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ABSTRACT
The proliferation of mobile sensing and communication de-
vices in the possession of the average individual generated
much recent interest in social sensing applications. Sig-
nificant advances were made on the problem of uncover-
ing ground truth from observations made by participants
of unknown reliability. The problem, also called fact-finding
commonly arises in applications where unvetted individuals
may opt in to report phenomena of interest. For exam-
ple, reliability of individuals might be unknown when they
can join a participatory sensing campaign simply by down-
loading a smartphone app. This paper extends past social
sensing literature by offering a scalable approach for ex-
ploiting dependencies between observed variables to increase
fact-finding accuracy. Prior work assumed that reported
facts are independent, or incurred exponential complexity
when dependencies were present. In contrast, this paper
presents the first scalable approach for accommodating de-
pendency graphs between observed states. The approach is
tested using real-life data collected in the aftermath of hur-
ricane Sandy on availability of gas, food, and medical sup-
plies, as well as extensive simulations. Evaluation shows that
combining expected correlation graphs (of outages) with re-
ported observations of unknown reliability, results in a much
more reliable reconstruction of ground truth from the noisy
social sensing data. We also show that correlation graphs
can help test hypotheses regarding underlying causes, when
different hypotheses are associated with different correlation
patterns. For example, an observed outage profile can be at-
tributed to a supplier outage or to excessive local demand.
The two differ in expected correlations in observed outages,
enabling joint identification of both the actual outages and
their underlying causes.
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1. INTRODUCTION
Recent advent of sensing applications, where unvetted

participants can perform measurements, generated interest
in techniques for uncovering ground truth from observations
made by sources of unknown reliability. This paper ex-
tends prior work by offering scalable algorithms for exploit-
ing known dependency graphs between observed variables
to improve the quality of ground truth estimation.

Consider, for example, post-disaster scenarios, where sig-
nificant portions of a city’s infrastructure are disrupted. Com-
munication resources are scarce, rumors abound, and means
to verify reported observations are not readily available.
Survivors report to a central unit the locations of damage
and outages, so that help may be sent. Some reports are ac-
curate, but much misinformation exists as well. Not know-
ing the individual sources in advance, it may be hard to tell
which reports are more reliable. Simply counting the num-
ber of reports that agree on the facts (called voting in prior
literature) is not always a good measure of fact correctness,
as different sources may have different reliability. Hence, a
different weight should be associated with each report (or
vote), but that weight is not known in advance.

Prior work of the authors addressed the above problem
when the reported observations are independent [22] and
considered the case where second-hand observations were
reported by other than the original sources [21]. In work
that comes closest to the present paper, an algorithm was
presented for the case, where the reported variables are cor-
related [20]. Unfortunately, the computational and repre-
sentational complexity of the correlation was exponential in
the number of correlated variables. Hence, in practice, it
was not feasible to consider more than a small number of
correlated variables at a time.

In sharp contrast to the above results, in this paper, we
consider the case where reported variables have non-trivial
dependency graphs. For example, upon the occurrence of
a natural or man-made disaster, flooding, traffic conditions,
outages, or structural damage in different parts of a city
may be correlated at large scale. Furthermore, the struc-
ture of the correlations might be partially known. Areas of
the same low elevation may get flooded together. Nearby
parts of the same main road may see correlated traffic con-
ditions. Buildings on the same power line may suffer corre-
lated power outages. Gas stations that have the same sup-
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plier might have correlated availability of gas. Correlations
(e.g., among failures) can also shed light on the root cause.
For example, in a situation where a supply line simultane-
ously feeds several consumers, a failure in the line will result
in correlated failures at the downstream consumers. If the
topology of the supply lines is known, so is the correlation
structure among expected consumer failures. If consumers
build products that need multiple suppliers, knowing the
pattern of the corelated consumer failures can give strong
evidence as to which one of the suppliers may have failed.

Clearly, if the aforementioned correlation structure is not
known, we cannot use this approach. Scenarios where cor-
relations structures are not known can be addressed using
prior work that simply views the underlying variables as un-
correlated [22]. This paper offers performance and accuracy
improvements in the special (but important) case, where hy-
potheses regarding possible correlations are indeed available.
Exploiting such correlations reduces problem dimensional-
ity, allowing us to infer the state of points of interest more
accurately and in a more computationally efficient manner.

What complicates the problem (in social sensing scenar-
ios) is that actual state of the underlying physical system is
not accurately known. All we have are reports from sources
of unknown reliability. This paper develops the first scalable
algorithm that takes advantage of the structure of correla-
tions between (large numbers of) observed variables to bet-
ter reconstruct ground truth from reports of such unreliable
sources. We show that our algorithm has better accuracy
than prior schemes such as voting and maximum likelihood
schemes based on independent observations [22]. It also sig-
nificantly outperforms, in terms of scalability, previous work
that is exponential in dependency structures [21].

The general idea behind the scalability of the new scheme
lies in exploiting conditional independence, when one cata-
lyst independently causes each of multiple consequences to
occur. Identification of such conditional independence rela-
tions significantly simplifies reasoning about the joint cor-
relations between observed values, thus simplifying the ex-
ploitation of such correlations in state estimation algorithms.
Although previous work [20] considers correlated variables
in social sensing applications, it does not exploit conditional
independence. The computational complexity of the previ-
ous solution increases exponentially in the number of corre-
lated variables, which makes it applicable only to applica-
tions with a small number of such variables. By modeling
the structural correlations of variables as a Bayesian network
and exploiting conditional independence, our algorithm is
more computationally efficient. Its computational complex-
ity depends on the size of the largest clique (i.e., complete
sub-graph) in the Bayesian network, while the complexity
of the previous solution [20] depends on the total number of
nodes in the Bayesian network making the latter intractable
for applications with a large number of correlated variables.

The contributions of this paper are thus summarized as
follows:

• We extend the previous solution to a new application
domain in which a large number of variables are struc-
turally interdependent. Our algorithm is shown to be
more accurate and computationally efficient, compared
with previous solutions.

• The interdependent structure is formulated as a Bayesian
network, which enables us to exploit well-established

techniques of Bayesian network analysis. We also show
that the Bayesian network generalizes the models we
proposed in previous work.

• Our algorithm is evaluated by both extensive simula-
tions and a real-world data set. The evaluation results
show that our solution outperforms the state of the
art.

