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Abstract Correctness guarantees are at the core of cyber-physical computing
research. While prior research addressed correctness of timing behavior and correct-
ness of program logic, this paper tackles the emerging topic of assessing correctness
of input data. This topic is motivated by the desire to crowd-source sensing tasks,
an act we henceforth call social sensing, in applications with humans in the loop. A
key challenge in social sensing is that the reliability of sources is generally unknown,
which makes it difficult to assess the correctness of collected observations. To address
this challenge, we adopt a cyber-physical approach, where assessment of correctness
of individual observations is aided by knowledge of physical constraints on sources
and observed variables to compensate for the lack of information on source reliabil-
ity. We cast the problem as one of maximum likelihood estimation. The goal is to
jointly estimate both (i) the latent physical state of the observed environment, and (ii)
the inferred reliability of individual sources such that they are maximally consistent
with both provenance information (who reported what) and physical constraints. We
also derive new analytic bounds that allow the social sensing applications to accu-
rately quantify the estimation error of source reliability for given confidence levels.
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We evaluate the framework through both a real-world social sensing application and
extensive simulation studies. The results demonstrate significant performance gains
in estimation accuracy of the new algorithms and verify the correctness of the analytic
bounds we derived.

Keywords Social sensing · Cyber-physical computing · Maximum likelihood
estimation · Physical constraint · Analytic bounds

1 Introduction

Attainment of correctness guarantees lies at the core of cyber-physical computing
research. Prior research focused on guarantees of timing correctness and guarantees
of functional correctness. In contrast, this paper investigates guarantees on data cor-
rectness.

The paper is motivated by the proliferation of cyber-physical applications with
humans in the loop. For example, humans are the drivers in transportation systems,
the consumers in smart grid applications, the first responders in disaster response
systems, and the decision makers for sustainable ecosystems. As such, they can play
a pivotal role in monitoring and reporting system state; an act we call social sensing.

We refer by social sensing applications to a broad set of applications, where sources,
such as humans and digital devices they operate, collect information about the physical
world for purposes ofmutual interest (Wang 2015). The proliferation ofmobile devices
with sensors, such as smartphones, has significantly increased the popularity of social
sensing. Recent applications include optimization of daily commute (Zhou et al. 2012),
reduction of carbon footprint (Koukoumidis et al. 2011), disaster response (Huang et
al. 2005; Wang and Huang 2015) and pollution monitoring (Mun et al. 2009), to name
a few. Due to the inclusive nature of data collection in social sensing (i.e., anyone
can participate) and the unknown reliability of information sources, much recent work
focused on estimating the likelihood of correctness of collected data (Yin et al. 2008;
Pasternack andRoth 2010; Qi et al. 2013). However, none of thesework considered the
physical constraints in their solutions due to the lack of explicit physical components
in their application scenarios. Considering the tight integration of human, cyber and
physical components in cyber-physical systems, this paper describes algorithms and
analytic bounds to improve the reliability of social sensing applications by exploiting
physical constraints.

Following the methodology reported in our earlier conference publication (Wang
et al. 2013b), we adopt a cyber-physical approach to the problem of assessing cor-
rectness of collected data and obtaining the analytic bounds on source reliability,
wherein physical constraints are exploited to compensate for unknown source reliabil-
ity.We consider two types of constraints; namely, (i) source constraints that, combined
with source location information, offer an understanding of what individual sources
observed, and (ii) constraints on the observed variables themselves that arise when
these variables are not independent. Together, these constraints shape the likelihood
function that quantifies the odds of the observations at hand. We then use a maxi-
mum likelihood estimation (MLE) framework to jointly compute both the reliability
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of sources and the correctness of the data they report, such that the likelihood function
is maximized. This framework was first reported in (Wang et al. 2012b), but without
taking physical constraints into account. The advantage of maximum-likelihood esti-
mation lies in the feasibility of computing rigorous estimation accuracy bounds (Wang
et al. 2012a), hence not only arriving at the top hypothesis, but also quantifying how
good it is.

In contrast to our prior work (Wang et al. 2012b, 2013b, 2014), in this extended
journal version, we derive new analytic bounds on estimation error that allow estimat-
ing confidence intervals in the (originally unknown) source reliability values. To the
best of our knowledge, the derived analytic bounds in this paper are the first ones that
explicitly consider the physical constraints in social sensing applications. We show
that the maximum likelihood estimate obtained is a lot more accurate than one that
does not take physical constraints into account and the analytic bounds we obtained
correctly quantify the errors in the maximum likelihood estimation.

Much prior research in cyber-physical systems (CPS) (Hunter et al. 2012; Tang
et al. 2012) and estimation theory (He and Greenshields Ian 2009; Proietti and
Alessandra 2012) considered filtering observations of continuous variables in a
maximum-likelihood fashion to separate signal fromnoise.While continuous variables
are common in cyber-physical computing, an important subset of CPS applications
deals primarily with discrete (and especially binary) variables. Interestingly, noise
reduction in the case of binary variables is more challenging, because discretization
gives rise to likelihood functions that are not continuous, hence leading to integer
programming problems, known to be NP-complete. In this paper, we focused on a
discrete variable scenario and formulated a reliable social sensing problem.

Ourwork is related tomachine learning literature on constrained conditionalmodels
(Pasternack and Roth 2010; Chang et al. 2012). Unlike that literature, we do not limit
our approach to simple linear models (Chang et al. 2012) nor require that constraints
and constraints be deterministic (Pasternack and Roth 2010). Instead, the framework
developed in this paper is general enough to (i) solve the optimization problem for non-
linear models abstracted from social sensing applications with physical constraints
(as shown in Sects. 3 and 4), and (ii) incorporate probabilistic constraints.

Finally, contrary to work that focuses on maximum-likelihood estimation of con-
tinuous variables given continuous models of physical phenomena, which appears
in both cyber-physical systems and data fusion literature (Hunter et al. 2012; Tang
et al. 2012; Monte-Moreno et al. 2009), we focus on estimating discrete variables.
Specifically, we estimate the values of a string of generally non-independent Booleans
that can either be true or false. The discrete nature of the estimated variables makes
our optimization problem harder, as it gives rise to an integer programming problem
whose solution space increases exponentially. We show that the complexity of our
results critically depends on the number of variables that appear in an individual con-
straint, as opposed to the number of variables in the system. Hence, the approach
scales well to large numbers of estimated variables as long as constraints are local-
ized. We evaluate the scheme through both a real-world social sensing application and
extensive simulation studies. Results show significant performance improvements in
both source reliability and variable classification as well as the effectiveness of the
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analytic bounds we derived, achieved by incorporating physical information into the
estimation framework.

The rest of the paper is organized as follows. Section 2 formulates the problem of
reliable social sensing. Sections 3 and 4 solve the problem while leveraging source
constraints and observed variable constraints, respectively. The new analytic bounds
to quantify the estimation errors in source reliability are shown in Sect. 5. Evaluation
results are presented in Sect. 6. The discussion is presented in Sect. 7. We review the
related work in Sect. 8. Finally, we conclude the paper in Sect. 9.

2 The problem formulation

Binary variables arise inmany applicationswhere the state of the physical environment
can be represented by a set of statements, each is either true or false. For example, in
an application where the goal is to find free parking spots around campus, each legal
parking spot may be associated with one variable that is true if the spot is available and
false otherwise. Similarly, in an application that reports offensive graffiti on campus
walls, each location may be associated with a variable that is true if offensive graffiti is
present and false otherwise. In general, any statement about the physical world, such
as “Main Street is flooded”, “The airport is closed”, or “The suspect was seen on Elm
Street” can be thought of as a binary variable whose value is true if the statement is
correct, and false if it is not.

Accordingly, in this paper, we consider social sensing applications, where a group
of M sources, S1, . . . , SM , observe a set of N binary variables,C1, . . . ,CN . The value
of a variable C j can be either true or false. The true value represents the positive state
of the variable while the false value represents the negative state. Each variable C j

is also associated with a location, L j . We assume, without loss of generality, that the
“normal” state of each variable is negative (e.g., no free parking spots and no graffiti on
walls). Hence, sources report only when a positive value is encountered. Asmentioned
above, the reliability of individual sources is not known. In other words, we do not
know the “noise model” that determines the odds that a source reports incorrectly.

