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Abstract—This paper develops and evaluates algorithms for
exploiting physical constraints to improve the reliability of social
sensing. Social sensing refers to applications where a group of
sources (e.g., individuals and their mobile devices) volunteer to
collect observations about the physical world. A key challenge
in social sensing is that the reliability of sources and their
devices is generally unknown, which makes it non-trivial to
assess the correctness of collected observations. To solve this
problem, the paper adopts a cyber-physical approach, where
assessment of correctness of individual observations is aided by
knowledge of physical constraints on both sources and observed
variables to compensate for the lack of information on source
reliability. We cast the problem as one of maximum likelihood
estimation. The goal is to jointly estimate both (i) the latent
physical state of the observed environment, and (ii) the inferred
reliability of individual sources such that they are maximally
consistent with both provenance information (who claimed what)
and physical constraints. We evaluate the new framework through
a real-world social sensing application. The results demonstrate
significant performance gains in estimation accuracy of both
source reliability and observation correctness.

I. INTRODUCTION

This paper investigates the exploitation of physical con-
straints to improve the reliability of social sensing applications.
We refer by social sensing to a broad set of applications, where
sources, such as humans and digital devices they operate,
collect information about the physical world for purposes of
mutual interest. In social sensing, humans can play different
roles by acting as sensor carriers [21] (e.g., opportunistic
sensing), sensor operators [4] (e.g., participatory sensing) or
sensor themselves [36]. The proliferation of mobile devices
with sensors, such as smart phones, has significantly increased
the popularity of social sensing. Examples of recent appli-
cations include optimization of daily commute [18], [44],
reduction of carbon footprint [10], [20], disaster response [17],
[33] and pollution monitoring [24], [28], to name a few. Due
to the inclusive nature of data collection in social sensing
(i.e., anyone can participate) and the unknown reliability of
information sources, much recent work focused on estimating
the likelihood of correctness of collected data [26], [36], [42].

The novelty of this work comes from adopting a cyber-
physical approach to the problem of assessing correctness of
collected data, wherein physical constraints are exploited to
compensate for unknown source reliability. We consider two
types of constraints; namely, (i) source constraints that, com-
bined with source location information, offer an understanding
of what individual sources observed, and (ii) constraints on the
observed variables themselves that arise when these variables
are not independent. Together, these constraints shape the

likelihood function that quantifies the odds of the observations
at hand. We then maximize the resulting likelihood function
with respect to hypotheses on the correctness of individual ob-
servations as well as hypotheses on the reliability of individual
sources. We show that the maximum likelihood estimate thus
obtained is a lot more accurate than one that does not take
physical constraints into account.

The use of a maximum likelihood estimation framework
to jointly compute both the reliability of sources in social
sensing applications and the correctness of the data they report
was recently described by the authors [36], but without taking
physical constraints into account. The advantage of maximum-
likelihood estimation lies in the feasibility of computing rigor-
ous estimation accuracy bounds [35], hence not only arriving
at the top hypothesis, but also quantifying how good it is. The
main contribution of this paper lies in developing the analyt-
ical foundation for exploiting physical constraints within the
aforementioned maximum likelihood estimation framework. A
physically-aware Expectation Maximization (EM) algorithm is
developed that is empirically shown to converge to a more
accurate solution than the above baseline, thanks to taking the
constraints into account.

Our work is related to machine learning literature on
constrained conditional models [5], [26]. Unlike that literature,
we do not limit our approach to simple linear models [5]
nor require that dependencies and constraints be determinis-
tic [26]. Instead, the framework developed in this paper is
general enough to (i) solve the optimization problem for non-
linear models abstracted from social sensing applications with
physical constraints (as shown in Section III and IV), and (ii)
incorporate probabilistic dependencies.

Finally, contrary to work that focuses on maximum-
likelihood estimation of continuous variables given continuous
models of physical phenomena, which appears in both sensor
networks and data fusion literature [3], [23], [39], we focus
on estimating discrete variables. Specifically, we estimate the
values of a string of generally non-independent Booleans that
can either be true or false. The discrete nature of the estimated
variables makes our optimization problem harder, as it gives
rise to an integer programming problem whose solution space
increases exponentially. We show that the complexity of our
results critically depends on the number of variables that
appear in an individual constraint, as opposed to the number
of variables in the system. Hence, the approach scales well
to large numbers of estimated variables as long as constraints
are localized. We evaluate the scheme through a real-world so-
cial sensing application. Results show significant performance
improvements in both source reliability estimation and claim
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correctness estimation, achieved by incorporating physical
information into the estimation framework.

The rest of the paper is organized as follows. Section II for-
mulates the problem of reliable social sensing, where the goal
is to estimate correctness of claims. Section III and Section IV
solve the problem while leveraging source constraints and
observed-variable constraints, respectively. Evaluation results
are presented in Section V. We review the related work in
Section VII. Finally, we conclude the paper in Section VIII.

II. THE PROBLEM FORMULATION

Much prior research in sensor networks [3], [39] and
estimation theory [14], [29] considered filtering observations
of continuous variables in a maximum-likelihood fashion to
separate signal from noise. While continuous variables are
common in sensing, an important subset of sensing appli-
cations deals primarily with discrete (and especially binary)
variables. Interestingly, noise reduction in the case of binary
variables is more challenging, because discretization gives rise
to likelihood functions that are not continuous, hence leading
to integer programming problems, known to be NP-complete.

Binary variables arise in many applications where the state
of the physical environment can be represented by a set of
statements, each is either true or false. For example, in an
application where the goal is to find free parking spots around
campus, each legal parking spot may be associated with one
variable that is true if the spot is available and false otherwise.
Similarly, in an application that reports offensive graffiti on
campus walls, each location may be associated with a variable
that is true if offensive graffiti is present and false otherwise. In
general, any statement about the physical world, such as “Main
Street is flooded”, “The airport is closed”, or “The suspect was
seen on Elm Street” can be thought of as a binary variable that
is true if the statement is correct, and false if it is not.