The rest of the paper is organized as follows. We formulate
our problem in Section 2. In Section 3, we argue that our
solution is general and can be applied to solve previous social
sensing challenges by showing that all the previous models
are special cases of our Bayesian model. We propose our
solution in Section 4 and evaluate our algorithm in Section 5.
A literature review is presented in Section 6. The paper
concludes in Section 7.

2. PROBLEM FORMULATION
Social sensing differs from sensing paradigms that use in-

field physical sensors (e.g. Wireless Networked Sensing [15])
in that it exploits sensors in social spaces. Examples in-
clude sensor-rich mobile devices like smartphones, tablets,
and other wearables, as well as using humans as sensors.
The involvement of humans in the sensing process enables
an application to directly sense variables with higher-level
semantics than what traditional sensors may measure. How-
ever, unlike physical devices, which are usually reliable or
have the same error distribution, the reliability of human
sources is more heterogeneous and may be unknown a pri-
ori. This source reliability challenge in social-sensing sys-
tems was recently articulated by Wang et al. [22]. Solutions
that estimate source reliability were improved in follow-up
publications [20, 21, 23].

In recent work, the authors modeled human sources as bi-
nary sensors, reporting events of interest. The rationale be-
hind the binary model is that humans are much better at cat-
egorizing classes of observations than at estimating precise
values. For example, it is much easier to tell whether a room
is warm or not than to tell its exact temperature. Binary
variables can be easily extended to multivalued ones [23],
which makes the binary model versatile. In this paper, we
adopt the binary model and assume that a group of human
sources, denoted by S, participate in a sensing application
to report values of binary variables, we call the event vari-
ables. For example, they may report the existence or absence
of gas at a set of gas stations after a hurricane. These vari-
ables are collectively denoted by C. The goal of this paper
is to jointly estimate both the source reliability values and
ground-truth measured variable values, given only the string
of noisy reports. In contrast to prior work, we assume that
the underlying variables are structurally correlated at scale.
The question addressed in this paper is how to incorporate
knowledge of these correlations into the analysis.

2.1 Modeling Interdependent Event Variables
In previous work, event variables were either assumed to

be independent [22, 21] or were partitioned into groups of
small size [20, 23] with no dependencies among groups. So-
lution complexity grew exponentially with the maximum
group size. In practice, it is not uncommon that all or a
large portion of event variables are interdependent. For ex-
ample, in an application that monitors traffic conditions in
a city, pertinent variables might denote weather conditions
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(e.g., snowy or rainy weather), local entertainment events
that impact traffic (e.g., football games or concerts), road
surface conditions (e.g., potholes on road surfaces), and traf-
fic speed, among others. These variables are correlated. Bad
weather results in slow traffic. So do the local entertainment
events and bad road surfaces. Traffic congestion on one road
segment might cause congestion on another road segment.
The pervasive dependencies among variables make previous
work (e.g., Wang et al. [20]) inapplicable due to intractabil-
ity, thus calling for a better model to handle them. This
paper is the first to study the reliable social-sensing prob-
lem with interdependent variables, at scale.

Our solutions are based on the insight that although in-
dependence is uncommon in real applications, conditional
independence does often arise. As stated in [12], depen-
dencies usually expose some structure in reality. The de-
pendency structure encodes conditional independence, that
can be leveraged to greatly simplify the estimation of val-
ues of variables. In the previous application example, given
that the weather is snowy, the resulting traffic congestion
on two road segments can be assumed to be conditionally
independent. Both are caused by snowy weather but nei-
ther is affecting the other (assuming they are sufficiently far
apart). However, without knowing the state of the weather,
we are not able to assume that congestion on both segments
is independent. Measuring congestion on those segments, it
will tend to be correlated (in the presence of snow events).

In this paper, we model dependencies among variables
by a Bayesian network [13]. The underlying structure of
a Bayesian network is a directed acyclic graph (DAG) in
which each node V corresponds to a variable, v, and each arc
U → V denotes a conditional dependence such that the value
of variable v is dependent on the value of u. The Bayesian
network is a natural way to model causal relations between
variables. Since Bayesian networks are well-established tools
for statistical inference, we can leverage prior results to solve
our reliable social-sensing problem.

Of course, in some cases, the underlying dependences can
form a complete graph in which any pair of variables are di-
rectly interdependent. In this extreme situation, there would
be no efficient inference algorithm with computational com-
plexity inferior to Θ(2N ), where N denotes the total number
of variables (i.e., |C|). All inferences should be made by con-
sidering the joint distribution of all variables. However, as
stated in [12], the complete graph structure does not often
happen in real applications, and so we are not interested in
this extreme case.

2.2 Categorized Source Reliability
Although previous work in social sensing assumes that

sources have different reliability, for a specific source, its
reliability is assumed to be fixed (e.g., [22, 20, 21]. This
fixed-reliability assumption does not hold in many practical
scenarios. For example, a diabetic person who is in need of
insulin might be a better source to ask about pharmacies
that remained open after a natural disaster, than a person
who is not in need of medication. The same diabetic person
might not be a good source to ask about gas stations that
are open, if the person does not own a car. In the above
scenario, if we assume that a single source has the same re-
liability in reporting all types of variables, the performance
of estimating the ground truth of these variables might be
degraded. To make the source reliability model more practi-

cal, and thus the estimation more accurate, we assume that
source reliability differs depending on the variable reported.
Measured variables are classified into different categories.
Source reliability is computed separately for each category.
We call it categorized source reliability.

With the categorized-source-reliability model, the relia-
bility of each source is represented by a vector (where each
element is corresponding to the reliability for some reported
category of variabls, rather than a scalar as in previous work.
Please note that the previous reliability model is a special
case of our model as a single-element vector.

2.3 Problem Definition
Next, we formally define our reliable social-sensing prob-

lem with interdependent variable at scale. We denote the j-
th measured variable by Cj , and Cj is assumed to be binary.
More specifically, Cj ∈ {T, F} where T represents True (e.g.,
“Yes, the room is warm”), and F represents False (e.g., “No,
the room is not warm”). One can think of each variable
as the output of a different application-specific True/False
predicate about physical world state. Each variable Cj be-
longs to some category `, denoted by `Cj . We use L to
denote the category set.

