Number of objects per node is 3. The ground truth path is 8 nodes length. Sensor
accuracy is 0.6. We assume no states or objects along the path are known beforehand.

We use raw sensor outputs (denoted as SENSOR-OBJECT) as a baseline to evaluate
the objects inference by our model (denoted as WSM-OBJECT). The baseline for state
sequence inference is calculated as most likely states given raw sensor outputs based
on the object emission matrix without considering state transition information of the
workflow, that is, z = arg maxz P(y|z). The baseline is denoted as BASE-STATE. State
inference by our model is denoted as WSM-STATE. Each simulation runs for 100,000
times (i.e., 100,000 random workflows) and each result is averaged over the 100,000
executions.

5.2. Evaluation Results

First, we study how the accuracy of raw sensor affects system performance. The results
are shown in Figure 3. More accurate sensor leads to better system performance, as
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Fig. 4. Performance as average degree varies.

expected. Our workflow-aware sensing model consistently performs better than the
baselines in both state and object estimation. Note that our model does not improve
too much when the sensor has either very low (e.g., 10%) or very high (more than
90%) accuracy. However, since in reality, perfect sensors rarely exist and people would
normally not utilize completely unreliable sensors when building systems, our model
will benefit the existing sensor systems in practice. Another observation is that our
model has more improvement on state estimation than object emission. The reason is
that a state can emit multiple objects (three in our default setting), and thus objects
identification is more confusing than states.

Next, we study the system performance when the average degree of the directed
graph varies. Average degree, defined as number of edges divided by number of nodes,
indicates the connectivity of the graph. According to our study, most practical work-
flows have a small number of degrees, because workflows with too many branches
would be very difficult for human teams of first responders to follow in the high pres-
sure, critical, and risky environment, such as medical emergency [Link et al. 2015],
firefighting [Kastner et al. 2009], and disaster response [Avanes and Freytag 2008]. In
our experiment, we vary the average degree of workflows from 1 to 8. From Figure 4, we
observe that the accuracy of our workflow-aware sensing model decreases as average
degree of the workflow increases. The reason is that low average degree indicates more
constraints on path selection, which benefits our model on state and object estimation.
On the other hand, since raw sensor and state estimation baseline do not utilize the
workflow information, they remain unaffected by the average degree of the graph.

In Figure 5, we study the system performance when the path length (number of
states actually executed) varies. Our workflow-aware sensing model performs better,
benefiting from more context and constraints in workflow as path length increases.
Since raw sensor and state estimation baseline do not utilize workflow information,
the accuracy remains the same as path length varies.

Next, we study the system performance when the number of objects per node varies.
The results are shown in Figure 6. We observe that state estimation of our model
remains the same, which is not related with number of objects per node, while object
estimation accuracy decreases when number of objects per node increases. The reason
is that with more objects per state, the system is more confused to identify the correct
object, but it will not affect the state estimation on the whole.

Next, we study how variations of state transition and object emission distributions
in a workflow affect the performance of the system. To have a quantitative analysis,
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Fig. 5. Performance as path length varies.

Fig. 6. Performance as number of objects per node varies.

we assume they follow an exponential distribution, that is,

p(x) = norm
(

1
λx

)
= 1

λx
∑N

i=1
1
λi

,

for x = 1, 2, . . . , N, where λ is the parameter to control the variance of distributions.
In state transition distribution, x is the index of possible following states given a state.
In object emission distribution, x is the index of possible objects emitted at a state.
For example, suppose in a workflow, state 1 is likely to transit to three states, that is,
state 2, 3, and 4. If λ = 2, P(x = 1) = norm( 1

2 ) = 4
7 , P(x = 2) = norm( 1

22 ) = 2
7 , P(x =

3) = norm( 1
23 ) = 1

7 , that is, the probability of state 1 transiting to state 2 is 2 times of
state 1 transiting to state 3, and 4 times of state 1 transiting to state 4. Intuitively, a
greater λ leads to a greater variance of distributions. In our experiment, we vary λ from
1 to 5. λ = 1 indicates a uniform distribution, while λ = 5 indicates a highly skewed
distribution.

Figure 7 shows the system performance when state transition distribution varies.
With greater variance (i.e., greater λ), our model achieves better performance on state
estimation, since a state tends to be more biased toward transiting to next state. Object
estimation also improves because of a better state estimation.
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Fig. 7. Performance as state transition distribution varies.

Fig. 8. Performance as object emission distribution varies.

Figure 8 shows the system performance when object emission distribution varies.
With greater variance (i.e., greater λ), our model achieves better performance on object
estimation, since a state tends to be more biased toward emitting an object. However,
since improvement on object estimation is mainly due to biased object emission within
a state instead of cross states, state estimation does not improve too much.