Accordingly, in this paper, we consider social sensing
applications, where a group of M sources, S1, ..., SM , observe
a set of N binary variables, C1, ..., CN . Each variable Cj is
associated with a location, Lj . Sources report some of their
observations. We call a reported observation a claim. Please
note that observations and claims are not used interchangeably
in this paper. Observations refer to what a source had an oppor-
tunity to witness. Claims refer to what the source reported that
they witnessed. We use the word claim to emphasize that we
do not, in general, know whether the report is correct or not.
We assume, without loss of generality, that the “normal” state
of each variable is negative (e.g., no free parking spots and no
graffiti on walls). Hence, sources report only when a positive
value is encountered. As mentioned above, the reliability of
individual sources is not known. In other words, we do not
know the “noise model” that determines the odds that a source
reports incorrectly.

The contribution of this paper lies in exploiting physical
constraints to compensate for the lack of information on source
reliability. Two types of physical constraints are exploited:

• Constraints on sources: A source constraint simply
states that a source can only observe co-located phys-
ical variables. In other words, it can only report Cj if
it visited location Lj . The granularity of locations is

application specific. However, given location granular-
ity in a particular application context, this constraint
allows us to understand which variables a source had
an opportunity to observe. Hence, for example, when a
source does not report an event that others claim they
observed, we can tell whether or not the silence should
decrease our confidence in the reported observation,
depending on whether or not the silent source was
co-located with the alleged event.

• Constraints on observed variables: We exploit the fact
that observed variables may be correlated, which can
be expressed by a joint probability distribution on
the underlying variables. For example, traffic speed
at different locations of the same freeway may be
related by a joint probability distribution that favors
similar speeds. This probabilistic knowledge gives us
a basis for assessing how internally consistent a set of
reported observations is.

Let Si represent the ith source and Cj represent the jth

variable. We say that Si observed Cj if the source visited
location Lj . We say that a source Si made a claim SiCj if
the source reported that Cj was true. We generically denote
by P (Cj = 1|x) and P (Cj = 0|x) the conditional probability
that variable Cj is indeed true or false, given x, respectively.
We denote by ti the (unknown) probability that a claim is
correct given that source Si reported it, ti = P (Cj = 1|SiCj).
Different sources may make different numbers of claims. The
probability that source Si makes a claim is si. Formally,
si = P (SiCj |Si observes Cj).

We further define ai to be the (unknown) probability that
source Si correctly reports a claim given that the underlying
variable is indeed true and the source observed it. Similarly, we
denote by bi the (unknown) probability that source Si falsely
reports a claim when the underlying variable is in reality false
and the source observed it. More formally:

ai = P (SiCj |Cj = 1, Si observes Cj)

bi = P (SiCj |Cj = 0, Si observes Cj) (1)

From the definitions above, we can determine the following
relationships using the Bayesian theorem:

ai = P (SiCj |Cj = 1, Si observes Cj)

=
P (Cj = 1|SiCj , Si observes Cj)P (SiCj |Si observes Cj)

P (Cj = 1|Si observes Cj)

bi = P (SiCj |Cj = 0, Si observes Cj)

=
P (Cj = 0|SiCj , Si observes Cj)P (SiCj |Si observes Cj)

P (Cj = 0|Si observes Cj)
(2)

We also define di to be the (unknown) probability P (Cj =
1|Si observes Cj). It should be noted that it does depend on
variable j. This is the proportion of variables that source Si

observes that happen to be true. Note that, the probability
that a source makes a claim is proportional to the number of
claims made by the source over the total number of variables
observed by the source. Plugging these, together with ti, into
the definition of ai and bi, given in Equation (2), we get the

213



relationship between the terms we defined above:

ai =
ti × si
di

bi =
(1− ti)× si

1− di
di = P (Cj = 1) j ∈ Ci (3)

where Ci is the set of variables that Si observed. The input to
our algorithm is: (i) the claim matrix SC, where SiCj = 1
when source Si reports that Cj is true, and SiCj = 0 other-
wise; and (ii) the source’s opportunities to observe represented
by a knowledge matrix SK, where SiKj = 1 when source Si

has the opportunity to observe Cj and SiKj = 0 otherwise.
The output of the algorithm is the probability that variable Cj

is true, for each j and the reliability ti of source Si, for each
i. More formally:

∀j, 1 ≤ j ≤ N : P (Cj = 1|SC, SK)

∀i, 1 ≤ i ≤M : P (Cj = 1|SiCj) (4)

To account for non-independence among the observed
variables, we further denote the set of all such constraints
(expressed as joint distributions of dependent variables) by
JD. The inputs to the algorithm become the SC, SK matrices
and the set JD of constraints (joint distributions), mentioned
above. The output is:

∀j, 1 ≤ j ≤ N : P (Cj = 1|SC, SK, JD)

∀i, 1 ≤ i ≤M : P (Cj = 1|SiCj) (5)

Below, we solve the aforementioned problems using the
expectation maximization (EM) algorithm. EM [6] is a general
algorithm for finding the maximum likelihood estimates of
parameters in a statistic model, where the likelihood function
involves latent variables. Applying EM requires formulating
the likelihood function, L(θ;X,Z) = p(X,Z|θ), where θ is
the estimated parameter vector, X is the observed data, and
Z is the latent variables vector. The algorithm then maximizes
likelihood iteratively by alternating between two steps:

• E-step: Compute the expected log likelihood function,
where the expectation is taken with respect to the com-
puted conditional distribution of the latent variables
given the current settings and observed data.

Q
(
θ|θ(t)

)
= EZ|X,θ(t) [logL(θ;X,Z)] (6)

• M-step: Find the parameters that maximize the Q
function in the E-step to be used as the estimate of θ
for the next iteration.