In social-sensing, a source reports the values of variables.
We call those reports, claims. We use a matrix SC to repre-
sent the claims made by all sources S about all variables C.
We call it the source-claim matrix. In the source-claim ma-
trix, an element SCi,j = v means that the source Si claims
that the value of variable Cj is v. It is also possible that a
source does not claim any value for some variable, in which
case the corresponding item in the source-claim matrix SCi,j
is assigned value U (short for “Unknown”) meaning that the
source did not report anything about this variable. There-
fore, in the source-claim matrix, SC, each item SCi,j has
three possible values T , F and U .

We define the reliability of source Si in reporting values
of variables of category ` as the probability that variables
belonging to that category indeed have the values that the
source claims they do. In other words, it is the probability
that `Cj = v, given that SCi,j = v. In the following, we
shall use the short notation Xv to denote that the variable
X is of value v (i.e., X = v). Let `ti denote the reliability of
source Si in reporting values of variables of category `. We
formally define the source reliability as follows:

`ti = Pr
(
`Cvj |SCvi,j

)
. (1)

Let `T vi denote the probability that source Si reports the
value of variable `Cj correctly. In other words, the proba-
bility that Si reports value v for variable `Cj given that its
value is really v. Furthermore, let `F vi denote the probabil-
ity of an incorrect report by Si. In other words, it is the
probability that Si reports that `Cj has value v̄ given that
its value is v. Here x̄ is the complement of x (T̄ = F and
F̄ = T ). `T vi and `F vi are formally defined below:

`T vi = Pr
(
SCvi,j |`Cvj

)
, `F vi = Pr

(
SC v̄i,j |`Cvj

)
. (2)

Note that, `T vi + `F vi ≤ 1, since it is possible that the source
Si does not report anything of a variable. Therefore, we
have:

1− `T vi − `F vi = Pr
(
SCUi,j |`Cvj

)
. (3)
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Table 1: The summary of notations

Set of sources S
Set of variables C

Binary variable, j Cj
Variable X of category ` `X

Binary value set {T, F}
Source-claim matrix SC

Source reliability `ti = Pr
(
`Cvj |SCvi,j

)
Correctness probability `T vi = Pr

(
SCvi,j |`Cvj

)
Error probability `F vi = Pr

(
SC v̄i,j |`Cvj

)
We denote the prior probability that source Si makes a pos-
itive claim (i.e., claims a value T ) by sTi and denote the
prior probability that source Si makes a negative claim (i.e.,
claims a value F ) by sFi . We denote the prior probability
that variable Cj is of value v by dv. By the Bayesian theo-
rem, we have:

`T vi =
`ti · svi
`dv

, `F vi =
(1− `ti) · sv̄i

`dv
. (4)

Table 1 summarizes the introduced notations.
The dependencies between variables are given by a Bayesian

network. In the underlying dependency structure of the
Bayesian network (i.e., a DAG, denoted by G), each ver-
tex Vj corresponds to a variable Cj , and each arc Vj → Vk
corresponds to a causal relation between variables Cj and
Ck in which the value of Ck is dependent on that of Cj .
For any variable Cj , we use par(Cj) to denote the set of
variables on whom the value of Cj directly depends (i.e.,
not including transitive dependencies). Since the causal re-
lation is encoded in the Bayesian network, G, there is an arc
from each node denoting a variable in par(Cj) to the node
denoting Cj in G. Please note that each node Vj in the
Bayesian network is associated with a probability function
that takes, as input, a particular set of values of par(Cj),
and gives, as output, the probability of Cj being true. In
other words, given the Bayesian network, we know the con-
ditional probability Pr

(
`Cj

v|par(Cj)
)

for any event variable
Cj . We assume that the Bayesian network is known from
application context (e.g., we might have a map that says
which outlet depends on which suppliers), or can be empir-
ically learned from historic data by the algorithms such as
those introduced in [13]. Hence, our estimation algorithm
assumes that the Bayesian network is an input.

Finally, we formulate our reliable social-sensing problem
as follows: Given a source-claim matrix SC, a category la-
bel ` for each reported variable, and a Bayesian network G,
encoding the dependencies among variables, how to jointly
estimate both the reliability of each source and the true value
of each variable in a computationally efficient way? Here an
algorithm is defined as efficient if its time complexity is sub-
linear to the exponential (i.e., o(2|G|) for a Bayesian network
that is not a complete graph, where |G| is the total number
of nodes in the Bayesian network.

3. GENERALIZATION OF PREVIOUS
MODELS

Before we propose our estimation algorithm, in this sec-
tion, we show that our social-sensing model is more general
than those proposed in our previous work [22, 20, 21, 23]. In

other words, the social-sensing models proposed by the pre-
vious work are all special cases of ours. Therefore, thanks to
the general model, the estimation algorithm proposed in our
paper can be directly applied to any of the problems defined
in the previous work.

Figure 1: Model connections with previous work.

First, we show that the model proposed by Wang et al. [22]
is a special case of our model. In their model, both the
event variables and the sources were assumed independent.
Thus, the structure of a Bayesian network for this model
is just a DAG with arcs only connecting the event variable
and its corresponding claims from the sources, as shown in
Figure 1(a).

In [20], the model was extended to consider physical con-
straints of the sources (i.e., a variable might not be observed
by some source), as well as correlated variables that fall into
a bunch of independent groups. The structure of a Bayesian
network for this model has disjoint cliques (complete sub-
graphs) where each clique has a constant number of nodes,
as shown in Figure 1(b). In this figure, there are two cliques;
one has two nodes and the other has three. Furthermore,
since the physical constraints of the sources are considered,
there are some variable that can only be observed by a sub-
set of sources. Therefore, in the corresponding Bayesian net-
work, if the variable is not observed by some source, then
there is no arc between them in the DAG (such as the right-
most one that is observed only by the red source and the
orange source).

Source dependencies were considered in [21], where a claim
made by a source can either be original or be re-tweeted from
some other source. The variables are assumed independent.
The corresponding Bayesian network for this model is shown
as in Figure 1(c). If a source i is dependent on some other
source j, which means that the claim made by j actually af-
fects that made by i as shown in Figure 1(c). In Figure 1(c),
the black source is dependent on the red source, therefore
there is an arc from the red node to the black node for each
event variable. The arc from the SCj· to SCi· is enough to
model this dependence.