In this paper, we exploit physical constraints to compensate for the lack of infor-
mation on source reliability. Two types of physical constraints are exploited:

• Constraints on sources A source constraint simply states that a source can only
observe co-located physical variables. In other words, it can only report C j if it
visited location L j . The granularity of locations is application specific. However,
given location granularity in a particular application context, this constraint allows
us to understandwhich variables a source had an opportunity to observe.Hence, for
example, when a source does not report an event that others report they observed,
we can tellwhether or not the silence should decrease our confidence in the reported
observation, depending on whether or not the silent source was co-located with
the alleged event.

• Constraints on observed variables We exploit the fact that observed variables
may be correlated, which can be expressed by a joint probability distribution on
the underlying variables. For example, traffic speed at different locations of the
same freeway may be related by a joint probability distribution that favors similar
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speeds. This probabilistic knowledge gives us a basis for assessing how internally
consistent a set of reported observations is.

Let Si represent the i th source and C j represent the j th variable. We say that Si
observed C j if the source visited location L j . We say that a source Si made a reported
observation SiC j if the source reported that the value of C j was true. We generically
denote by p(C j = 1|x) and p(C j = 0|x) the conditional probability that the value of
variableC j is indeed true or false, given x , respectively.We denote by ti the (unknown)
probability that the value of a randomly chosen variable is true given that source Si
reported it (to be true). Formally, ti is given by:

ti = p(C j = 1|SiC j ) (1)

Note thatC j in the definition of ti is an arbitrary variable so ti represents the probability
that the value of a variable is true conditioned on the knowledge that source i has
espoused the truthfulness of the variable. Hence, ti does not depend on the variable
index j .

Different sources may report different numbers of observations. The probability
that source Si reports an observation is si . Formally, si = p(SiC j |Si observes C j ).

We further define ai to be the (unknown) probability that source Si correctly reports
an observation given that the value of the underlying variable is indeed true and the
source observed it. Similarly, we denote by bi the (unknown) probability that source
Si falsely reports an observation when the value of the underlying variable is in reality
false and the source observed it. More formally:

ai = p
(
SiC j |C j = 1, Si observes C j

)

bi = p
(
SiC j |C j = 0, Si observes C j

)
(2)

From the definitions above, we can determine the following relationships using the
Bayes theorem:

ai = p
(
SiC j |C j = 1, Si observes C j

)

= p
(
C j = 1|SiC j , Si observes C j

) × p
(
SiC j |Si observes C j

)

p
(
C j = 1|Si observes C j

)

bi = p
(
SiC j |C j = 0, Si observes C j

)

= p
(
C j = 0|SiC j , Si observes C j

) × p
(
SiC j |Si observes C j

)

p
(
C j = 0|Si observes C j

) (3)

We also define di to be the (unknown) probability p(C j = 1|Si observes C j ). It should
be noted that C j in the definition of di represents a variable randomly chosen from
all variables observed by Si . So di does not depend on the variable index j . This
probability describes the proportion of variables that source Si observes that happen
to have true values. Note that, the probability that a source reports an observation is
proportional to the number of variables reported by the source over the total number
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of variables observed by the source. In this paper, we assume sources only report
variables it has an opportunity to observe (e.g., a car will only report the observation
of a traffic light location when the car has an opportunity to visit that location). Under
this assumption, ti = p(C j = 1|SiC j , Si observes C j ). Plugging these terms into the
definition of ai and bi , given in Eq. (3), we get the relationship between the terms we
defined above:

ai = ti × si
di

bi = (1 − ti ) × si
1 − di

di = p
(
C j = 1|Si observes C j

)
(4)

The input to our algorithm is: (i) the observation matrix SC , where SCi j = 1 when
source Si reports that the value of C j is true, and SCi j = 0 otherwise; and (ii)
the source’s opportunities to observe represented by a knowledge matrix SK , where
SKi j = 1 when source Si has the opportunity to observe C j and SKi j = 0 otherwise.
The output of the algorithm is the probability that the value of variable C j is true, for
each j and the reliability ti of source Si , for each i . More formally:

∀ j, 1 ≤ j ≤ N : p(C j = 1|SC, SK )

∀i, 1 ≤ i ≤ M : p(C j = 1|SiC j ) (5)

To account for non-independence among the observed variables, we further denote
the set of all such constraints (expressed as joint distributions of dependent variables)
by J D. The inputs to the algorithm become the SC , SK matrices and the set J D of
constraints (joint distributions), mentioned above. The output is:

∀ j, 1 ≤ j ≤ N : p(C j = 1|SC, SK , J D)

∀i, 1 ≤ i ≤ M : p(C j = 1|SiC j ) (6)

Below, we solve the aforementioned problems using the expectation maximization
(EM) algorithm. EM (Dempster et al. 1977) is a general algorithm for finding the
maximum likelihood estimates of parameters in a statistic model, where the likelihood
function involves latent variables. Applying EM requires formulating the likelihood
function, L(θ; X, Z) = p(X, Z |θ), where θ is the estimated parameter vector, X is
the observed data, and Z is the latent variables vector. The algorithm then maximizes
likelihood iteratively by alternating between two steps (Hogg et al. 2005):

• E-step: Compute the log likelihood function for the M-step

Q
(
θ |θ(n)

)
= EZ |X,θ(n)[log L(θ; X, Z)] (7)

• M-step: Maximize the Q function in the E-step

θ(n+1) = argmax
θ

Q
(
θ |θ(n)

)
(8)
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Following the approach described in our previous work (Wang et al. 2012b), we
define a latent variable z j to denote our estimated value of variable C j , for each j
(indicating whether the value of C j is true or not). Initially, we set p(z j = 1) = d j .
This constitutes the latent vector Z above. We further define X to be the observation
matrix SC , where X j represents the j th column of the SC matrix (i.e., reported
observations of the j th variable by all sources). The parameter vector we want to
estimate is θ = (a1, a2, . . . , aM ;b1, b2, . . . , bM ;d1, d2, . . . , dN ).

3 Accounting for opportunity to observe

In this section, we incorporate the source constraints into the Expectation-
Maximization (EM) algorithm. We call this EM scheme, EM with opportunity to
observe (OtO EM).

3.1 Deriving the likelihood

When we consider source constraints in the likelihood function, we assume sources
only report variables they observe, and hence the probability of a source reporting a
variable he/she does not have an opportunity to observe is 0. For simplicity, we first
assume that all variables are independent, then relax this assumption later in Sect. 4.
Under these assumptions, the new likelihood function L(θ; X, Z) that incorporates
the source constraints is given by:

L(θ; X, Z) = p(X, Z |θ)

=
N∏

j=1

p(z j ) × p(X j |z j , θ)

=
N∏

j=1

∏

i∈S j

p(z j ) × αi, j

where S j : Set of sources observed C j (9)

where

p(z j ) =
{
d j z j = 1

(1 − d j ) z j = 0

αi, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ai z j = 1, SiC j = 1

(1 − ai ) z j = 1, SiC j = 0

bi z j = 0, SiC j = 1

(1 − bi ) z j = 0, SiC j = 0

(10)

Note that, in the likelihood function,weonly consider the probability contribution from
sources who actually observe a variable (e.g., i ∈ S j for C j ). This is an important
change from our previous framework (Wang et al. 2012b). This change allows us to
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nicely incorporate the source constraints (name, source opportunity to observe) into
the MLE framework.

Using the above likelihood function, we can derive the corresponding E-Step and
M-Step of OtO EM scheme. The detailed derivations are shown in Sect. 1.