θ(t+1) = argmax
θ

Q
(
θ|θ(t)

)
(7)

Following the approach described in our previous
work [36], we define a latent variable zj to denote our
estimated value of variable Cj , for each j (indicating whether
it is true or not). Initially, we set p(zj = 1) = dj . This
constitutes the latent vector Z above. We further define X
to be the claim matrix SC, where Xj represents the jth

column of the SC matrix (i.e., claims of the jth variable
by all sources). The parameter vector we want to estimate is
θ = (a1, a2, ...aM ;b1, b2, ...bM ;d1, d2, ..., dN ). In the following
sections, we incorporate the physical constraints into the above
model, which is the new contribution of the paper.

III. ACCOUNTING FOR OPPORTUNITY TO OBSERVE

In this section, we incorporate the source constraints into
the Expectation-Maximization (EM) algorithm. We call this
EM scheme, EM with opportunity to observe (OtO EM).

A. Deriving the Likelihood

When we consider source constraints in the likelihood
function, we assume sources only claim variables they observe,
and hence the probability of a source claiming a variable he/she
does not have an opportunity to observe is 0. For simplicity,
we first assume that all variables are independent, then relax
this assumption later in Section IV. Under these assumptions,
the new likelihood function L(θ;X,Z) that incorporates the
source constraints is given by:

L(θ;X,Z) = p(X,Z|θ)

=

N∏
j=1

p(zj)× p(Xj |zj , θ)

=
N∏
j=1

∏
i∈Sj

p(zj)× αi,j

where Sj : Set of sources observed Cj

(8)

where

p(zj) =

{
dj zj = 1

(1− dj) zj = 0

αi,j =

⎧⎪⎪⎨
⎪⎪⎩
ai zj = 1, SiCj = 1

(1− ai) zj = 1, SiCj = 0

bi zj = 0, SiCj = 1

(1− bi) zj = 0, SiCj = 0

(9)

Note that, in the likelihood function, we only consider the
probability contribution from sources who actually observe a
variable (e.g., i ∈ Sj for Cj). This is an important change from
our previous framework [36]. This change allows us to nicely
incorporate the source constraints (name, source opportunity to
observe) into the maximum likelihood estimation framework.

Using the above likelihood function, we can derive the
corresponding E-Step and M-Step of OtO EM scheme. The
detailed derivations are shown in Section IX-A.

B. The OtO EM Algorithm

In summary, the inputs to the OtO EM algorithm are (i)
the claim matrix SC from social sensing data and (ii) the
knowledge matrix SK describing the source constraints. The
output is the maximum likelihood estimate of source reliability
and the probability of claim correctness. Compared to the
regular EM algorithm we derived in our previous work [36], we
provided source constraints as a new input into the framework
and imposed them on the E-step and M-step. Our algorithm
begins by initializing the parameter θ with random values
between 0 and 1. The algorithm then performs the new derived
E-steps and M-steps iteratively until θ converges. Convergence
analysis for EM was studied in literature and is out of the
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Algorithm 1 Expectation Maximization Algorithm with
Source Constraints (OtO EM)
1: Initialize θ with random values between 0 and 1
2: while θ(t) does not converge do
3: for j = 1 : N do
4: compute Z(t, j) based on Equation (12)
5: end for
6: θ(t+1) = θ(t)

7: for i = 1 : M do
8: compute a

(t+1)
i , b

(t+1)
i , d

(t+1)
j based on Equation (13)

9: update a
(t)
i , b

(t)
i , d

(t)
j with a

(t+1)
i , b

(t+1)
i , d

(t+1)
j in θ(t+1)

10: end for
11: t = t+ 1
12: end while
13: Let Zc

j = converged value of Z(t, j)

14: Let aci = converged value of a
(t)
i ; bci = converged value of b

(t)
i ; dci =

converged value of d
(t)
j j ∈ Ci

15: for j = 1 : N do
16: if Zc

j ≥ threshold then
17: Cj is true
18: else
19: Cj is false
20: end if
21: end for
22: for i = 1 : M do
23: calculate t∗i from aci , bci and dci
24: end for
25: Return the classification on variables and reliability estimation of sources

scope for this paper [40].1 Since each observed variable is
binary, we can classify variables as either true or false based on
the converged value of Z(t, j). Specifically, Cj is considered
true if Zc

j goes beyond some threshold (e.g., 0.5) and false
otherwise. We can also compute the estimated ti of each source
from the converged values of θ(t) (i.e., aci , bci and dci ) based
on Equation (3). Algorithm 1 shows the pseudocode of OtO
EM.

IV. ACCOUNTING FOR DEPENDENCY CONSTRAINTS

In this section, we derive an EM scheme that considers
constraints on observed variables. We call this EM scheme,
EM with dependent variables (DV EM). For clarity, we first
ignore the source constraints derived in the previous section
(i.e., assume that each source observes all variables) when
we derive the DV EM scheme. Then, we combine the two
extensions of EM we derived (i.e., OtO EM and DV EM)
to obtain a comprehensive EM scheme (OtO+DV EM) that
incorporates constraints on both sources and observed variables
into the estimation framework.

A. Deriving the Likelihood

In order to derive a likelihood function that considers
constraints in the form of dependencies between observed
variables, we first divide the N observed variables in our
social sensing model into G independent groups, where each
independent group contains variables that are related by some
local constraints (e.g., gas price of stations in the same neigh-
borhood could be highly correlated). Consider group g, where
there are k dependent variables g1, ..., gk. Let p(zg1 , ..., zgk)
represent the joint probability distribution of the k variables

1In practice, we can run the algorithm until the difference of estimation
parameter between consecutive iterations becomes insignificant.

and let Yg represent all possible combinations of values of
g1, ..., gk. For example, when there are only two variables,
Yg = [(1, 1), (1, 0), (0, 1), (0, 0)]. Note that, we assume that
p(zg1 , ..., zgk) is known or can be estimated from prior knowl-
edge. The new likelihood function L(θ;X,Z) that considers
the aforementioned constraints is:

L(θ;X,Z) =
∏
g∈G

p(Xg, Zg|θ) =
∏
g∈G

p(Zg)× p(Xg|Zg, θ)

=
∏
g∈G

⎧⎨
⎩

∑
g1,...,gk∈Yg

p(zg1 , ..., zgk)
∏
i∈M

∏
j∈cg

αi,j

⎫⎬
⎭ (10)

where αi,j is the same as defined in Equation (9) and cg
represents the set of variables belonging to the independent
group g. Compared to our previous effort [36], the new
likelihood function is formulated with independent groups
as units (instead of single independent variables). The joint
probability distribution of all dependent variables within a
group is used to replace the distribution of a single variable.
This likelihood function is therefore more general, but reduces
to the previous form in the special case where each group is
composed of only one variable.