Recently, Wang et al. [23] further extended the previous
model by considering time-varying ground truth, in which
the value of each variable could vary over time. They proved
that given the evolving trajectory of each variable, by con-
sidering a sliding window of past states, the estimation result
is greatly improved compared with estimators that only con-
sider the current state. Their model can be represented by
a dynamic Bayesian network with time-varying dependency
structures. Figure 1(d) gives an example of a Bayesian net-

205



work representation of their model. Here, we omit the ver-
tices corresponding to claims made by sources SCi,j . In
the figure, the variable nodes with the same color are corre-
sponding to a variable in different time-slots. The evolving
trajectory of each variable can be represented by some de-
pendency structure among all its history states, as shown in
Figure 1(d).

The above examples illustrate how previous models can
be special cases of our model. Therefore, once we solved the
problem with the general model, using the same algorithm,
we are able to solve all the previous problems as defined
in [22, 20, 21, 23]. We propose our estimation algorithm in
the following section.

4. ESTIMATING THE STATES OF INTER-
DEPENDENT VARIABLES

In this section, we describe our ground truth estimation al-
gorithm for social-sensing applications with the interdepen-
dent variables at scale. Our algorithm follows the Expectation-
Maximization (EM) framework [4] that jointly estimates (1)
the reliability of each source, and (2) the ground truth value
of each reported variable. Here we assume that sources in-
dependently make claims; for dependent sources, we can ap-
ply the algorithm proposed in [21]. We call the proposed
algorithm EM-CAT (EM algorithm with CATegory-specific
source reliability.

4.1 Defining Estimator Parameters and Like-
lihood Function

EM is a classical machine-learning algorithm to find the
maximum-likelihood estimates of parameters in a statisti-
cal model, when the likelihood function contains latent vari-
ables [4]. To apply the EM algorithm, we first need to define
the likelihood function L(θ;x, Z), where θ is the parame-
ter vector, x denotes the observed data, and Z denotes the
latent variables. The EM algorithm iteratively refines the
parameters by the following formula until they converge:

θ(n+1) = arg max
θ
EZ|x,θ(n) [logL(θ;x, Z)] (5)

The above computation can be further partitioned into an E-
step that computes the conditional expectation of the latent
variable vector Z (i.e., Q(θ) = EZ|x,θn [logL(θ;x, Z)]), and
an M-step that finds the parameters θ that maximize the
expectation (i.e., θ(n+1) = arg maxθ Q(θ)). In our problem,
we define the parameter vector θ as:

θ = {(`T vi , F vi )|∀i ∈ S, v ∈ Λ, ` ∈ L}

where Λ = {T, F} denotes the set of binary values and L
is the set of event categories. The data x is defined as the
observations in the source-claim matrix SC, and the latent
variable vector Z is defined as the values of the event vari-
ables.

After defining θ, x and Z, the likelihood function is derived
as follows:

L(θ;x, Z) = Pr (x, Z|θ) = Pr (Z|θ) Pr (x|Z; θ)
= Pr (Z1, · · · , ZN ) · Pr (x1, · · · , xN |Z1, · · · , ZN ; θ) .

(6)

Here N = |C| is the number of event variables, and xj de-
notes all the claims made by the sources about the j-th vari-
able. In Equation (6), Pr (Z|θ) = Pr (Z) because the joint
probability of the event variables Pr (Z) is independent from
the parameters θ.

Next, we are going to simplify the likelihood function by
proving that for any event variables j1 and j2, xj1 and xj2
are conditionally independent given the latent variables Z.
We useX ⊥⊥ Y to denote thatX and Y are independent, and
similarly X ⊥⊥ Y |Z to denote that X and Y are conditionally
independent given Z. Before proving xj1 ⊥⊥ xj2 |Z, we first
introduce the definition of d-separation.

Definition 1 (d-separation). Let G be a Bayesian net-
work, and X1 
 · · ·
 Xn be a trail in G. Let Z be a subset
of the observed variables. The trail X1 
 · · · 
 Xn

1 is
active given Z if

• Whenever we have a V-structure Xi−1 → Xi ← Xi+1

in the trail, then Xi or one of its descendants are in
Z, and

• no other node along the trail is in Z.

If for any trail between X1 and Xn is not active, then X1

and Xn are d-separated in G by Z [10].

Here a trail between X1 and Xn is an undirected path
that is computed by simply ignoring the directions of the
directed edges in the Bayesian network G. Note that if X1

or Xn is in Z, the trail is not active. Next, we introduce a
classical lemma showing that the d-separation implies con-
ditional independence.

Lemma 1. If Xi and Xj are d-separated in the Bayesian
network G given Z, then Xi ⊥⊥ Xj |Z [10] .

Now we are ready to prove that xj1 and xj2 are condi-
tionally independent given the latent variables Z for any
j1, j2 ∈ C in Theorem 1.

Theorem 1. For any pair of event variables j1 and j2,
xj1 and xj2 are conditionally independent given the latent
variables Z, i.e., ∀j1, j2 ∈ C, xj1 ⊥⊥ xj2 |Z.

Proof. To prove the theorem, we first need to define the
causal relationship between a claim SCi,j and the value Cj of
event j. Obviously, the value Cj of the event is independent
of how a source claims it, but the claim SCi,j made by a
source does rely on the value Cj of event j. Therefore, it is
clear this causal relationship between SCi,j and Cj should be
modeled by an arc from Zj to xi,j in the Bayesian network,
as illustrated in Figure 2. Here we do not distinguish the
variable Zj and its corresponding vertex in G, and the same
for xi,j and its corresponding vertex.

Therefore, for any pair of xi1,j1 and xi2,j2 , and for what-
ever event dependency graph G of the event variables, we
can find two vertices Zj1 and Zj2 in G such that all the
trails have the same structure: xi1,j1 ← Zj1 
 · · · 

Zj2 → xi2,j2 , as shown in Figure 2. Since Zj1 and Zj2 are
in Z = {Z1, · · · , ZN}, and by Definition 1, we know that
xi1,j1 and xi2,j2 are d-separated by Z. Please note that this
d-separation is valid for any pair of sources i1 and i2, thus
xi ⊥⊥ xj |Z by Lemma 1.

By Theorem 1 and the independent source assumption,
the likelihood function in (6) can be simplified as:

L(θ;x, Z) = Pr (Z1, · · · , ZN )
∏
j∈C

∏
i∈S Pr (xi,j |Zj ; θ) .