3.2 The OtO EM algorithm

Algorithm1ExpectationMaximizationAlgorithmwith SourceConstraints (OtOEM)
1: Initialize θ with random values between 0 and 1
2: while θ(n) does not converge do
3: for j = 1 : N do
4: compute Z(t, j) based on Eq. (23)
5: end for
6: θ(n+1) = θ(n)

7: for i = 1 : M do
8: compute a(n+1)

i , b(n+1)
i , d(n+1)

j based on Eq. (24)

9: update a(n)
i , b(n)

i , d(n)
j with a(n+1)

i , b(n+1)
i , d(n+1)

j in θ(n+1)

10: end for
11: t = t + 1
12: end while
13: Let Zc

j = converged value of Z(t, j)

14: Let aci = converged value of a(n)
i ; bci = converged value of b(n)

i ; dci =
converged value of d(n)

j j ∈ Ci
15: for j = 1 : N do
16: if Zc

j ≥ threshold then
17: the value of C j is true
18: else
19: C j is false
20: end if
21: end for
22: for i = 1 : M do
23: calculate t∗i from aci , b

c
i and dci

24: end for
25: Return the classification on variables and reliability estimation of sources

In summary, the inputs to the OtO EM algorithm are (i) the observation matrix SC
from social sensing data and (ii) the knowledge matrix SK describing the source
constraints. The output is the maximum likelihood estimate of source reliability and
the binary variable classification. Compared to the regular EM algorithmwe derived in
our previous work (Wang et al. 2012b), we provided source constraints as a new input
into the framework and imposed them on the E-step andM-step. Our algorithm begins
by initializing the parameter θ with random values between 0 and 1. The algorithm
then performs the new derived E-steps and M-steps iteratively until θ converges.
Convergence analysis for EM was studied in literature and is out of the scope for this
paper (Wu 1983).1 Since each observed variable is binary, we can classify variables

1 In practice, we can run the algorithm until the difference of estimation parameter between consecutive
iterations becomes insignificant.
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as either true or false based on the converged value of Z(t, j). Specifically, C j is
considered true if Zc

j goes beyond some threshold (e.g., 0.5) and false otherwise. We

can also compute the estimated ti of each source from the converged values of θ(n)

(i.e., aci , b
c
i and d

c
i ) based on Eq. (4). Algorithm 1 shows the pseudocode of OtO EM.

4 Accounting for variable constraints

In this section, we derive an EM scheme that considers constraints on observed vari-
ables. We call this EM scheme, EM with dependent variables (DV EM). For clarity,
we first ignore the source constraints derived in the previous section (i.e., assume that
each source observes all variables) when we derive the DV EM scheme. Then, we
combine the two extensions of EM we derived (i.e., OtO EM and DV EM) to obtain
a comprehensive EM scheme (OtO+DV EM) that incorporates constraints on both
sources and observed variables into the estimation framework.

4.1 Deriving the likelihood

In order to derive a likelihood function that considers constraints in the form of
constraints between observed variables, we first divide the N observed variables
in our social sensing model into G independent groups, where each independent
group contains variables that are related by some local constraints (e.g., gas price
of stations in the same neighborhood could be highly correlated). Consider group
g, where there are k dependent variables g1, . . . , gk . Let p(zg1 , . . . , zgk ) represent
the joint probability distribution of the k variables and let Yg represent all possible
combinations of values of g1, . . . , gk . For example, when there are only two vari-
ables, Yg = [(1, 1), (1, 0), (0, 1), (0, 0)]. Note that, we assume that p(zg1 , . . . , zgk )
is known or can be estimated from prior knowledge. The new likelihood function
L(θ; X, Z) that considers the aforementioned constraints is:

L(θ; X, Z) =
∏

g∈G
p(Xg, Zg|θ) =

∏

g∈G
p(Zg) × p(Xg|Zg, θ)

=
∏

g∈G

⎧
⎨

⎩

∑

g1,...,gk∈Yg

p(zg1 , . . . , zgk )
∏

i∈M

∏

j∈cg
αi, j

⎫
⎬

⎭
(11)

where αi, j is the same as defined in Eq. (10) and cg represents the set of variables
belonging to the independent group g. Compared to our previous effort (Wang et
al. 2012b), the new likelihood function is formulated with independent groups as
units (instead of single independent variables). The joint probability distribution of
all dependent variables within a group is used to replace the distribution of a single
variable. This likelihood function is thereforemore general, but reduces to the previous
form in the special case where each group is composed of only one variable.

Using the above likelihood function, we can derive the corresponding E-Step and
M-Step of DV EM and OtO+DV EM schemes. The detailed derivations are shown in
Sect. 1.
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4.2 The OtO+DV algorithm

In summary, the OtO+DV EM scheme incorporates constraints on both sources and
observed variables. The inputs to the algorithm are (i) the observation matrix SC , (ii)
the knowledge matrix SK , and (iii) the joint distribution for each group of dependent
variables, collectively represented by set J D. The output is the maximum likelihood
estimate of source reliability and binary variable classification. The OtO+DV EM
pseudocode is shown in Algorithm 2.

Algorithm 2 Expectation Maximization Algorithm with Constraints on Both Sources
and Observed Variables (OtO+DV EM)
1: Initialize θ with random values between 0 and 1
2: while θ(n) does not converge do
3: for j = 1 : N do
4: compute Z(n, j) as the marginal distribution of the joint probability as shown in Eq. (28)
5: end for
6: θ(n+1) = θ(n)

7: for i = 1 : M do
8: compute a(n+1)

i , b(n+1)
i , d(n+1)

j based on Eq. (29)

9: update a(n)
i , b(n)

i , d(n)
j with a(n+1)

i , b(n+1)
i , d(n+1)

j in θ(n+1)

10: end for
11: t = t + 1
12: end while
13: Let Zc

j = converged value of Z(n, j)

14: Let aci =converged value of a(n)
i ; bci =converged value ofb(n)

i ; dci =converged value of d(n)
j j ∈Ci

15: for j = 1 : N do
16: if Zc

j ≥ threshold then
17: the value of C j is true
18: else
19: C j is false
20: end if
21: end for
22: for i = 1 : M do
23: calculate t∗i from aci , b

c
i and dcj

24: end for
25: Return the classification on variables and reliability estimation of sources

5 The analytic bound

In the previous section, we derived the OtO, DV, OtO+DV EM schemes to address
the constraints on both sources and the observed variables. However, one important
question remains: how to quantify the accuracy of the estimation results? In particular,
we are interested in obtaining the confidence intervals; namely, the error bounds on
the estimation parameters of our model for a given confidence level. In this section, we
derive such bounds by using the Cramer–Rao lower bounds (CRLB) from estimation
theory. We should note that the CRLBs derived here are assuming that enough sources
are available so that the truth of the variable (or not) is known with full accuracy. As
a result, the CRLBs are asymptotic results.
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5.1 Deriving error bounds

We start with the derivation of Cramer–Rao lower bounds for our problem. The CRLB
states the lower bounds of estimation variance that can be achieved by the MLE. By
definition of CRLB, it is given by

CRLB = J−1 (12)

where
J = E

[
�θ ln p(X |θ) �H

θ ln p(X |θ)
]

(13)

where J is the Fisher information of the estimation parameter, �θ = ( ∂
∂a1

, . . . ∂
∂aM

,
∂

∂b1
, . . . , ∂

∂bM
)H and H denotes the conjugate transpose operation.

In this subsection, we derive the asymptotic CRLBs for OtO EM, DV EM, and
OtO+DV EM based on the assumption that the values of variables are correctly esti-
mated by the EM algorithms. This is a reasonable assumption when the number of
sources is enough (Wang et al. 2012a).We denote the log-likelihood function obtained
under this assumption as lem(x; θ).

We compute the Fisher Information Matrix from its definition. Note that CRLB
should use the actual ground truth values of ai and bi . However, due to the lack
of ground truth in many real world applications, the MLE values of ai and bi are
incorporated here as a means to approximate the expected variance. We can derive the
representative element of Fisher Information Matrix from N variables as:

(J (θ̂MLE ))i, j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 i �= j

−EX

[
∂2lem (x;ai )

∂a2i
|ai=âMLE

i

]
i = j ∈ [1, M]

−EX

[
∂2lem (x;bi )

∂b2i
|bi=b̂MLE

i

]
i = j ∈ (M, 2M]

(14)

For the OtO EM, the log-likelihood function lem(x; θ) can be written as follows:

lem(x; θ) =
N∑

j=1

⎧
⎨

⎩
z j ×

⎡

⎣
∑

i∈S j

(SiC j log ai + (1 − SiC j ) log(1 − ai ) + log d j )

⎤

⎦

+ (1 − z j ) ×
⎡

⎣
∑

i∈S j

(
SiC j log bi + (1 − Xi j ) log(1 − bi )

+ log(1 − d j )
)]

⎫
⎬

⎭
(15)

where z j is the converged value of Z(n, j) in (23).
Substituting the log-likelihood function in Eq. (15) into Eq. (14), the CRLB of OtO

EM (i.e., the inverse of the Fisher Information Matrix) can be written as:
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CRLBOtO =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 i �= j
âMLE
i ×(1−âMLE

i )

Ci×di
i = j ∈ [1, M]

b̂MLE
i ×(1−b̂MLE

i )

Ci×(1−di )
i = j ∈ (M, 2M]

(16)

where Ci is the set of variables that Si observed and di is defined in Eq. (4). The
âMLE
i , b̂MLE

i are derived in Derivation of the E-step andM-step of OtO EM inAppen-
dix and the results are shown by Eq. (24).