Using the above likelihood function, we can derive the cor-
responding E-Step and M-Step of DV EM and OtO+DV EM
schemes. The detailed derivations are shown in Section IX-B.

B. The OtO+DV Algorithm

In summary, the OtO+DV EM scheme incorporates con-
straints on both sources and observed variables. The inputs to
the algorithm are (i) the claim matrix SC, (ii) the knowledge
matrix SK, and (iii) the joint distribution for each group of
dependent variables, collectively represented by set JD. The
output is the maximum likelihood estimate of source reliability
and claim correctness. The OtO+DV EM pseudocode is shown
in Algorithm 2.

V. EVALUATION

In this section, we evaluate the performance of our new
reliable social sensing schemes that incorporate “opportunity
to observe” constraints on sources (OtO EM) and dependency
constraints on observed variables (DV EM), as well as the
comprehensive scheme (OtO+DV EM) that combines both. We
compare their performance to the state of the art scheme from
previous work [36] (regular EM) through a real world social
sensing application. The purpose of the application is to map
locations of traffic lights and stop signs on campus of the
University of Illinois (in the city of Urbana-Champaign).

We use the dataset from a smartphone-based vehicular
sensing testbed, called SmartRoad [16], where vehicle-
resident Android smartphones record their GPS location traces
as the cars are driven around by participants. The GPS read-
ings include samples of the instantaneous latitude- longitude
location, speed and bearing of the vehicle, with a sampling
rate of 1 second. We aim to show that even very unreliable
sensing of traffic lights and stop signs can result in a good
final map once our algorithm is applied to these claims to
determine their odds of correctness. Hence, an intentionally
simple-minded application scenario was designed to identify
stop signs and traffic lights from GPS data.
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Algorithm 2 Expectation Maximization Algorithm with Con-
straints on Both Sources and Observed Variables (OtO+DV
EM)
1: Initialize θ with random values between 0 and 1
2: while θ(t) does not converge do
3: for j = 1 : N do
4: compute Z(t, j) as the marginal distribution of the joint probability

as shown in Equation (17)
5: end for
6: θ(t+1) = θ(t)

7: for i = 1 : M do
8: compute a

(t+1)
i , b

(t+1)
i , d

(t+1)
j based on Equation (18)

9: update a
(t)
i , b

(t)
i , d

(t)
j with a

(t+1)
i , b

(t+1)
i , d

(t+1)
j in θ(t+1)

10: end for
11: t = t+ 1
12: end while
13: Let Zc

j = converged value of Z(t, j)

14: Let aci = converged value of a
(t)
i ; bci = converged value of b

(t)
i ; dci =

converged value of d
(t)
j j ∈ Ci

15: for j = 1 : N do
16: if Zc

j ≥ threshold then
17: Cj is true
18: else
19: Cj is false
20: end if
21: end for
22: for i = 1 : M do
23: calculate t∗i from aci , bci and dcj
24: end for
25: Return the classification on variables and reliability estimation of sources

Specifically, in our experiment, if a vehicle waits at a
location for 15-90 seconds, the application concludes that it is
stopped at a traffic light and issues a traffic-light claim (i.e., a
claim that a traffic light is present at that location and bearing).
Similarly if it waits for 2-10 seconds, it concludes that it is at
a stop sign and issues a stop-sign claim (i.e., a claim that a
stop sign is present at that location and bearing). If the vehicle
stops for less than 2 seconds, for 10-15 seconds, or for more
than 90 seconds, no claim is made. Claims were reported by
each source to a central data collection point.

Clearly the claims defined above are very error-prone due
to the simple-minded nature of the “sensor” and the complexity
of road conditions and driver’s behaviors. Moreover, it is hard
to quantify the reliability of sources without a training phase
that compares measurements to ground truth. For example,
a car can stop elsewhere on the road due to a traffic jam
or crossing pedestrians, not necessarily at locations of traffic
lights and stop signs. Also, a car does not stop at traffic lights
that are green and a careless driver may pass stop signs without
stopping. The question addressed in the evaluation is whether
knowledge of constraints, as described in this paper, helps
improve the accuracy of stop sign and traffic light estimation
from such unreliable measurements in this case study.

Hence, we applied the different estimation approaches de-
veloped in this paper along with the constraints from the phys-
ical world on the noisy data to identify the correct locations
of traffic lights and stop signs and compute the reliability of
participants. One should note that location granularity here is
of the order of half a city block. This ensures that stop sign and
traffic light claims are attributed to the correct intersections.
Most GPS devices easily attain such granularity. Therefore,
the authors do not expect location errors to be of concern. For

evaluation purposes, we manually collected the ground truth
locations of traffic lights and stop signs.

In the experiment, 34 people (sources) were invited to
participate and 1,048,572 GPS readings (around 300 hours of
driving) were collected. A total of 4865 claims were generated
by the phones, of which 3303 were for stop signs and 1562
were for traffic lights, collectively identifying 369 distinct
locations. The elements SiCj of the claim matrix were set
according to the claims extracted from each source vehicle.