(7)
1We use X → Y to denote the directed edge (arc) that
points from X to Y in G, and X 
 Y to denote the arc
that connects X and Y whose direction, however, is not of
interest.

206



Figure 2: An illustration of the Bayesian network.

4.2 The EM Algorithm
Given the likelihood function, following (5), we can de-

rive the EM algorithm. We omit the detailed mathematical
derivations here since it is a standard procedure, and di-
rectly show the final results of how to update the parameters
θ = {`T vi , `F vi |∀i ∈ S, v ∈ Λ, ` ∈ L} in (8).

`T vi
(n+1)

=

∑
j∈`Cv

i
Pr(Zj=v|x;θ(n))∑

j∈`C Pr(Zj=v|x;θ(n))
,

`F vi
(n+1)

=

∑
j∈`Cv̄

i
Pr(Zj=v|x;θ(n))∑

j∈`C Pr(Zj=v|x;θ(n))
.

(8)

In (8), θ(n) denotes the parameters in the n-th iteration of
the EM algorithm, `C denotes the set of event variables with
label `, and `Cvi is a subset of `C with each element that the
source i claims its value being v (i.e. `Cvi = {j|SCi,j =
v, L(j) = `}, where L(j) denotes the label of event variable
j).

In Equation (8), the key step for refining the parameters

is to compute Pr
(
Zj = v|x; θ(n)

)
for each j ∈ C and v ∈ Λ.

Once we have computed this value, the rest of the compu-
tation for updating the parameters becomes trivial. Since
we are using a Bayesian network to encode the dependences
between variables, we know the conditional probability for
each variable given a particular set of values of its parent
variables. These are given as an input of our algorithm.

Hence, we can compute Pr
(
Zj = v|x; θ(n)

)
, the marginal

probability of variable Zj given the evidence x. Similarly,

Pr
(
Zj = v|x; θ(n)

)
can be computed. The pseudocode of

our estimation algorithm is given in Algorithm 1.

5. EVALUATION
In this section, we study the performance of our EM-CAT

algorithm through extensive simulations as well as a real-
world data set. While empirical data is always better, such
data often constitutes isolated points in a large space of pos-
sible conditions. The simulation, in contrast, can extensively
test the performance of our algorithm under very different
conditions that are impractical to cover exhaustively in an
empirical manner. The limitation of simulation is that read-
world data might not follow exactly the assumed model.
Therefore, we also evaluate our algorithm with a real-world
data set. Evaluation results show that the new algorithm
offers better estimation accuracy compared to other state-
of-the-art solutions.

5.1 Simulation Study
In this simulation study, we build a social-sensing simula-

tor in Matlab R2013b. For Bayesian network inference, we

Algorithm 1 EM-CAT: Expectation-Maximization Algo-
rithm with Category-specific Source Reliability

Input: The source-claim matrix SC, the Bayesian network G,
and event category ` ∈ L for each event j ∈ C.
Output: The estimated variable values, and the reliability vector
of each source.

1: Initialize θ(0) with random values between 0 and 0.5.
2: n← 0
3: repeat
4: n← n+ 1
5: for Each j ∈ C, each v ∈ Λ do
6: Compute Pr

(
Zj = v|x; θ(n)

)
from the Bayesian net-

work G.
7: end for
8: for Each i ∈ S, each v ∈ Λ and each label ` ∈ L do

9: Compute `T vi
(n)

and `F vi
(n)

from (8)
10: end for
11: until θ(n) and θ(n−1) converge
12: for Each j ∈ C and v ∈ Λ do
13: Z(j, v)← Pr

(
Zj |x; θ(n)

)
.

14: if Z(j, T ) > Z(j, F ) then
15: Assign variable j with value T
16: else
17: Assign variable j with value F
18: end if
19: end for
20: for Each i ∈ S, each category ` ∈ L do
21: Compute its reliability `ti from (4)
22: end for

exploit an existing Bayesian network toolbox developed by
Kevin Murphy [8]. Below we present our simulation setup
and results.

5.1.1 Methodology
We simulated 100 interdependent binary variables. The

underlying dependency graph is a random DAG that changes
in each simulation run. The Bayesian network is created
with the dependency structure defined by the DAG and pa-
rameters randomly generated using the toolbox. The ex-
pected ground truth for all variables is set to 0.5 (i.e., with
probability 0.5, the variable will be True). The actual (marginal)
probability distribution for each variable is defined by the
Bayesian network.

The ground truth values of variables are generated based
on the Bayesian network in a topologically-sorted order.
That is, we wait to generate the value of variable v until
the values of all of its parents, par(v), have been generated.
Therefore, the ground truth value distribution of our vari-
ables follows the Bayesian network. Each event variable is
also assigned a label ` randomly from a label set L to sim-
ulate the event category.

The simulator randomly assigns a reliability vector for
each source. We randomly select a set of the sources to
be “experts” at some category. Hence, for each, we choose
a category, `, and give the source a high reliability value
in reporting variables of that category. The other values
in the reliability vector are assigned lower values, making
the average reliability of each source roughly the same. We
use ti to denote the average reliability of source Si. In the
simulation, ti is in the range (0.5, 1). We also simulate the
“talkativeness” of the sources, which denotes the probability
that a source would make a claim, denoted by si.

The source-claim matrix SC is then generated according
to the reliability vector of each source, ti, and the talkative-
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ness of each source, si. For each source Si and each event
variable Cj , we first decide whether the source will make a
claim about the variable by flipping a biased coin with prob-
ability si that the source will claim something. If it does not
claim, then SCi,j = Unknown, otherwise we generate the
value of SCi,j based on T vi and F vi which can be computed
from the reliability vector of the source.

The source-claim matrix SC is the evidence x in the Bayesian
network. To include the claim nodes in the Bayesian net-
work, we extend the DAG such that for each vertex Vj in
the DAG G we create one vertex V ′j and add an arc (Vj , V

′
j )

to G. We tried to add one vertex Vi,j for each xi,j and
directly set the parameters of Vi,j to the corresponding T vi
and F vi in the parameter vector θ(n). This implementation
is straightforward. However, it adds too many extra (that
is |S| × |C|) vertices to the Bayesian network, which greatly
slows down the inference computation. Therefore, in our
implementation, we just add one vertex V ′j for each variable
Vj in G, and set the evidence (the observed value) of V ′j to

False (which means Pr
(
V ′j = False|Vj

)
= p(xj |Zj ; θ(n)) =∏

i∈S p(xi,j |Zj ; θ
(n))). In this implementation, we only dou-

ble the size of the DAG, which makes the inference compu-
tation of the Bayesian network much more efficient.