Following similar derivation steps, we can also derive the CRLB of DV EM as:

CRLBDV =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 i �= j
âMLE
i ×(1−âMLE

i )

N×d i = j ∈ [1, M]
b̂MLE
i ×(1−b̂MLE

i )

N×(1−d)
i = j ∈ (M, 2M]

(17)

where the âMLE
i , b̂MLE

i are derived in Derivation of E-step and M-step of DV and
OtO+DV EM in Appendix and the results are shown by Eq. (27).

Finally, the CRLB of OtO+DV EM can derived as:

CRLBOtO+DV =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 i �= j
âMLE
i ×(1−âMLE

i )

Ci×di
i = j ∈ [1, M]

b̂MLE
i ×(1−b̂MLE

i )

Ci×(1−di )
i = j ∈ (M, 2M]

(18)

where the âMLE
i , b̂MLE

i are derived in The confidence interval in Appendix and the
results are shown by Eq. (29).

5.2 The confidence interval

In this subsection, we show that the confidence interval of source reliability (i.e., the
probability a source Si makes a correct observation) can be obtained by using the
CRLB we just derived and the asymptotic normality of the MLE.

One of the attractive asymptotic properties about maximum likelihood estimator
is called asymptotic normality: The MLE estimator is asymptotically distributed with
Gaussian behavior as the data sample size goes up, in particular (Casella and Berger
2002):

(
θ̂MLE − θ0

)
d→ N

(
0, J−1

(
θ̂MLE

))
(19)

where J is the Fisher Information Matrix computed from all samples, θ0 and θ̂MLE

are the true value and theMLE of the parameter θ respectively. The Fisher information
at the MLE is used to estimate its true (but unknown) value (Hogg and Craig 1995).

Following the asymptotic normality of the maximum likelihood estimator (Cramer
1946), the error of the corresponding estimation on θ follows a normal distribution
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with zero mean and the covariance matrix given by the CRLB we derived in the
previous subsection. The variance of estimation error on parameter ai is denoted as
var(âMLE

i ). For a problem with sufficient M and N (i.e., under asymptotic condition),
(t̂ MLE
i − t0i ) also follows a norm distribution with 0 mean and variance given by:

var
(
t̂ MLE
i

)
=

(
di
si

)2

var
(
âMLE
i

)
(20)

Thus, the confidence interval that can be used to quantify the source reliability (i.e.,
ti ) is given by the following:

(
t̂ MLE
i − cp

√
var(t̂ MLE

i ), t̂ MLE
i + cp

√
var(t̂ MLE

i )

)
(21)

where cp is the standard score (z-score) of the confidence level p. For example, for
the 95 % confidence level, cp = 1.96.

6 Evaluation

In this section, we evaluate the performance of our new reliable social sensing schemes
that incorporate “opportunity to observe” constraints on sources (OtO EM) and
constraints on observed variables (DV EM), as well as the comprehensive scheme
(OtO+DV EM) that combines both. We compare their performance to the state of the
art scheme from previous work (Wang et al. 2012b) (regular EM) through both a real
world social sensing application and extensive simulation studies. We also evaluated
the performance of the analytic bounds derived in the previous section.

6.1 Real world evaluation

The purpose of the application is to map locations of traffic lights and stop signs on
campus of the University of Illinois (in the city of Urbana-Champaign). We use the
dataset from a smartphone-based vehicular sensing testbed, called SmartRoad (Hu
et al. 2013), where vehicle-resident Android smartphones record their GPS location
traces as the cars are driven around by participants. The GPS readings include samples
of the instantaneous latitude–longitude location, speed and bearing of the vehicle, with
a sampling rate of 1 s.We aim to show that even very unreliable sensing of traffic lights
and stop signs can result in a good final map once our algorithm is applied to these
sensing observations to determine their odds of correctness. Hence, an intentionally
simple-minded application scenario was designed to identify stop signs and traffic
lights from GPS data.

Specifically, in our experiment, if a vehicle waits at a location for 15–90 s, the
application concludes that it is stopped at a traffic light and issues a traffic-light obser-
vation (i.e., an observation that a traffic light is present at that location and bearing).
Similarly if it waits for 2–10 s, it concludes that it is at a stop sign and issues a stop-
sign observation (i.e., an observation that a stop sign is present at that location and
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bearing). If the vehicle stops for less than 2 s, for 10–15 s, or for more than 90 s, no
observation is made. Observations were reported by each participant to a central data
collection point.

Clearly the observations defined above are very error-prone due to the simple-
minded nature of the “sensor” and the complexity of road conditions and driver’s
behaviors. Moreover, it is hard to quantify the reliability of sources without a train-
ing phase that compares measurements to ground truth. For example, a car can stop
elsewhere on the road due to a traffic jam or crossing pedestrians, not necessarily at
locations of traffic lights and stop signs. Also, a car does not stop at traffic lights that
are green and a careless driver may pass stop signs without stopping. The question
addressed in the evaluation is whether knowledge of constraints, as described in this
paper, helps improve the accuracy of stop sign and traffic light estimation from such
unreliable measurements in this case study.

Hence, we applied the different estimation approaches developed in this paper
along with the constraints from the physical world on the noisy data to identify the
correct locations of traffic lights and stop signs and compute the reliability of sources.
One should note that location granularity here is of the order of half a city block.
This ensures that stop sign and traffic light observations are attributed to the correct
intersections. Most GPS devices easily attain such granularity. Therefore, we do not
expect location errors to be of concern. For evaluation purposes, wemanually collected
the ground truth locations of traffic lights and stop signs.

In the experiment, 34 people (sources) were invited to participate and 1,048,572
GPS readings (around 300 h of driving) were collected. A total of 4865 observations
were generated by the phones, of which 3303 were for stop signs and 1562 were for
traffic lights, collectively identifying 369 distinct locations. The elements SiC j of the
observation matrix were set according to the reported observations extracted from
each source vehicle.

We observed that traffic lights at an intersection are always present in all directions.
Hence, when processing traffic light observations, we ignored vehicle bearing. How-
ever, stop signs at an intersection have a few possible scenarios. For example, (i) a stop
sign may be present in each possible direction (e.g., All-Way stop); (ii) two stop signs
may exist on one road whereas no stop sign exist on the other road (e.g., a main road
intersecting with a small road); or (iii) two stop signs may exist for one road and one
stop sign for the other road (e.g., a two-way road intersecting with a one way road).
Hence, in observations regarding stop signs the bearing is important. We bin bearing
into four main directions. A different Boolean variable is created for each direction.

6.1.1 Opportunity to observe

In this subsection, we first evaluate the performance of the OtO EM scheme. For
the OtO EM scheme, we used the recorded GPS traces of each vehicle to determine
whether it actually went to a specific location or not (i.e., decide whether a source has
an opportunity to observe a given variable or not). There are 54 actual traffic lights
and 190 stop signs covered by the data traces collected.

Figure 1 compares the source reliability estimated by both the OtO EM and regular
EM schemes to the actual source reliability computed from ground truth. We observed
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Fig. 1 Source reliability
estimation of OtO EM in the
case of traffic lights

Fig. 2 Source reliability bounds
of OtO EM in the case of traffic
lights

Fig. 3 True and false positives
of OtO EM versus regular EM in
the case of traffic lights

that the OtO EM scheme stays closer to the actual results for most of the sources (i.e.,
OtO EM estimation error is smaller than regular EM for about 74 % of sources).

Figure 2 shows the 90 % confidence bounds on the source reliability estimation by
the OtO EM as we derived in Sect. 5. We observed the OtO EM scheme has only one
outlier out of 34 sources, which matches well with the definition of the confidence
bounds defined at this confidence level.

Next, we explore the accuracy of identifying traffic lights by the new scheme. We
plotted the true positives and false positives of the OtO EM scheme and the regular
EM scheme for the locations they identified as traffic lights. The results are shown in
Fig. 3. We observed the OtO EM scheme outperforms the regular EM by finding more
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Table 1 Performance
comparison between regular EM
versus OtO EM in case of traffic
lights

Regular EM OtO EM

Average source reliability
estimation error

10.19 % 7.74 %

Number of correctly
identified traffic lights

31 36

Number of mis-identified
traffic lights

2 3

Fig. 4 Source reliability
estimation of OtO EM in the
case of stop signs

true positives at the same false positives. In particular, the OtO EM scheme is able to
find five more traffic light locations compared to the regular EM scheme. The detailed
comparison results between two schemes are given in Table 1.