We observed that traffic lights at an intersection are always
present in all directions. Hence, when processing traffic light
claims, we ignored vehicle bearing. However, stop signs at an
intersection have a few possible scenarios. For example, (i)
a stop sign may be present in each possible direction (e.g.,
All-Way stop); (ii) two stop signs may exist on one road
whereas no stop sign exist on the other road (e.g., a main road
intersecting with a small road); or (iii) two stop signs may
exist for one road and one stop sign for the other road (e.g.,
a two-way road intersecting with a one way road). Hence, in
claims regarding stop signs the bearing is important. We bin
bearing into four main directions. A different Boolean variable
is created for each direction.

A. Opportunity to Observe

In this subsection, we first evaluate the performance of
the OtO EM scheme. For the OtO EM scheme, we used the
recorded GPS traces of each vehicle to determine whether
it actually went to a specific location or not (i.e., decide
whether a source has an opportunity to observe a given variable
or not).There are 54 actual traffic lights and 190 stop signs
covered by the data traces collected.

Fig. 1. Source Reliability Estimation of OtO EM in the Case of Traffic Lights

Figure 1 compares the source reliability estimated by both
the OtO EM and regular EM schemes to the actual source
reliability computed from ground truth. We observed that the
OtO EM scheme stays closer to the actual results for most
of the sources (i.e., OtO EM estimation error is smaller than
regular EM for about 74% of sources).

Next, we explore the accuracy of identifying traffic lights
by the new scheme. It may be tempting to confuse the problem
with one of classification and plot ROC curves or confusion
matrices. This would not be appropriate, however, because the
output of our algorithm is not a classification label, but rather a
probability that the labeled entity (e.g., a traffic light) exists at
a given location. Some locations are associated with a higher
probability than others. Hence, what is needed is an estimate
of how well the computed probabilities match ground truth.
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Accordingly, Figure 2 and Figure 3 show the accuracy of
identifying traffic lights by the OtO EM scheme (Figure 2) and
the regular EM scheme (Figure 3). The horizontal axis shows
location IDs where lights were indicated by the respective
schemes, sorted by their probability (as computed from the
corresponding EM variant) from high to low. Hence, one
should expect that lower-numbered locations be true positives,
whereas high-numbered locations may contain increasingly
more false positives as the scheme assigns a lower probability

(a) Locations Identified as Traffic Lights

(b) Average Probability as Traffic Lights

Fig. 2. Claim Classification of OtO EM in the Case of Traffic Lights

(a) Locations Identified as Traffic Lights

(b) Average Probability as Traffic Lights

Fig. 3. Claim Classification of Regular EM in the Case of Traffic Lights

that those contain traffic lights.

Figure 2(a) shows the actual status of each location. A
green (light) bar is a true positive, whereas a red (dark) one
is a false positive. As expected, we observe that most of the
traffic light locations identified by the OtO EM scheme are
true positives. False positives occur only later on at higher-
numbered (i.e., lower probability) locations. Additionally, it is
interesting to compare the probability of finding traffic lights
at the indicated locations, as computed by our algorithm, to
the probability computed empirically for the same locations
by counting how many of them have actual lights. Figure 2(b)
shows this comparison. Specifically, it compares the average
probability to the empirical probability, computed for the first
n locations to have traffic lights, where n is the location index
on the horizontal axis. We observe that the estimation results
of OtO EM follow quite well the empirical ones.

Regular EM OtO EM
Average Source Reliability
Estimation Error

10.19% 7.74%

Number of Correctly Iden-
tified Traffic Lights

31 36

Number of Mis-Identified
Traffic Lights

2 3

TABLE I. PERFORMANCE COMPARISON BETWEEN REGULAR EM VS

OTO EM IN CASE OF TRAFFIC LIGHTS

Similarly, results for the regular EM scheme are reported in
Figure 3. We observe that the OtO EM scheme is able to find
five more traffic light locations compared to the regular EM
scheme. The detailed comparison results between two schemes
are given in Table I.

We repeated the above experiments for stop sign identifi-
cation and observed that the OtO EM scheme achieves a more
significant performance gain in both participant reliability
estimation and stop sign classification accuracy compared to
the regular EM scheme. The reason is: stop signs are scattered
in town and the odds that a vehicle’s path covers most of the
stop signs are usually small. Hence, having the knowledge of
whether a source had an opportunity to observe a variable
is very helpful. However, we do find in general that the
identification of stop signs is more challenging than that of
traffic lights. There are several reasons for that. Namely, (i)
the claims for stop signs are sparser because stops signs are
typically located on smaller streets, so the chances of different
cars visiting the same stop sign are lower than that for traffic
lights, (ii) cars often stop briefly at non-stop sign locations,
which our sensors mis-interpret for stop signs, and (iii) when
cars want to make a turn after the stop sign, cars’ bearings are
often not well aligned with the directions of stop signs, which
causes errors since stop-sign claims are bearing-sensitive.

Figure 4 compares source reliability computed by the
OtO EM and regular EM schemes. The actual reliability is
computed from experiment data similarly as we did for traffic
lights. We observe that source reliability is better estimated by
the OtO EM scheme compared to the regular EM scheme.

Figure 5 and Figure 6 show the true positives and false
positives in recognizing stop signs. We observe the OtO EM
scheme actually finds twelve more correct stop sign locations
and reduces one false positive location compared to the regular
EM scheme. The detailed comparison results are given in
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Regular EM OtO EM DV EM DV+OtO EM
Average Source Reliability Estimation Error
(Full Dataset)

25.34% 16.75% 15.99% 11.98%

Number of Correctly Identified Stop Signs
(Full Dataset)

127 139 141 146

Number of Mis-Identified Stop Signs
(Full Dataset)

25 24 29 25

Average Source Reliability Estimation Error
(75% Dataset)

36.44% 18.2% 18.0% 15.29%

Number of Correctly Identified Stop Signs
(75% Dataset)

92 101 111 116

Number of Mis-Identified Stop Signs
(75% Dataset)

18 23 30 29

TABLE II. PERFORMANCE COMPARISON OF REGULAR EM, OTO EM, DV EM AND DV+OTO EM IN CASE OF STOP SIGNS

Table II. To further investigate the effects of data sparsity on
different schemes, we repeat the above experiments using only
75% of the claims we collected. Results are also reported in
Table II. Additionally, we observe that, for both EM schemes,
the actual probability of finding stop signs at the indicated
locations stays close to but slightly less than the estimated
probability by our algorithms. The reasons of such deviation
can be explained by the aftermentioned short wait behaviors
at non-stop sign locations in real world scenarios.