The default values of the simulation parameters are as
follows: the number of sources is 40, the expected source
(average) reliability ti is 0.6, the talkativeness of the source
si is 0.6. The number of event variables is set to 100, and we
randomly generate the Bayesian network parameters such
that, in expectation, the probability that each variable is
True, is set to 0.5. The number of edges in the Bayesian
network is 100. There are 2 categories by default.

We compare our algorithm to the algorithm proposed in [22]
and two intermediate extensions towards the current solu-
tion. We also include a simple baseline. We use EM-CAT
to denote our algorithm, and EM-REG to denote the algo-
rithm proposed in [22]. Note that, EM-REG assumes that
variables are independent, and all the variables share the
same category (i.e., it assumes that there is only one cate-
gory). The first extension of EM-REG is to add the Bayesian
dependency structure to the event variables. We call this
extension EM-T (EM algorithm with sTructed variables).
The second extension of EM-REG is to consider event cate-
gories, that is called EM-C. The simple baseline algorithm
is just voting, and is denoted by VOTING. VOTING esti-
mates each variable to be equal to the majority vote. Each
simulation runs 100 times and each result is averaged over
the 100 executions.

5.1.2 Evaluation Results
Figure 3 shows the performance of our EM-CAT algo-

rithm as the number of sources varies from 20 to 80. In Fig-
ure 3(a), we observe that our EM-CAT algorithm has the
lowest estimation error, and EM-T and EM-C work better
than the regular EM algorithm which is better than sim-
ple baseline voting. The reason is that when the underlying
event variables follow some dependency structure, exploit-
ing this piece of information will result a better estimator.
EM-CAT also considers the category-specific reliability of
each source. For each event category, EM-CAT will always
select the sources with higher reliability for the category.
Therefore, it achieves higher accuracy. Please note that as
the number of sources increases, the accuracy of all the es-
timators increases. More data sources will result in more

data. Therefore, the accuracy of the learning algorithm will
be improved.

Figure 3(b) shows the error in estimating source reliability.
Both the EM-CAT and EM-C are better in estimating source
reliability than the other two algorithms. The reason is that
the other algorithms ignore event categories. Thus, the in-
formation regarding differences in source reliability across
different categories of observations is not exploited.

Figure 4 shows the performance of the estimators as a
function of source reliability. From the figure, we observe
that with more reliable sources, the accuracy of the esti-
mators is greatly improved. Even the voting can result in
very reliable estimates when source reliability is 0.9 or above
(i.e., 90% of their reports are true). Among all the estima-
tors, our new EM-CAT is the best at both estimating the
ground truth values of reported variables and the reliability
of sources.

Figure 5 explores the effect of “talkativeness,” si, of the
sources on estimation accuracy. As mentioned earlier, the
talkativeness of a source denotes the probability that the
source will make a claim regarding some variable. In the
experiment, talkativeness is varied from 0.4 to 0.8. With
higher talkativeness, we have more data. This is the reason
why accuracy of the estimators improves as si increases.
Again, our EM-CAT algorithm is the best among all the
estimators.

In Figure 6, we study the performance of the estimators
when the number of edges in the dependency structure (a
DAG) varies. A larger number of edges in the DAG means
more dependencies among variables. Figure 6 shows that
performance of the state estimators does not change much
with the number of dependencies. The reason could be that
the parameters of the Bayesian network are generated uni-
formly at random in (0, 1). Therefore, in expectation, the
bias of the ground truth is around 0.5. However, if the bias
of the ground truth is skewed, we will observe a difference
among different dependency structures, since the value of
a variable will be affected more by its depended variables.
Our algorithm is the best among all the algorithms since
we exploit the dependency structure of the variables. Al-
though the accuracy of estimators does not vary much as
the structure changes, exploiting this information leads to a
more accurate state estimator.

We study the performance of the estimators as the number
of category labels varies from 2 to 5 in Figure 7. From Fig-
ure 7(a), we observe that as the number of labels increases,
the performance of EM-CAT becomes worse. This is be-
cause we end up with fewer and fewer data in each category.
With fewer data, the parameters of the estimator cannot
be learned accurately. Therefore the performance of estima-
tion degrades. This figure suggests that when the data size
is small, it is better to ignore category, but with a large data
size, it would be better to exploit it.

Figure 8, we study the performance of the estimators as
the number of variables varies from 80 to 110. From the
figure, we observe that the accuracy of the estimators im-
proves as the number of variables increases. The reason is
that we have more data to learn the estimation parameters
more accurately. Actually, the voting algorithm does not
vary much, since in voting each source has the same weight
as the others. Therefore, even when the number of variables
increases, the weight of the sources does not change, leav-
ing performance the same. Again, our algorithm EM-CAT
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(a) Variable State Estimation

(b) Source Reliability Estimation

Figure 3: Performance as the num-
ber of sources varies.

(a) Variable State Estimation

(b) Source Reliability Estimation

Figure 4: Performance as the source
reliability varies.

(a) Variable State Estimation

(b) Source Reliability Estimation

Figure 5: Performance as the source
talkativeness varies.

is the best among all the algorithms in both the estimation
of ground truth values of variables and estimation of source
reliability.

Next, we study the scalability of our EM-CAT algorithm.
We mainly compare our algorithm with the algorithm pro-
posed in [20]. Their algorithm considers the full joint distri-
bution of all the correlated variables.

We compare three inference algorithms: 1. the junction
tree algorithm (JTree), 2. the variable elimination
algorithm (VarElim), and 3. the method used in [20],
i.e., inference with the full joint distribution (Total).
Please note that all the three algorithms compute the exact
inference probility of the Bayesian network, there are also
algorithms that compute the approximate inference proba-
bility [10] which compromises the inference accuracy but has
a better computational complexity.