We repeated the above experiments for stop sign identification and observed that the
OtOEMschemeachieves amore significant performance gain in both source reliability
estimation and stop sign classification accuracy compared to the regular EM scheme.
The reason is: stop signs are scattered in town and the odds that a vehicle’s path covers
most of the stop signs are usually small. Hence, having the knowledge of whether a
source had an opportunity to observe a variable is very helpful. However, we do find
in general that the identification of stop signs is more challenging than that of traffic
lights. There are several reasons for that. Namely, (i) the observations for stop signs
are sparser because stops signs are typically located on smaller streets, so the chances
of different cars visiting the same stop sign are lower than that for traffic lights, (ii)
cars often stop briefly at non-stop sign locations, which our sensors mis-interpret for
stop signs, and (iii) when cars want to make a turn after the stop sign, cars’ bearings
are often not well aligned with the directions of stop signs, which causes errors since
stop-sign observations are bearing-sensitive.

Figure 4 compares source reliability computed by the OtO EM and regular EM
schemes. The actual reliability is computed from experiment data similarly as we did
for traffic lights. We observe that source reliability is better estimated by the OtO EM
scheme compared to the regular EM scheme.

Figure 5 shows the 90 % confidence bounds on the source reliability estimation by
the OtO EM in the case of stop signs. We observed that the OtO EM scheme has only
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Fig. 5 Source reliability bounds
of OtO EM in the case of stop
signs

Fig. 6 True and false positives
of OtO EM versus regular EM in
the case of stop signs

one outlier out of 34 sources. This again verifies the correctness of the confidence
bounds we derived earlier.

Figure 6 show the true positives and false postives in recognizing stop signs. We
observe the OtO EM scheme outperforms the regular EM scheme. In particular, the
OtO EM finds twelve more correct stop sign locations and reduces one false positive
location compared to the regularEMscheme.Thedetailed comparison results are given
in Table 2. To further investigate the effects of data sparsity on different schemes, we
repeat the above experiments using only 75%of the observationswe collected. Results
are also reported in Table 2.

6.1.2 Dependent variables

In this subsection, we evaluated our extensions that consider constraints on observed
variables (DV EM), and the comprehensive OtO+DV EM scheme. While the earlier
discussion treated stop signs as independent variables, this is not strictly so. The
existence of stop signs in different directions (bearings) is in fact quite correlated. We
empirically computed those correlations for Urbana-Champaign and assumed that we
knew them in advance. Clearly, the more “high-order” correlations are considered, the
more information is given to improve performance of algorithm. To assess the effect of
“minimal” information (whichwould be a “worst-case” improvement for our scheme),
in this paper we consider pairwise correlations only. Hence, the joint distribution of
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Table 2 Performance comparison of regular EM, OtO EM, DV EM and DV+OtO EM in case of stop signs

Regular EM OtO EM DV EM DV+OtO EM

Average source reliability estimation
error (full dataset)

25.34 % 16.75 % 15.99 % 11.98 %

Number of correctly identified stop
signs (full dataset)

127 139 141 146

Number of mis-identified stop signs
(full dataset)

25 24 29 25

Average source reliability estimation
error (75 % dataset)

36.44 % 18.2 % 18.0 % 15.29 %

Number of correctly identified stop
signs (75 % dataset)

92 101 111 116

Number of mis-identified stop signs
(75 % dataset)

18 23 30 29

Table 3 Distribution of stop
signs in opposite directions

A = stop sign 1 exists;
B = stop sign 2 exists

Percentage

p(A,B) 36

p(not A, not B) 49

p(A, not B) = p(not A, B) 7.5

Fig. 7 Source reliability
estimation of DV and DV+OtO
EM in the case of stop signs

co-existence of (two) stop signs in opposite directions at an intersectionwas computed.
It is presented in Table 3, and was used as input to the DV EM scheme.

Figure 7 shows the accuracy of source reliability estimation, when these constraints
are used. We observe that both DV EM and DV+OtO EM scheme track the source
reliability very well (the estimation error of the two EM schemes improved 9.4 and
13.4 % repsectively compared to the regular EM scheme).

Figures 8 and9 show the 90%confidence bounds on the source reliability estimation
by the DV EM and DV+OtO EM respectively. We observed the DV EM scheme has
two outliers out of 34 sources while DV+OtO EM scheme has no outlier. These results
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Fig. 8 Source reliability bounds
of DV EM in the case of stop
signs

Fig. 9 Source reliability bounds
of DV+OtO EM in the case of
stop signs

Fig. 10 ROC curves of OtO,
DV, OtO+DV EM versus regular
EM in the case of stop signs

are encouraging. They verified the correctness of the confidence bounds we derived
to quantify the accuracy of the source reliability estimation by the new EM schemes
developed in this paper.

The true positives and false positives of DV and DV+OtO EM for stop signs are
shown in Fig. 10. Observe that the DV EM scheme finds 14 more correct stop sign
locations than the regular EM scheme. The DV+OtO EM scheme performed the best,
it finds the most stop sign locations (i.e., 19 more than regular EM, 5 more than DV
EM) while keeping the false positives the least (i.e., the same as regular EM and 4 less
than DV EM). The detailed results are given in Table 2.
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6.2 Simulation study

In this section, we continued our evaluation of the new schemes developed in this
paper through extensive simulation studies to explore different problem dimensions.
To that end, we built a simulator in Matlab 7.14.0 that generates a random number of
sources and binary variables.2 A random probability ti is assigned to each source Si
representing his/her reliability (i.e., the ground truth probability that they report correct
observations). For each source Si , Li observations are generated. Each observation has
a probability ti of being true (i.e., reporting a the value of a variable as true correctly)
and a probability 1− ti of being false (reporting the value of a variable as true when it
is not). We let ti be uniformly distributed between 0.5 and 1 in our experiments.3 For
initialization, the initial values of source reliability (i.e., ti ) in the evaluated schemes
are set to the mean value of its definition range.

We compared the new schemes presented in this paper (i.e., OtO EM, DV EM,
OtO+DV EM) with the regular EM scheme, which was reported to beat four other
state-of-the-art baselines (Wang et al. 2012b). To evaluate the performance of differ-
ent schemes, we studied three metrics: (i) estimation error of source reliability; (ii)
the fraction of misclassified variables; (iii) the correctness of the derived confidence
bounds.

6.2.1 OtO EM performance study

In the first set of experiments, we studied the performance of the OtO EM scheme.
In the experiment, the number of reported variables was fixed at 2000, of which 1000
variable were of true values and 1000 were of false values. The average number
of observations per source was set to 100. The number of sources was varied from
30 to 120. For this set of experiments, we assumed variables are all independent.
Reported results are averaged over 100 random source reliability distributions. We
compare the OtO EM with regular EM under four scenarios where the fraction of
observable variables is different. The fraction of observable variables is defined as
the fraction of variables that a source has opportunity to observe. We also add an
additional baseline as OtO EM + 50 % Uncertainty. This baseline is the same as the
OtO EM scheme only except the sources now have 50 % probability to mis-identify
the variables they do not have an opportunity to observe as observable. Results are
shown in Figs. 11, 12, and 13. Figure 11 shows the results of the source reliability
estimation error. We observed that the OtO EM consistently performed the best in all
four scenarios. Also note that the performance gain achieved byOtOEM is largerwhen
the fraction of observable variables is lower, which is intuitive. Figure 12 shows the
results of variable classification accuracy.Weobserved that theOtOEMclassifiesmore
variables correctly compared to the regular EM and OtO EM+50 % Uncertainty by
having a more accurate knowledge of “opportunity to observe” of sources. Figure 13

2 As stated in our application model, sources never report a variable to be false (e.g., cars never reported
the absence of traffic lights).
3 In principle, there is no incentive for a source to lie more than 50 % of the time, since negating their
statements would then give a more accurate truth.
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Fig. 11 Source reliability estimation error ofOtOEMversus regular EM. a Fraction of observable variables
= 0.2. b Fraction of observable variables = 0.4. c Fraction of observable variables = 0.6. d Fraction of
observable variables = 0.8

shows the fraction of sources whose reliability is correctly bounded by the 90 %
confidence bounds computed in Sect. 5. We observed that the source reliability of the
OtO EM scheme is correctly bounded by the corresponding confidence bounds in all
scenarios while the bounds for the regular EM failed to be accurate when the fraction
of observable variables is low.