B. Dependent Variables

In this subsection, we evaluated our extensions that con-
sider dependency constraints (DV EM), and the comprehensive
OtO+DV EM scheme. While the earlier discussion treated
stop signs as independent variables, this is not strictly so.
The existence of stop signs in different directions (bearings)
is in fact quite correlated. We empirically computed those
correlations for Urbana-Champaign and assumed that we knew
them in advance. Clearly, the more “high-order” correlations
are considered, the more information is given to improve
performance of algorithm. To assess the effect of “minimal”
information (which would be a “worst-case” improvement for
our scheme), in this paper we consider pairwise correlations
only. Hence, the joint distribution of co-existence of (two) stop
signs in opposite directions at an intersection was computed.
It is presented in Table III, and was used as input to the DV
EM scheme.

Figure 7 shows the accuracy of source reliability estima-
tion, when these constraints are used. We observe that both DV
EM and DV+OtO EM scheme track the source reliability very
well (the estimation error of the two EM schemes improved
9.4% and 13.4% repsectively compared to the regular EM
scheme).

Fig. 4. Source Reliability Estimation of OtO EM in the Case of Stop Signs

(a) Locations Identified as Stop Signs

(b) Average Probability as Stop Signs

Fig. 5. Claim Classification of OtO EM in the Case of Stop Signs

A = stop sign 1 exists; B =
stop sign 2 exists

Percentage

p(A,B) 36%
p(not A, not B) 49%
p(A,not B) = p(not A, B) 7.5%

TABLE III. DISTRIBUTION OF STOP SIGNS IN OPPOSITE DIRECTIONS

The true positives and false positives for stop signs are
shown in Figure 8 and Figure 9. Observe that the DV EM
scheme finds 14 more correct stop sign locations. The DV+OtO
EM scheme performed the best, it finds the most stop sign
locations (i.e., 19 more than regular EM, 5 more than DV EM)
while keeping the false positives the least (i.e., the same as
regular EM and 4 less than DV EM). The detailed comparison
results are given in Table II.

Additionally, we observe that, for the DV+OtO EM
scheme, the estimated probability of finding stop signs is much
closer to the empirically computed probability, compared to
other EM schemes we discussed. This is because we explicitly
considered both dependency constraints and the “opportunity
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(a) Locations Identified as Stop Signs

(b) Average Probability as Stop Signs

Fig. 6. Claim Classification of Regular EM in the Case of Stop Signs

Fig. 7. Source Reliability Estimation of DV and DV+OtO EM in the Case
of Stop Signs

to observe” for sources in the DV+OtO EM scheme.

VI. DISCUSSION AND LIMITATIONS

This paper presented a maximum likelihood estimation
framework for exploiting the physical world constraints (i.e.,
source locations and observed variable dependencies) to im-
prove the reliability of social sensing. Some limitations exist
that offer directions for future work.

First, we did not explicitly model the time dimension of the
problem in our current framework. This is mainly because our
current application involves the detection of fixed infrastructure
(e.g., stop signs and traffic lights). Time is less relevant in such
context. Hence, opportunity to observe is only a function of
source location, and observed variable dependencies are not
likely to change over time. It would be interesting to consider
time constraints in our future models. In systems where the
state of the environment may change over time, when we
consider the opportunity to observe, it is not enough for the
source to have visited a location of interest. It is also important
that the source visits that location within a certain time bound

(a) Locations Identified as Stop Signs

(b) Average Probability as Stop Signs

Fig. 8. Claim Classification of DV EM in the Case of Stop Signs

(a) Locations Identified as Stop Signs

(b) Average Probability as Stop Signs

Fig. 9. Claim Classification of DV+OtO EM in the Case of Stop Signs

during which the state of the environment has not changed.
Similarly, when we consider observed variable dependencies,
it is crucial that dependencies of observed variables remain
stable within a given time interval and that we have an efficient
way to quickly update our estimation on such dependencies as
time goes by.

Second, we assume sources will only report claims for
the places they have been to (e.g., cars only generate stop
sign claims on the streets their GPS traces covered). Hence,
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it makes sense to “penalize” sources for not making claims
for some clearly observable variables based on their loca-
tions. However, many other factors might also influence the
opportunity of users to generate claims in real-world so-
cial sensing applications. Some of these factors are out of
user’s control. For example, in some geo-tagging applications,
participants use their phones to take photos of locations of
interest. However, this approach might not work at some places
due to “photo prohibited” signs or privacy concerns. Source
reliability penalization based on visited locations might not
be appropriate in such context. It is interesting to extend the
notion of location-based opportunity-to-observe in our model
to consider different types of source constrains in other social
sensing applications.

Third, we do not assume “Byzantine” sources in our model
(e.g., cars will not cheat in reporting the their GPS coordi-
nates). However, in some crowd-sensing applications, sources
can intentionally report incorrect locations (e.g., Google’
Ingress). Different techniques have been developed to detect
and address location cheating attacks on both mobile sens-
ing applications [15] and social gaming systems [22]. These
techniques can be used along with our schemes to solve the
truth estimation problem in social sensing applications where
source’s reliability is closely related to their locations. More-
over, it is also interesting to further investigate the robustness
of our scheme with respect to the percentage of cheating
sources in the system.