Figure 9 shows the system performance when both state transition and object emis-
sion vary. With greater variance, our model has significant improvement on both state
and object estimation. We can conclude that if a workflow has larger variances on state
transition distribution and object emission distribution, our system can achieve better
performance.

Finally, we evaluate our inference algorithm with partially known states and objects
as supervision. To have a quantitative analysis, we use a parameter to control the
probability that whether the state/object is known at time t = 1...N. In our experiments,
the probability varies from 0 to 0.5, where 0 means no states or objects are known
beforehand.

Figure 10 shows the performance as probability of known states varies. With more
percentage of states known, our model achieves better performance on state estimation,
so does the baseline BASE-STATE. Still, the WSM model consistently beats BASE-
STATE. Objects estimation of WSM also improves because of better estimation of
states.
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Fig. 9. Performance as both state transition and object emission distributions vary.

Fig. 10. Performance as probability of known states varies.

Fig. 11. Performance as probability of known objects varies.

Figure 11 shows the performance as probability of known objects varies. With more
percentage of objects known, our model has better performance on objects estimation,
so does the baseline SENSOR-OBJECT, which takes account of the known objects as
well. The WSM model still consistently performs better than SENSOR-OBJECT. States
estimation of WSM also improves because of more accurate estimation of objects.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 3, Article 16, Publication date: July 2017.



16:14 H. Wang et al.

Fig. 12. Performance as probability of known states and objects varies.

Figure 12 shows the performance as probability of known states and objects varies.
With higher known probability, our model has significant improvement on both state
and object estimation. We can conclude that with more states and/or objects known as
supervision, our model can achieve better performance.

6. CASE STUDY EVALUATION

In this section, we apply our workflow-aware sensing model to develop a log service for
human teams of first responders, called emergency transcriber. It constitutes an audio
interface for reliably recording and disseminating situation progress as extracted from
the teams’ audio communications.

6.1. Experimental Settings

Workflow Information: We choose adult cardiac arrest [Link et al. 2015] as our
case of study. It strictly follows the emergency reaction algorithm shown in the
Figure 13, which includes a set of stages based on different conditions of the patients.
In practical settings, when a patient is subject to cardiac arrest, multiple physicians
and nurses operate around the patient at the same time, and medical orders are vocally
communicated. The entire environment is noisy and chaotic. Commercial off-the-shelf
speech recognition sensors often perform poorly in such environment.

System implementation: Our system consists of two major components. The first
component is an existing speech recognizer sensor (ASR). Here, we use Google Speech
API [Google 2016]. It acts as an audio interface for carrying out the initial recognition
of medical team’s audio communications, as indicated by R1 in Figure 14. Since the
ASR does not have workflow information, it tries to use a general language model and
an acoustic model to match the signal it hears, which leads to errors in recognition in
noisy environments. R1 is then fed to our emergency transcriber, which consists of two
modules; a keyword matching module and a word recovery and state tracking module.

The keyword matching module first applies keyword matching to match ASR output
to the most similarly sounding keywords in our workflow. This is equivalent to finding
the keyword that has the maximum number of overlapping phoneme characters with
the sentence transcribed by the ASR. This is a convolution operation. Since both R1
and the keywords are in the form of English text, we convert R1 and all the keywords
into their phoneme representations using a text synthesis software [eSpeak 2016] and
then calculate the convolution using Algorithm 3. The time complexity is O(length(x)×
length(y)).

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 3, Article 16, Publication date: July 2017.



On Exploiting Structured Human Interactions to Enhance Sensing Accuracy 16:15

Fig. 13. Adult cardiac arrest workflow for resuscitation.

Next, R2 is fed to the word recovery and state tracking module, where state-aware
correction takes place, as described in Section 3. As an approximation, instead of
training the ASR and getting it the classification confusion matrix (which is a very
lengthy process), we apply the following equation to calculate each element in the
confusion matrix:

sim(yi|xj) =
(

1 − LDi, j

max(length(yi), length(xj)))

)
conv(yi, xj),

where sim(yi|xj) represents the similarity between the observation word yj and the true
keyword xi. Note that LDi, j represents the Levensthein distance [Navarro 2001] be-
tween the phoneme representation of yi and xj . length(yi) and length(xj) represent their

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 3, Article 16, Publication date: July 2017.



16:16 H. Wang et al.

Fig. 14. Architecture of emergency transcriber.