Additionally, we also studied the performance trade-off between estimation vari-
ance and bias for theOtOEM scheme.We found the estimation bias is more significant
when the number of sources in the system is small and showed in our previous work
that the actual CRLBs track the estimation variance better than the asymptotic bounds
under such conditions (Wang et al. 2013c). Hence we computed the actual CRLB and
estimation variance for both OtO EM and regular EM for a small number of sources.
The experiment setup is the same as before. We now varied the number of sources
from 5 to 20. The fraction of observable variables is set to 0.5. The results are averaged
over 50 experiments and shown in Fig. 14. We observe that the OtO EM has a larger
CRLB and much smaller estimation bias compared to the regular EM scheme. The
results demonstrate that the lower CRLB for regular EM does not translate to better
estimation performance due to the bias.We also observe that there is some bias for OtO
EM scheme when the number of sources is very small. This is because: (i) the MLE
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Fig. 12 Fraction ofmisclassified variables ofOtOEMversus regular EM. a Fraction of observable variables
= 0.2. b Fraction of observable variables = 0.4. c Fraction of observable variables = 0.6. d Fraction of
observable variables = 0.8

is biased on those points due to the small dataset; (ii) the number of variables made
per source is not large enough to completely reflect the source reliability accuracy
resolution.

6.2.2 DV EM performance study

In the second set of experiments, we studied the performance of the DV EM scheme.
The experiment setup is similar as the first one. The differences are (i) we assume
sources have opportunity to observe all variables; (ii) variables are divided into inde-
pendent groups and variables within each independent groups are dependent. For
simplicity, we assumed all groups are of the same size and the variables within each
group are fully correlated (i.e., the probabilities of correlated variables to have the
same value are equal and add up to 1). Reported results are averaged over 100 ran-
dom source reliability distributions. We compare the DV EM with regular EM under
four scenarios where the fraction of dependent variables is different. The fraction of
dependent variables is the fraction of variables that belong to independent group with
more than one variable. In each scenario, we also vary the number of variables in
each independent group (i.e., independent group size). Results are shown in Figs. 15,
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Fig. 13 Fraction of correctly bounded sources of OtO EM versus regular EM. a Fraction of observable
variables = 0.2. b Fraction of observable variables = 0.4. c Fraction of observable variables = 0.6. d Fraction
of observable variables = 0.8

Fig. 14 Tradeoff between estimation variance and bias of OtO versus regular EM. a CRLB and bias on ai .
b CRLB and bias on bi

16, and 17. Figure 15 shows the results of the source reliability estimation error. We
observed that the DV EM performed better than the regular EM in all four scenarios.
Also note that the performance gain of DV EM is larger when the independent group
size is larger. This is because more correlations between variables can help the DV
EM scheme to better infer correctness of all dependent variables. Figure 16 shows
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Fig. 15 Source reliability estimation error of DV EM versus regular EM. a Fraction of dependent variables
= 1. b Fraction of dependent variables = 0.8. c Fraction of dependent variables = 0.5. d Fraction of dependent
variables = 0.2

the results of variable classification accuracy. We observed that the DV EM classifies
more variables correctly compared to the regular EM by appropriately handling the
constraint between variables. Figure 17 shows the fraction of sources whose reliability
is correctly bounded by the 90 % confidence bounds. We observed that the source reli-
ability of the DV EM scheme is correctly bounded by the corresponding confidence
bounds in all scenarios while the bounds for the regular EM failed to be accurate when
the number of sources in the system is small.

Additionally, we also studied the convergence performance of the DV EM scheme.
We derived the actual CRLBs for the regular EM scheme in (Wang et al. 2013c). We
found it is non-trivial to derive the actual CRLBs for the DV EM under arbitrary vari-
able constraints and decided to leave such derivations for a follow-up work. However,
it is possible to compute the actual CRLB of DV EM for the special case where the
variables in each independent group are fully correlated. Therefore, we compared the
actual CRLBs of DV EM and regular EM scheme (under the condition of fully cor-
related variables in each group) with the asymptotic bounds we derived earlier. The
experiment setup is the same as before. The fraction of dependent variables is set to 1
and the size of independent group is set to 2. We varied the number of sources from 5
to 20. The results are averaged over 50 experiments and shown in Fig. 18. We observe
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Fig. 16 Fraction of misclassified variables of DV EMversus regular EM. a Fraction of dependent variables
= 1. b Fraction of dependent variables = 0.8. c Fraction of dependent variables = 0.5. d Fraction of dependent
variables = 0.2

that the DV EM has smaller CRLBs (for both ai and bi ) and converges faster to the
asymptotic bounds compared to the regular EM scheme.

6.2.3 OtO+DV EM performance study

In the third set of experiments, we studied the performance of theOtO+DVEMscheme
in comparison with OtO EM, DV EM and regular EM scheme. The experiment setup
is the same as before. However, we assumed in this set of experiments: (i) sources
have opportunity to observe only a fraction of all variables; (ii) a fraction of variables
are dependent and the remaining ones are independent. Reported results are averaged
over 100 random source reliability distributions. Results are shown in Figs. 19, 20,
and 21. Figure 19 shows the results of different schemes by varying the number of
sources in the system. In this experiment, we set both the fraction of observable vari-
ables and the fraction of dependent variables to be 0.8. The number of sources was
varied from 30 to 120. We observed that the OtO + DV EM performed the best com-
pared to other baselines in all evaluation metrics. Also note that the performance of
all schemes improves as the number of sources increases. Figure 20 shows the results
of different schemes by varying the fraction of observable variables. The number of
sources was set to 30 and the fraction of dependent variables was set to 0.8. We varied
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Fig. 17 Fraction of correctly bounded sources of DV EM versus regular EM. a Fraction of dependent
variables = 1. b Fraction of dependent variables = 0.8. c Fraction of dependent variables = 0.5. d Fraction
of dependent variables = 0.2

Fig. 18 Convergence of actual CRLB of DV versus regular EM. a CRLB on ai . b CRLB on bi

the fraction of observable variables from 0.1 to 1. We observed that the OtO+DV EM
continues to have the best performance among all schemes under comparison. We
also noted the performance of the schemes that ignore “opportunity to observe” (i.e.,
DV EM and regular EM) becomes worse as the fraction of observable variables in
the system decreases. Figure 21 shows the results of different schemes by varying
the fraction of dependent variables. The number of sources was kept the same as the

123



Real-Time Syst

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 30  40  50  60  70  80  90  100  110  120E
st

im
at

io
n 

E
rr

or
 o

f S
ou

rc
e 

R
el

ia
bi

lit
y

Number of Sources

DV+OtO EM
OtO EM
DV EM

Regular EM

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 30  40  50  60  70  80  90  100  110  120

F
ra

ct
io

n 
of

 M
is

cl
as

si
fie

d 
V

ar
ia

bl
es

Number of Sources

DV+OtO EM
OtO EM
DV EM

Regular EM

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 30  40  50  60  70  80  90  100  110  120F
ra

ct
io

n 
of

 C
or

re
ct

ly
 B

ou
nd

ed
 S

ou
rc

es

Number of Sources

DV+OtO EM
OtO EM
DV EM

Regular EM

(a) (b) (c)

Fig. 19 OTO+DV EM, OTO EM, DV EM, and regular EM versus varying the number of sources. a
Estimation error of source reliability. b Fraction of misclassified variables. c Fraction of correctly bounded
sources
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Fig. 20 OTO+DV EM, OTO EM, DV EM, and regular EM versus varying the fraction of observable
variables. aEstimation error of source reliability.bFraction ofmisclassified variables. c Fraction of correctly
bounded sources
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Fig. 21 OTO+DV EM, OTO EM, DV EM, and regular EM versus varying the fraction of dependent
variables. aEstimation error of source reliability.bFraction ofmisclassified variables. c Fraction of correctly
bounded sources

previous experiment and the fraction of observable variables was set to 0.8. We varied
the fraction of dependent variables from 0.1 to 1. We observed that the OtO+DV EM
is still the best performed scheme compared to other baselines. Also note that the per-
formance of the schemes that take variable constraint into account (i.e., OtO+DV
EM and DV EM) improves as the fraction of dependent variables in the system
increases.