Last, we assume that the joint probability distribution of
dependent variables is known or can be estimated from prior
knowledge. This might not be possible for all social sensing
applications. Clearly, the approach in the current paper would
not apply if nothing was known about spatial correlations in
environmental state. Additionally, the scale of current experi-
ment is relatively small. We are working on new social sensing
applications, where we can test our models at a larger scale.

VII. RELATED WORK

Social sensing emerged recently as a key area of research
in sensor networks due to the great increase in the number
of mobile sensors owned by individuals (e.g., smart phones),
the proliferation of Internet connectivity, and the fast growth
in mass dissemination media (e.g., Twitter, Facebook, and
Flickr, to name a few). Social sensing applications can be
seen as a broad set of applications, where humans play a
key role in the data collection system by acting as sensor
carriers [21] (e.g., opportunistic sensing), sensor operators [4]
(e.g., participatory sensing) or sensor themselves. An early
overview of social sensing applications is described in [1].
Examples of early systems include CenWits [17], CarTel [18],
BikeNet [8], and CabSense [32]. Recent work explored pri-
vacy [27], energy-efficient context sensing [25], and social
interaction aspects [30].

In this paper, we are particularly interested in the data re-
liability aspect of social sensing. The social sensing paradigm
draws strength from its inclusive nature; anyone can particulate
in sensing and the barrier to entry is low. Such openness is
a coin of two sides: on one hand, it greatly increases the
availability of information and the diversity of sources. On
the other hand, it introduces the problem of understanding the

reliability of the contributing sources and ensuring the quality
of the information collected. Solutions such as the Trusted
Platform Module (TPM) [11] and YouProve [12] can be used
to provide a certain level of assurance that the source device is
running authentic software. However, this is not sufficient in
sensing applications because it does not guarantee the integrity
of use, physical context, and environment. For example, a
smart phone application intended to measure vehicular traffic
speed can be turned on when the user is on a bicycle, hence
resulting in unrepresentative measurements.

There exists a good amount of work in the data mining
and machine learning communities on the topic of fact-
finding, which addresses the challenge of assertaining cor-
rectness of data from unreliable sources. For example, Hubs
and Authorities [19] presents a simple empirical model that
jointly computes the credibility of information sources and
their claims in an iterative fashion. Similar work includes
the TruthFinder [42] and the Investment, PooledInvestment
and Average·Log algorithms [26]. Additional frameworks have
been proposed to enhance this basic model to consider the
dependency between sources [7], a source’s varying expertise
across different topics, and the notion of hardness of facts
asserted by sources [9]. Pasternack et al. [26] further proposed
a comprehensive framework to incorporate the prior knowledge
concerning the claims (in the form of first-order logic) into
fact-finding to leverage what the user already knows.

More recent work came up with new fact-finding algo-
rithms by applying techniques in statistics and estimation the-
ory to do trust analysis of information network in a principled
way. Zhao et al. [43] presented Bayesian network model to
handle different types of errors made by sources and merge
multi-valued attribute types of entities in data integration
systems. Wang et al. [36], [37] proposed a maximum likelihood
estimation framework that offers a joint estimation on source
reliability and claim correctness based on a set of general
simplifying assumptions. In their following work, Wang et
al. further quantified the accuracy of the maximum likelihood
estimation (MLE) [35], [38] and extended their framework to
handle streaming data [34]. The approach was compared to
several state-of-the-art previous fact-finders and was shown to
outperform them in estimation accuracy [36]. Accordingly, we
only compare our new extensions to the winning approach
from prior art.

Finally, physical constraints and models (both spatial and
temporal) have been extensively studied in the wireless sensor
network (WSN) community. They have often been used to
reduce resource consumption by leveraging knowledge of the
physical model or constraint to reduce data transmission needs.
Compression and coding schemes were proposed to reduce the
data redundancy in the space domain [31], [41]. Temporal cor-
relations were exploited to reduce network load while offering
compression quality guarantees [2], [13]. The contribution of
our work lies in incorporating the constraints from the physical
world into a framework for improving estimation accuracy as
opposed to reducing resource cost. The underlying insight is
the same: knowledge of physical correlations and constraints
between variables reduces problem dimensionality. Prior WSN
work harvests such reduction to correspondingly reduce data
transmission needs. In contrast, we harvest it to improve noise
elimination at the same resource cost.
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VIII. CONCLUSION

This paper presented a framework for incorporating source
and claim constraints that arise from physical knowledge (of
source locations and observed variable dependencies) into
maximum-likelihood analysis to improve the accuracy of social
sensing. The problem addressed was one of jointly assessing
the probability of correctness of claims and the reliability
of their sources by exploiting physical constraints and data
provenance relations to better estimate the likelihood of re-
ported observations. An expectation maximization scheme was
described that arrives at a maximum likelihood solution. The
performance of the new algorithm was evaluated through a real
world social sensing application. Results show a significant re-
duction in estimation error of both source reliability and claim
correctness thanks to the exploitation of physical constraints.

IX. APPENDIX

A. Derivation of the E-step and M-step of OtO EM

Having formulated the new likelihood function to account
for the source constraints in the previous subsection, we can
now plug it into the Q function defined in Equation (6)
of Expectation Maximization. The E-step can be derived as
follows:

Q
(
θ|θ(t)

)
= EZ|X,θ(t) [logL(θ;X,Z)]

=
N∑
j=1

{
p(zj = 1|Xj , θ

(t))×
∑
i∈Sj

(logαi,j + log dj)

+ p(zj = 0|Xj , θ
(t))×

∑
i∈Sj

(logαi,j + log(1− dj))

}
(11)

where p(zj = 1|Xj , θ
(t)) represents the conditional probability

of the variable Cj to be true given the claim matrix related to
the jth claim and current estimate of θ. We represent p(zj =
1|Xj , θ

(t)) by Z(t, j) since it is only a function of t and j.
Z(t, j) can be further computed as:

Z(t, j) = p(zj = 1|Xj , θ
(t))

=
p(zj = 1;Xj , θ

(t))

p(Xj , θ(t))

=
p(Xj , θ

(t)|zj = 1)p(zj = 1)

p(Xj , θ(t)|zj = 1)p(zj = 1) + p(Xj , θ(t)|zj = 0)p(zj = 0)

=

∏
i∈Sj

αi,j × d
(t)
j∏

i∈Sj
αi,j × d

(t)
j +

∏
i∈Sj

αi,j × (1− d
(t)
j )

(12)

Note that, in the E-step, we continue to only consider sources
who observe a given variable while computing the likelihood
of reports regarding that variable.