ALGORITHM 3: Find Maximum Number of Overlapping Character between Sentence x and
Keyword y
1: maxlen ← 0
2: for k = 0; k < length(x); k ← k + 1 do
3: len ← 0
4: i ← k
5: j ← 0
6: while i < length(x) and j < length(y) do
7: if x[i] == y[ j] then
8: len ← len + 1
9: end if
10: i ← i + 1
11: j ← j + 1
12: end while
13: if len > maxlen then
14: maxlen ← len
15: end if
16: end for

phoneme length, respectively. conv(yi, xj) represents the convolution of their phoneme
representations, which captures sub-phoneme overlapping between yi and xj . It is cal-
culated according to Algorithm 3. We then aim to recover the actual words spoken and
reveal the actual states traversed.
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Fig. 15. User interface of emergency transcriber.

6.2. Experimental Results

We invited seven people (four are non-native English speakers) to record the script
of a medical episode involving simulated emergency treatment of adult cardiac arrest
that follows the workflow presented in Figure 13. This script was designed by medical
personnel from Carl Foundation Hospital in Urbana, Illinois, as part of a demonstration
scenario of novel medical technologies. The script contained 21 sentences spoken during
the simulated emergency. The script was re-enacted and the resulting audio was fed to
the first component of our system.

A screenshot of our user interface is shown in Figure 15. Notice that the leftmost
text area shows the initial results R1 coming out of ASR. The dynamic graph in the
middle tracks and visualizes the state-transition sequence in real time, with recovered
keywords shown on the right side. The red circle indicates the current state and the blue
circles indicate states that have been traversed in the workflow. We then added noise
of different amplitudes to the original audio file and sent it through the same pipeline.
The result with average accuracy and standard deviation is shown in Figure 16.

As can be seen from the result, when noise-free, the accuracy of the existing speech
recognition sensor is 76.69%. Keyword matching increases this accuracy by comparing
the output to the entire workflow vocabulary at any stage of the workflow. Moreover,
with the workflow topology information accounted for, the word recognition accuracy
increases to 95.24%, with 100% state recognition accuracy, which bolsters the claim
that workflow knowledge can enhance sensing accuracy. When noise (Gaussian white
noise) is added to the original voice signals with a SNR (Signal-to-Noise Ratio) of 40dB,
the accuracy of the word recognition of R1, R2, and R3 decreases, but similar trends are
observed. The situation is similar when the signal to noise ratio goes up to 33dB. These
results show that the emergency transcriber is a useful aid in recording emergency
procedures in a range of noisy environments.

7. RELATED WORK

Classification techniques on sensor data have been widely studied. For example, Cheng
et al. [2010] studies data classification problem in wireless sensor networks. It pro-
posed a classification approach in combining local classifier to form a global classifier
to achieve high accuracy. Su et al. [2011, 2012] proposed hierarchical aggregate classi-
fication methods to achieve high accuracy in lack of energy and label information. Our
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Fig. 16. Recognition accuracy on different noise levels.

work differs from the exiting work in the sense that it takes the workflow information
into consideration to enhance sensing accuracy with unreliable sensors and environ-
mental noise. Besides it also keeps track of the states that have been traversed in the
workflow.

Our workflow-aware sensing model is inspired by the Hidden Markov Model (HMM)
[Rabiner 1989], which is widely used in the area of speech recognition [Gales and Young
2008; Juang and Rabiner 1991; Young 2008]. However, traditional HMM models the
state transition between different phonemes as Hidden Markov Process. Our model is
different, because the observations acquired by the sensing system are not accurate. To
take that into consideration, we combine the confusion matrix of the sensor with the
HMM layer and find the optimal sensing object as well as the hidden states as a whole.
For the case study specifically, the hidden states refer to the stages the physicians have
been working on.

We apply our scheme in the area of speech recognition [Cooke et al. 2001;
Lippmann 1997] under medical environment. There are several commercialized speech
recognition software available for clinical documentation, such as Nuance [2016] and
EvolveMed [2016]. Our approach is complementary to the above-mentioned automatic
speech recognizers (ASRs), because it considers external workflow constraints when
doing speech recognition, and the workflow information is free from sensor errors and
environment noise. It can act as a light-weight wrapper outside the ASRs for any spe-
cific use case; thus, our scheme has the advantage of good compatibility and portability.

8. CONCLUSION

In this article, we describe a general methodology for enhancing sensing accuracy
in cyber-physical systems that involve structured human interactions with a noisy
physical environment. We propose a workflow-aware sensing model, which can jointly
infer the optimal sensing measurements and state transition sequence by exploiting
human workflow information. Simulation results show that our model outperforms the
accuracy of commercial off-the-shelf sensors. We instantiate our idea by conducting a
case study in medical emergency environment and demonstrate that our model can
improve speech recognition and state tracking.
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