7 Discussion and limitations

Motivated by the need to address data reliability challenges in emerging cyber-
physical systems (with humans-in-the-loop), this paper presented a MLE framework
for exploiting the physical world constraints (i.e., source locations and observed vari-

123



Real-Time Syst

able constraints) to improve the reliability of social sensing. Some limitations exist
that offer directions for future work.

First, we do not explicitly address uncertainties in reported locations and the
observed variables in our model are assumed to be time invariant. This is mainly
because our current application involves the detection of fixed infrastructure (e.g.,
locations of stop signs and traffic lights where the localization accuracy of the GPS
is sufficient). Time is also less relevant in such context. Hence, the source constraint
is only a function of source location, and observed variable constraints are not likely
to change over time. In systems where the state of the environment may change over
time, when we consider the source constraints, it is not enough for the source to have
visited a location of interest. It is also important that the source visits that location
within a certain time bound during which the state of the environment has not changed.
Similarly, when we consider observed variable constraints, it is crucial that constraints
of observed variables remain stable within a given time interval and we have an effi-
cient way to quickly update our estimation on such constraints as time goes by. More
recently, we have developed an extended MLE framework to explicitly handle time
variant variables in our model (Wang et al. 2014b). The intuition of the new approach
is that we could model the correlations between different states of a time variant vari-
able in a similar way as we model observed variable constraints, which is discussed
in this paper. In these applications, the localization error is not an issue, but in gen-
eral such errors can be problematic, e.g., when collecting information from social
media such as Twitter. Future work needs to consider such errors in the more general
setting.

Second, we assume sources will only report observations for the places they have
been to (e.g., cars only generate stop sign observations on the streets their GPS traces
covered). Hence, it makes sense to “penalize” sources for not making observations
for some clearly observable variables based on their locations. However, many other
factors might also influence the opportunity of users to generate observations in real-
world social sensing applications. Some of these factors are out of user’s control.
For example, in some geo-tagging applications, participants use their phones to take
photos of locations of interest. However, this approach might not work at some places
due to “photo prohibited” signs or privacy concerns. Source reliability penalization
based on visited locations might not be appropriate in such context. It is interesting to
extend the notion of location-based opportunity-to-observe in our model to consider
different types of source constrains in other social sensing applications.

Third, we do not assume “Byzantine” sources in our model (e.g., cars will not cheat
in reporting the their GPS coordinates). However, in some crowd-sensing applications,
sources can intentionally report incorrect locations (e.g., Google’ Ingress). Different
techniques have been developed to detect and address location cheating attacks on both
mobile sensing applications (He et al. 2011) and social gaming systems (de Valmaseda
et al. 2013). These techniques can be used along with our schemes to solve the truth
estimation problem in social sensing applications where source’s reliability is closely
related to their locations. Moreover, it is also interesting to further investigate the
robustness of our scheme with respect to the percentage of cheating sources in the
system.
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Finally, we assume that the joint probability distribution of dependent variables is
known or can be estimated from prior knowledge. This might not be possible for all
social sensing applications. Clearly, the approach in the current paper would not apply
if nothing was known about spatial correlations in environmental state. Additionally,
the scale of current experiment is relatively small. We are working on new social
sensing applications, where we can test our models at a larger scale.

8 Related work

This work broadly falls into the area of addressing correctness challenges in
cyber-physical systems. Significant prior advances were made in addressing timing
correctness and functional correctness of cyber-physical systems (Liu and Layland
1973; Park et al. 1996; Pandya and Malek 1998; Mok and Chen 1997; Strosnider et
al. 1995; Sprunt et al. 1989; Lin and Tarng 1991; Cook et al. 2005, 2006; Alur et al.
1995; Saeedloei and Gupta 2011). In real time community, a large number of literature
centered around developing various scheduling policies and deriving corresponding
utilization bounds to address timing correctness. A good survey of real-time schedul-
ing policies can be found in (Sha et al. 2004). Liu and Layland presented the first
utilization bound for periodic tasks on a single processor (Liu and Layland 1973).
This work is followed by a plethora of work to improve the Liu and Layland bound
in different dimensions such as run-time extension (Park et al. 1996), fault-tolerance
extension (Pandya and Malek 1998), multi-frame periodic model extension (Mok and
Chen 1997). Several algorithms have also been developed to derive the utilization
bounds for aperiodic tasks (Strosnider et al. 1995; Sprunt et al. 1989; Lin and Tarng
1991). The functional correctness in CPS mainly refers to correctness of program
logic and system modeling (Sha et al. 2009; Rajkumar et al. 2010). Useful results and
tools have been recently developed for software verification and program analysis in
cyber-physical and hybrid systems (Cook et al. 2005, 2006). Formalism basedmethods
have also been developed to study the modeling correctness of CPS (Alur et al. 1995;
Saeedloei and Gupta 2011). In contrast, this paper investigates data correctness chal-
lenges, which is motivated by cyber-physical applications with humans-in-the-loop;
specifically the rise of applications that exploit social sensing.

Human-in-the-loop cyber-physical systems (HiLCPSs) incorporate a challenging
and promising class of CPS applications that augment and facilitate human interaction
with the physical world (Schirner et al. 2013). Some examples of these applications
include energy management (Lu et al. 2010), health care (Kay et al. 2012), automobile
systems (Ganti et al. 2010), and disaster response (Uddin et al. 2011). Many inter-
esting research challenges have been studied in HiLCPSs applications (Munir et al.
2013). For example, Wolpaw et al. developed a non-invasive brain computer inter-
face (BCI) to efficiently measure electric potential on the scalp for the infererence of
human’s intent (Wolpaw and Wolpaw 2012). Lu et al. designed a smart thermostat
system by leavening hidden markov model to model occupancy and sleep pattern of
the residents in a home for energy savings (Lu et al. 2010). The work in this paper is
complementary to the work mentioned above. We focused on addressing the data reli-
ability problems in HiLCPSs where humans play the role of sensors or sensor carriers
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and where the reliability of data sources and the collected data is in general unknown a
priori.

Social sensing ismadepossible by the great increase in the number ofmobile sensors
owned by individuals (e.g., smart phones), the proliferation of Internet connectivity,
and the fast growth inmass disseminationmedia (e.g., Twitter, Facebook, and Flickr, to
name a few). In social sensing applications, humans play a key role in data collection
by acting as sensor carriers (Lane et al. 2008) (e.g., opportunistic sensing), sensor
operators (Burke et al. 2006) (e.g., participatory sensing) or sensor themselves. An
early overview of social sensing applications is described in (Abdelzaher et al. 2007).
Examples of early systems include CenWits (Huang et al. 2005), CarTel (Hull et al.
2006), BikeNet (Eisenman et al. 2007), and CabSense.4 Recent work explored privacy
(Pham et al. 2010), energy-efficient context sensing (Nath 2012), and social interaction
aspects (Rachuri et al. 2011).

There exists a good amount of work in the data mining and machine learning com-
munities on the topic of fact-finding, which addresses the challenge of ascertaining
correctness of data from unreliable sources (Kleinberg 1999; Yin et al. 2008; Paster-
nack and Roth 2010). More recent work on fact-finding came up with new algorithms
by leveraging techniques in statistics and estimation theory (Zhao et al. 2012; Wang
et al. 2012b, 2013a, c, 2014a). Zhao et al. (2012) presented Bayesian network model
to handle different types of errors made by sources and merge multi-valued attribute
types of entities in data integration systems. Wang et al. (2012b) proposed a MLE
framework that offers a joint estimation on source reliability and variable classifica-
tion based on a set of general simplifying assumptions. In their following work, Wang
et al. further extended their framework to handle streaming data (Wang et al. 2013a)
and source dependency (Wang et al. 2014a). The approach was compared to several
state-of-the-art previous fact-finders and was shown to outperform them in estimation
accuracy (Wang et al. 2012b). Accordingly, we only compare our new extensions to
the winning approach from prior art. The accuracy of the MLE approach has been
quantified in Wang et al. (2013c). However, the derivation of such accuracy bounds
are based on the assumptions that sources have opportunities to observe the underly-
ing events of all variables and variables are independent. In contrast, we derived new
accuracy bounds in this paper that relaxed the above two assumptions. In other words,
our bounds accommodated a source’s opportunity to observe a subset of variables and
constraint between different variables.