In Figure 9, we fixed the expected node degrees to be 2,
and varied the number of nodes in the Bayesian network
from 10 to 25. Note that, the y-axis is in log-scale. From
Figure 9, we clearly observe that the computation time of
the Total algorithm increases exponentially as the number
of nodes increase linearly. The computation time of both
the JTree algorithm and the VarElim algorithm grows in a
much less rapid way. The time complexity of both the al-
gorithms actually depends on the size of the largest clique
(the complete sub-graph in the Bayesian network); since the
expected node degree is 2, it is possible that the resulting
graph has a clique of size n, where n is less than the total
number of nodes N in the Bayesian network. As the total
number of nodes N increases, the gap between n and N
will also increase as shown in the Figure 9. The JTree algo-
rithm is more efficient than the VarElim algorithm, since it
maintains a data structure which can simultaneously update

the potential of local cliques but the the VarElim algorithm
eliminates the variables sequentially. Furthermore, the time
complexity of the VarElim algorithm also depends on the
order of the variables to eliminate. It is NP-hard to find the
optimal order based on which the VarElim algorithm elim-
inates the variables. When the total number of nodes N is
25, we can observe that the Total algorithm needs 20 seconds
in average, while VarElim needs 2 seconds and JTree needs
only 0.2 seconds in average. We can use JTree algorithm in
our EM-VTC algorithm for the Bayesian inference compu-
tation, compared with the previous solution that does not
exploit the dependence structure of the variables [20] (i.e.
using the Total algorithm), it is not hard to observe how
scalable our algorithm is as the number of total variables
varies.

Figure 10 shows the CPU time of the three inference al-
gorithm when the number of nodes is fixed at 24 but the
expected degree of each node varies from 1 to 3. From the
figure, we can observe that the CPU time of the VarElim
algorithm increases as the number of node degree increases.
This is because that with a larger node degree, the chance
that the VarElim algorithm selects a bad variable eliminat-
ing order become larger. Thus, the time complexity of VarE-
lim increases. However, the time complexity of the JTree al-
gorithm only depends on the size of each local clique, when
the node degree is small such as less than 3 the complexity
of JTree actually changes very little which does not show in
Figure 10. Figure 10 shows the scalability of our algorithm
compared with previous solution [20] as the expected node
degree varies in the Bayesian network.

Next, we evaluate our algorithm using data from a real
disaster scenario. In addition to estimation accuracy, we
evaluate its efficacy at hypothesis testing.
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(a) Variable State Estimation

(b) Source Reliability Estimation

Figure 6: Performance as the num-
ber of edges in the Bayesian network
varies.

(a) Variable State Estimation

(b) Source Reliability Estimation

Figure 7: Performance as the num-
ber of event categories varies.

(a) Variable State Estimation

(b) Source Reliability Estimation

Figure 8: Performance as the num-
ber event variables varies.

Figure 9: Computation time comparison with fixed
node degree.

5.2 Performance with Real Data
Here, we test the estimation accuracy of our algorithm

with a real-world data set about the availability of groceries,
pharmacies, and gas stations during Hurricane Sandy in
November 20122. Sandy was reported as the second-costliest
hurricane in the history of the United States (surpassed only
by hurricane Katrina). It caused widespread shortage of
gas, food, and medical supplies, as gas stations, grocery re-
tail shops and pharmacies were forced to close. Some were
closed for as long as a month. The data set was documented

2The data set is available at:
http://www.ahcusa.org/hurricane-Sandy-assistance.htm

Figure 10: Computation time comparison with fixed
number of nodes.

by the All Harzard Consortium (AHC)[2], a state-sanctioned
non-profit organization fucused on homeland security, emer-
gency management, and business continuity issues in the
mid-Atlantic and northeast regions of the US. The data cov-
ered states including WV, VA, PA, NY, NJ, MD, and DC,
and the information was updated daily. Figure 11 shows a
portion of the location distribution of the gas stations in the
data set.

5.2.1 Methodology
In this evaluation, the reported variables denote whether

a given gas station has gas, whether a given grocery store
is open, and whether a given pharmacy is open on a given
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Figure 11: The location distribution of the gas sta-
tion data.

day following the hurricane. Hence, the total number of
variables is equal to the total number of gas stations, gro-
cery shops and pharmacies, combined, multiplied by the pe-
riod of observation in days. All variables are binary. The
ground truth for these variables is given in the AHC data
set. The experiment has two goals. The first goal is to test
the accuracy of our algorithm at reconstructing the ground
truth values of these variables from observations reported by
unreliable sources. The second goal is to determine which
of several hypothesized dependency structures among the
variables is borne out by data reported by these unreliable
sources (which is an instance of hypothesis testing). In par-
ticular, it is interesting to see whether a hypothesis that
corresponds to the ground-truth dependency structure will
actually be picked out despite observation noise. Since we
had ground truth data only, we added noise artificially by
simulating 100 unreliable sources. The average reliability
of a source was set to 0.7. The expected talkativeness of a
source was set 0.8. Obsevations reported by these simulated
sources were then used.

The hypothesis testing experiment exemplifies the type
of analysis a decision-maker might perform to understand
the cause of failures in a large system. For example, when
power is lost or restored, when flooding occurs or is drained,
and when available resources are depleted in a neighborhood
due to local demand, correlated changes in the state of our
aforementioned variables occur. The dependency structure
among these variables depends on the cause of outage. This
observation allows us to compare hypotheses regarding the
cause of failure. Each hypothesis would correspond to a dif-
ferent dependency graph between failures. A dependency
graph that results in a higher value for the likelihood func-
tion when the EM algorithm converges would imply that
the corresponding hypothesis is better supported by data.
Hence, by comparing the converged values of the likelihood
functions when running EM with different hypothesized de-
pendency graphs, we could determine which hypothesis is
more likely to be the case. For illustration, we propose three
hypotheses regarding the dependency structures among the
observed variables in the hurricane Sandy scenario:

1. Independent hypothesis: This hypothesis trivially states
that the variables are independent.

2. Supply line hypothesis: This hypothesis states that all
variables located in the same state are connected by a
directed path; the supply line.3

3. Exact hypothesis: Prior work on the same data set [5]
did identify the exact dependency between our vari-
ables by observing which variables tend to change to-
gether. This real dependency structure was computed
based on ground truth data. We include it here to test
our EM algorithm. The algorithm, if correct and ro-
bust to the noise introduced by less reliable sources,
should generate a higher final value for the likelihood
function when this hypothesis is used for the depen-
dency structure.