In the M-step, we set the derivatives ∂Q
∂ai

= 0,
∂Q
∂bi

= 0, ∂Q
∂dj

= 0. This gives us the θ∗ (i.e.,

a∗1, a
∗
2, ...a

∗
M ;b∗1, b

∗
2, ...b

∗
M ;d∗1, d

∗
2, ..., d

∗
N ) that maximizes the

Q
(
θ|θ(t)) function in each iteration and is used as the θ(t+1)

of the next iteration.

a
(t+1)
i = a∗i =

∑
j∈SJi

Z(t, j)∑
j∈Ci

Z(t, j)

b
(t+1)
i = b∗i =

∑
j∈SJi

(1− Z(t, j))∑
j∈Ci

(1− Z(t, j))

dt+1
j = d∗j = Z(t, j)

d∗i =

∑
j∈Ci

Z(t, j)

|Ci| (13)

where Ci is set of variables source Si observes according to the
knowledge matrix SK and Z(t, j) is defined in Equation (12).
SJi is the set of variables the source Si actually claims in
the claim matrix SC. We note that, in the computation of ai
and bi, the silence of source Si regarding some variable Cj

is interpreted differently depending on whether Si observed it
or not. This reflects that the opportunity to observe has been
incorporated into the M-Step when the estimation parameters
of sources are computed. The resulting OtO EM algorithm is
summarized in the subsection below.

B. Derivation of E-Step and M-Step of DV and OtO+DV EM

Given the new likelihood function of the DV EM scheme
defined in Equation (10), the E-step becomes:

Q
(
θ|θ(t)

)
= EZ|X,θ(t) [logL(θ;X,Z)]

=
∑
g∈G

p(zg1 , ..., zgk |Xg, θ
(t))

×
{ ∑

i∈M

∑
j∈cg

logαi,j + log p(zg1 , ..., zgk)

}
(14)

where p(zg1 , ..., zgk |Xg, θ
(t)) represents the conditional joint

probability of all variables in independent group g (i.e.,
g1, ..., gk) given the observed data regarding these vari-
ables and the current estimation of the parameters.
p(zg1 , ..., zgk |Xg, θ

(t)) can be further computed as follows:

p(zg1 , ..., zgk |Xg, θ
(t))

=
p(zg1 , ..., zgk ;Xg, θ

(t))

p(Xg, θ(t))

=
p(Xg, θ

(t)|zg1 , ..., zgk)p(zg1 , ..., zgk)∑
g1,...,gk∈Yg

p(Xg, θ(t)|zg1 , ..., zgk)p(zg1 , ..., zgk)

=

∏
i∈M

∏
j∈cg

αi,jp(zg1 , ..., zgk)∑
g1,...,gk∈Yg

∏
i∈M

∏
j∈cg

αi,jp(zg1 , ..., zgk)
(15)

We note that p(zj = 1|Xj , θ
(t)) (i.e., Z(t, j)), defined as

the probability that Cj is true given the observed data and
the current estimation parameters, can be computed as the
marginal distribution of the joint probability of all variables
in the independent claim group g that variable Cj belongs to
(i.e., p(zg1 , ..., zgk |Xg, θ

(t)) j ∈ cg). We also note that, for
the worst case where N variables fall into one independent
group, the computational load to compute this marginal grows
exponentially with respect to N . However, as long as the
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constraints on observed variables are localized, our approach
stays scalable, independently of the total number of estimated
variables.

In the M-step, as before, we choose θ∗ that maximizes the
Q

(
θ|θ(t)) function in each iteration to be the θ(t+1) of the

next iteration. Hence:

a
(t+1)
i = a∗i =

∑
j∈SJi

Z(t, j)∑N
j=1 Z(t, j)

b
(t+1)
i = b∗i =

∑
j∈SJi

(1− Z(t, j))∑N
j=1(1− Z(t, j))

dt+1
j = d∗j = Z(t, j) (16)

where Z(t, j) = p(zj = 1|Xj , θ
(t)). We note that for

the estimation parameters, ai and bi, we obtain the same
expression as for the case of independent variables. The reason
is that sources report variables independently of the form of
constraints between these variables.

Next, we combine the two EM extensions (i.e., OtO EM
and DV EM) derived so far to obtain a comprehensive EM
scheme (OtO+DV EM) that considers constraints on both
sources and observed variables. The corresponding E-Step and
M-Step are shown below:

p(zg1 , ..., zgk |Xg, θ
(t)) =

p(zg1 , ..., zgk ;Xg, θ
(t))

p(Xg, θ(t))

=
p(Xg, θ

(t)|zg1 , ..., zgk)p(zg1 , ..., zgk)∑
g1,...,gk∈Yg

p(Xg, θ(t)|zg1 , ..., zgk)p(zg1 , ..., zgk)

=

∏
i∈Sj

∏
j∈cg

αi,jp(zg1 , ..., zgk)∑
g1,...,gk∈Yg

∏
i∈Sj

∏
j∈cg

αi,jp(zg1 , ..., zgk)

where Sj : Set of sources observes Cj (17)

a
(t+1)
i = a∗i =

∑
j∈SJi

Z(t, j)∑
j∈Ci

Z(t, j)

b
(t+1)
i = b∗i =

∑
j∈SJi

(1− Z(t, j))∑
j∈Ci

1− Z(t, j))

dt+1
j = d∗j = Z(t, j)

where Ci is set of variables source Si observes (18)
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