Finally, physical correlations and models (both spatial and temporal) have been
extensively studied in thewireless sensor network (WSN) community. They have often
been used to reduce resource consumption by leveraging knowledge of the physical
model or dependency to reduce data transmission needs. Compression and coding
schemes were proposed to reduce the data redundancy in the space domain (Scaglione
and Servetto 2002; Xu and Lee 2006). Temporal correlations were exploited to reduce
network loadwhile offering compression quality guarantees (Guitton et al. 2007;Ali et
al. 2011).Thenovelty of ourwork lies in incorporating the constraints from thephysical
world into a framework for improving estimation accuracy as opposed to reducing

4 CabSense. http://www.cabsense.com.
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resource cost. The underlying insight is the same: knowledge of physical constraints
between variables reduces problem dimensionality. Prior WSN work harvests such
reduction to correspondingly reduce data transmission needs. In contrast, we harvest
it to improve noise elimination at the same resource cost.

9 Conclusion

This paper presented a framework and new analytic bounds for incorporating source
and observed variable constraints that arise from physical knowledge (of source loca-
tions and observed variable correlations) intomaximum-likelihood analysis to improve
the accuracy of social sensing in cyber-physical applications with humans-in-the-loop.
The problem addressed was one of jointly assessing the values of observed vari-
ables and the reliability of their sources by exploiting physical constraints and data
provenance relations to better estimate the likelihood of reported observations. An
expectation maximization scheme was described that arrives at a maximum likelihood
solution. The performance of the new algorithm and analytic bounds was evaluated
through both a real world social sensing application and extensive simulation studies.
Results show a significant reduction in estimation error of both source reliability and
variable classification as well as the correctness of derived analytic bounds thanks to
the exploitation of physical constraints.
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Appendix

Derivation of the E-step and M-step of OtO EM

Having formulated the new likelihood function to account for the source constraints
in the previous subsection, we can now plug it into the Q function defined in Eq. (7)
of Expectation Maximization. The E-step can be derived as follows:

Q
(
θ |θ(n)

)
= EZ |X,θ(n)[log L(θ; X, Z)]

=
N∑

j=1

{
p(z j = 1|X j , θ

(n)) ×
∑

i∈S j

(logαi, j + log d j )

+ p(z j = 0|X j , θ
(n)) ×

∑

i∈S j

(logαi, j + log(1 − d j ))

}
(22)
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where p(z j = 1|X j , θ
(n)) represents the conditional probability of the variable C j to

be true given the observation matrix related to the j th observed variable and current
estimate of θ . We represent p(z j = 1|X j , θ

(n)) by Z(n, j) since it is only a function
of t and j . Z(n, j) can be further computed as:

Z(n, j) = p(z j = 1|X j , θ
(n))

= p(z j = 1; X j , θ
(n))

p(X j , θ(n))

= p(X j , θ
(n)|z j = 1)p(z j = 1)

p(X j , θ(n)|z j = 1)p(z j = 1) + p(X j , θ(n)|z j = 0)p(z j = 0)

=
∏

i∈S j
αi, j × d(n)

j
∏

i∈S j
αi, j × d(n)

j + ∏
i∈S j

αi, j × (1 − d(n)
j )

(23)

Note that, in the E-step, we continue to only consider sources who observe a given
variable while computing the likelihood of reports regarding that variable.

In theM-step, we set the derivatives ∂Q
∂ai

= 0, ∂Q
∂bi

= 0, ∂Q
∂d j

= 0. This gives us the θ∗

(i.e., a∗
1 , a

∗
2 , . . . , a

∗
M ;b∗

1, b
∗
2, . . . , b

∗
M ;d∗

1 , d∗
2 , . . . , d∗

N ) that maximizes the Q
(
θ |θ(n)

)

function in each iteration and is used as the θ(n+1) of the next iteration.

a(n+1)
i = a∗

i =
∑

j∈SJi Z(n, j)
∑

j∈Ci Z(n, j)

b(n+1)
i = b∗

i =
∑

j∈SJi (1 − Z(n, j))
∑

j∈Ci (1 − Z(n, j))

dt+1
j = d∗

j = Z(n, j)

d∗
i =

∑
j∈Ci Z(n, j)

|Oi | (24)

where Oi is set of variables source Si observes according to the knowledge matrix
SK and Z(n, j) is defined in Eq. (23). SJi is the set of variables the source Si actually
reports in the observation matrix SC . We note that, in the computation of ai and bi , the
silence of source Si regarding some variable C j is interpreted differently depending
on whether Si observed it or not. This reflects that the opportunity to observe has been
incorporated into theM-Stepwhen the estimation parameters of sources are computed.
The resulting OtO EM algorithm is summarized in the subsection below.

Derivation of E-step and M-step of DV and OtO+DV EM

Given the new likelihood function of the DV EM scheme defined in Eq. (11), the
E-step becomes:
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Q
(
θ |θ(n)

)
= EZ |X,θ(n)[log L(θ; X, Z)]
=

∑

g∈G
p(zg1 , . . . , zgk |Xg, θ

(n))

×
{ ∑

i∈M

∑

j∈cg
logαi, j + log p(zg1 , . . . , zgk )

}
(25)

where p(zg1 , . . . , zgk |Xg, θ
(n)) represents the conditional joint probability of all vari-

ables in independent group g (i.e., g1, . . . , gk) given the observed data regarding these
variables and the current estimation of the parameters. p(zg1 , . . . , zgk |Xg, θ

(n)) can
be further computed as follows:

p(zg1 , . . . , zgk |Xg, θ
(n)) = p(zg1 , . . . , zgk ; Xg, θ

(n))

p(Xg, θ(n))

= p(Xg, θ
(n)|zg1 , . . . , zgk )p(zg1 , . . . , zgk )∑

g1,...,gk∈Yg
p(Xg, θ(n)|zg1, . . . , zgk )p(zg1 , . . . , zgk )

=
∏

i∈M
∏

j∈cg αi, j p(zg1 , . . . , zgk )
∑

g1,...,gk∈Yg

∏
i∈M

∏
j∈cg αi, j p(zg1 , . . . , zgk )

(26)

We note that p(z j = 1|X j , θ
(n)) (i.e., Z(n, j)), defined as the probability that C j is

true given the observed data and the current estimation parameters, can be computed
as the marginal distribution of the joint probability of all variables in the independent
variable group g that variable C j belongs to (i.e., p(zg1 , . . . , zgk |Xg, θ

(n)) j ∈ cg).
We also note that, for the worst case where N variables fall into one independent
group, the computational load to compute this marginal grows exponentially with
respect to N . However, as long as the constraints on observed variables are localized,
our approach stays scalable, independently of the total number of estimated variables.

In the M-step, as before, we choose θ∗ that maximizes the Q
(
θ |θ(n)

)
function in

each iteration to be the θ(n+1) of the next iteration. Hence:

a(n+1)
i = a∗

i =
∑

j∈SJi Z(n, j)
∑N

j=1 Z(n, j)

b(n+1)
i = b∗

i =
∑

j∈SJi (1 − Z(n, j))
∑N

j=1(1 − Z(n, j))

dt+1
j = d∗

j = Z(n, j) (27)

where Z(n, j) = p(z j = 1|X j , θ
(n)). We note that for the estimation parameters,

ai and bi , we obtain the same expression as for the case of independent variables.
The reason is that sources report variables independently of the form of constraints
between these variables.

Next, we combine the two EM extensions (i.e., OtO EM and DV EM) derived so
far to obtain a comprehensive EM scheme (OtO+DV EM) that considers constraints
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on both sources and observed variables. The corresponding E-Step and M-Step are
shown below:

p(zg1 , . . . , zgk |Xg, θ
(n)) = p(zg1 , . . . , zgk ; Xg, θ

(n))

p(Xg, θ(n))

= p(Xg, θ
(n)|zg1 , . . . , zgk )p(zg1 , . . . , zgk )∑

g1,...,gk∈Yg
p(Xg, θ(n)|zg1, . . . , zgk )p(zg1 , . . . , zgk )

=
∏

i∈S j

∏
j∈cg αi, j p(zg1 , . . . , zgk )

∑
g1,...,gk∈Yg

∏
i∈S j

∏
j∈cg αi, j p(zg1 , . . . , zgk )

where S j : Set of sources observes C j (28)

a(n+1)
i = a∗

i =
∑

j∈SJi Z(n, j)
∑

j∈Ci Z(n, j)

b(n+1)
i = b∗

i =
∑

j∈SJi (1 − Z(n, j))
∑

j∈Ci 1 − Z(n, j))

dt+1
j = d∗

j = Z(n, j)

where Ci is set of variables source Si observes (29)
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