These three hypotheses are named Indep, SupLine, and
CoJump, respectively. We test which one is the most prob-
able. Our hypotheses lead to different DAGs from which we
build the corresponding Bayesian networks. In our evalua-
tion, we randomly select four days in November, 2012, and
test our hypotheses based on data from these four days.

In addition to choosing a winning hypothesis, we study
the performance of our EM-CAT algorithm in terms of esti-
mation errors in the state of gas stations, pharmacies, and
groceries, and error in estimating the reliability of the simu-
lated sources. The evaluation is averaged over 20 executions
to smooth out the noise.

5.2.2 Evaluation Results
Figure 12 shows the evaluation results on the pharmacy

data. In this figure, we observe that the Indep hypothesis
and the SupLine hypothesis lead to an inferior estimation
accuracy compared to the CoJump hypothesis. This is con-
sistent with the fact that the CoJump hypothesis did coin-
cide with the real dependency structure seen in the data.

The estimation errors of the three hypotheses with our
EM-CAT algorithm for the data of grocery retail stores are
shown in Figure 13. We can observe that the CoJump hy-
pothesis is the best of the three. SupLine works better than
Indep on the data generally.

The evaluation results for the gas station data is shown
in Figure 14. In general, the CoJump hypothesis is better
than the other two.

The above results show that the “right” hypothesis re-
garding the dependency structure among variables does in
fact result in better estimation accuracy, but how would a
user know which of multiple hypotheses is the right hypothe-
sis? The answer, as mentioned earlier, lies in computing the
converged value of the likelihood function (when EM termi-
nates) when dependencies among variables are given by each
of the compared hypotheses. The hypothesis correspond-
ing to the highest value of likelihood is the best hypothesis.
These values are summarized in Table 2 for the hypotheses
described above. From the table, we observe that the Co-
Jump hypothesis has the highest likelihood according to the
data set. This is what we hoped to see. It shows that indeed

3Ideally, we should have considered the real topology of sup-
ply lines or supply routes connecting the retailers under con-
sideration. However, we did not have access to this informa-
tion, so we just assumed, for the sake of an example, that we
knew the supply line topology and that it was as we defined.
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Figure 12: Estimation error with
the pharmacy data.

Figure 13: Estimation error with
the grocery data.

Figure 14: Estimation error with
the gas station data.

comparing the converged values of the likelihood function
computed by the EM algorithm identifies the right hypoth-
esis regarding dependencies among variables, even in the
presence of noise from unreliable observations. The evalua-
tion illustrates use of the EM-CAT algorithm for hypothesis
testing.

Table 2: Likelihood of the hypotheses for each data
set.

Pharmacy Grocery Gas Station
CoJump 0.83 0.74 0.79
SupLine 0.66 0.64 0.74
Indep 0.70 0.58 0.73

6. RELATED WORK
Inferring the structure of Bayesian Network is, in general,

an NP-complete problem [3]. In order to learn a Bayesian
Network in a tractable way, various algorithms are proposed.
There are mainly two categories of approaches, score-based
and constraint-based [19]. The former one tries to search
for the optimum structure based on goodness-of-fit. The
latter one utilizes conditional independence to build the net-
work. Depending on the different data types and relation-
ships, various hypothesis tests are available. For continuous
data, if the relationship among variables is believed to be
linear, tests based on Pearson’s correlation are widely used.
Asymptotic χ2 tests can also be used to test independence
between two continuous variables [6]. In cases of categori-
cal variables, one of the most classical tests is Pearson’s χ2

test [1]. It works on the contingency table and tests if paired
observations from two categorical variables are independent.
In addition, likelihood-ratio statistic (or G2) can also be
used on either categorical or continuous variables; Jonck-
heere’s trend test provides an independence test on ordinal
variables [7]. Although in some cases separate test statis-
tics can be used by different tests, they usually provide the
same conclusions. If two variables are conditionally depen-
dent, an edge between these two variables should be drawn
in the Bayesian Network. Different from traditional work,
where the inference is employed on the data provided by a
single source, our proposed mechanism is able to conduct
hypothesis testing upon crowdsourced data by accounting
for a variety of sources of different and unknown reliability.

The problem studied in this paper bears some resemblance
to the fact-finding problem that has been studied extensively

in recent years. The goal of fact-finding, generally speaking,
is to ascertain correctness of data from sources of unknown
reliability . As one of the earliest efforts in this domain, Hubs
and Authorities [9] presented a basic fact-finder, where the
belief in a claim and the truthfulness of a source are com-
puted in a simple iterative fashion. Later on, Yin et al.
introduced TruthFinder as an unsupervised fact-finder for
trust analysis on a providers-facts network [24]. Pasternack
et al. extended the fact-finder framework by incorporat-
ing prior knowledge into the analysis and proposed several
extended algorithms: Average.Log, Investment, and Pooled
Investment [14]. Su et al. proposed semi-supervised learning
frameworks to improve the quality of aggregated decisions
in distributed sensing systems [16, 17]. Towards a joint es-
timation on source reliability and claim correctness, Wang
et al. [22, 21] and Li et al. [11, 18] proposed expectation
maximization and coordinate descent methods to deal with
deterministic and probabilistic claims, respectively. Though
yielding good performance in many cases, none of these ap-
proaches considers situations where the variables in question
have wide-spread dependencies. To address this problem,
Wang et al. [20, 23] further extended their framework to
handle limited dependencies. However, their algorithm has
exponential computational complexity in the number of cor-
related variables, and thus can only be applied in scenarios
where the number of dependencies is small. In contrast to
their work, we consider a model for more general scenarios
where a considerable number of dependencies exists among
the variables reported by the unreliable sources.

7. CONCLUSION
In this paper, we addressed the reliable crowd-sensing

problem with interdependent variables. Crowd-sensing is a
novel sensing paradigm in which human sources are treated
as sensors. The challenge is that the reliability of sources is
unknown in advance. Recently, several efforts tried to ad-
dress this reliability challenge by formulating the problem
given different source and event models. However, they did
not address the problem when the reported variables are
interdependent at large scale. In this paper, dependencies
between reported variables were formulated as a Bayesian
network. We demonstrated that our formulation is more
general than previous work; previous models being special
cases of ours. Evaluation results showed that our EM-CAT
algorithm outperforms the state-of-the-art solutions. We
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also showed that the algorithm can be used for hypothesis
testing on the dependency structure among variables.
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