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Abstract—In this paper, we present GDA, a generalized
decision aggregation framework that integrates information
from distributed sensor nodes for decision making in a resource
efficient manner. Traditional approaches that target similar
problems only take as input the discrete label information from
individual sensors that observe the same events. Different from
them, our proposed GDA framework is able to take advantage
of the confidence information of each sensor about its deci-
sion, and thus achieves higher decision accuracy. Targeting
generalized problem domains, our framework can naturally
handle the scenarios where different sensor nodes observe
different sets of events whose numbers of possible classes may
also be different. GDA also makes no assumption about the
availability level of ground truth label information, while being
able to take advantage of any if present. For these reasons,
our approach can be applied to a much broader spectrum of
sensing scenarios. The advantages of our proposed framework
are demonstrated through both theoretic analysis and extensive
experiments.
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I. INTRODUCTION

The proliferation of embedded sensing devices in the
recent years has given rise to the fast development and
wide deployment of distributed sensing systems. Designed
to connect people and the physical world in ways previously
unimaginable, such systems have become an integral part of
people’s everyday lives, hosting a whole spectrum of civil-
ian and military applications, providing useful information
to help people with decision making about events in the
physical world.

One of the most widely used techniques for decision
making is classification [1], [2], which is the task of as-
signing objects (data) to one of several predefined categories
(classes). Its basic idea is to “learn” a function (also called
classifier) from a set of training data, in which each object
has feature values and a class label, and use the learned
function to determine the class labels for newly-arrived data.

The major challenge in applying classification techniques
to solve decision making problems in distributed sensing
systems lies in the trade-off between decision accuracy and
resource consumption. On one hand, individual sensors are
not reliable, due to various reasons such as incomplete ob-
servation, environment and circuit board noise, poor sensor

quality, lack of sensor calibration, or even deceptive intent in
the first place. To address this sensor reliability problem, one
common approach is to integrate information from multiple
sensors, as this will likely cancel out the errors of individual
sensors and improve decision accuracy. On the other hand,
distributed sensing systems usually have limited resources
(energy, bandwidth, storage, time, money, or even human
labor). Thus, it is often prohibitive to collect data from
a large number of sensors due to the potential excessive
resource consumption. Therefore, it is challenging to solve
the decision aggregation problem, that is, to collect and
integrate information from distributed sensors to reach a final
decision in a resource efficient manner.

Recent efforts have been made to address this challenge
under different sensing scenarios. Representative examples
include decision aggregation approaches [3], [4] designed
for remotely deployed sensing systems where unattended
sensor nodes forward their findings through wireless ad hoc
networks, and truth discovery schemes [5]–[7] that target on
social and crowd sensing applications where people them-
selves act as “sensors” and share their observations via social
networks. Both strategies dictate that each individual node
report only its classification result (decision) as opposed
to raw data, thus minimizing network transmission and
leading to significant saving of system resources. Individual
decisions, upon arrival at the server, are further combined to
produce the final decision.

Though yielding reasonably good performance in certain
cases, these approaches suffer from a major limitation, that
is, they only take as input discrete decision information.
Sometimes individual sensors may not be quite confident
about their decisions due to various reasons, such as incom-
plete or noisy observations. In this case, if each sensor’s
confidence information (the probability that it “believes” the
observed event belongs to each candidate class) can also
be taken into consideration, we should be able to further
improve the final decision accuracy. For example, suppose
a vehicle is observed by three sensors that try to determine
whether it is a tank or a truck (assuming it is actually a
tank). Each sensor then provides a confidence probability
vector corresponding to its belief in the vehicle being a tank
or a truck. Suppose the three probability vectors are (0.99,
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0.01), (0.49, 0.51), and (0.49, 0.51). In this case, only one
sensor predicts the vehicle to be a tank, however, deciding
so with high confidence, as opposed to the other two that
both vote for a truck but with confidences not far from that
of random guess, as reflected by their decision probability
vectors. Therefore, we expect a reasonable decision aggre-
gation scheme to output tank as the aggregated decision,
as opposed to the traditional decision aggregation or truth
discovery schemes that only takes discrete decision labels
as input, which would likely get the wrong answer, favoring
the majority though incorrect decision in our example.

In practice, the decision probability vectors can be ob-
tained from both traditional device-centric sensing systems
where sensor nodes conduct explicit classification computa-
tions, and newly-emerged people-centric sensing paradigms
where people conduct implicit classifications through their
logical reasoning. For example, when working with hard-
ware sensor nodes, we can adopt classification algorithms
that derive decision probabilities through heuristic metrics
like the distance between the observed data and the decision
boundary learned from training data; When having people
carry out sensing tasks, we can ask each participant to
explicitly provide the confidence level of each decision
made.

The goal of this paper is to develop a generalized deci-
sion aggregation (GDA) framework for distributed sensing
systems that can address the above challenge, by taking as
input each individual sensor’s decision probability vectors
and computing the aggregated decision (class label) for all
events under observation. In pursuing the generalizability so
that it is applicable to a full range of sensing scenarios, our
proposed GDA framework bears the following properties.

1) Each individual sensor’s reliability level is explicitly
accounted for when GDA integrates individual deci-
sions. A sensor’s reliability information is important
as it reflects the general quality of information it can
provide. The aggregated decision should favor more
reliable sensors and weigh less unreliable ones instead
of treating all individuals equally. In reality, however,
the reliability information is usually unknown a priori.
To address this, in our GDA framework, the sensors’
reliability is estimated along with the decision aggre-
gation process and provided as part of the final outputs
to the user.
Please note that high confidence does not necessarily
imply high reliability. For example, a sensor should
be labeled unreliable if it is always confident about
its decisions that are actually wrong. The ability of
accounting for sensor reliability thus differentiates our
GDA framework from prior information integration
schemes (e.g., data fusion [8]–[13]) that can also deal
with continuous confidence probabilities.

2) Different from traditional decision aggregation
schemes that assume all the events are observed by

all the sensors, the proposed GDA framework is
able to handle the scenarios where different sensor
nodes observe different sets of events whose numbers
of possible classes may also be different. Doing so
enables us to seize more opportunities to estimate
sensor reliability, thus leading to better final decision
accuracy.

3) In order to be applied to newly emerged sensing
scenarios where people are playing increasingly more
critical roles, which implies more opportunities for
ground truth label collection, we design our GDA
framework from ground up to be able to cope with
any availability level of label information, and do so
in a dynamic and intelligent manner.

In summary, our GDA framework addresses challenges
in carrying out classification tasks in distributed sensing
systems by more naturally and organically modeling the
sensing and decision making processes in dynamic and
intelligent manners, it thus can be applied to a full spectrum
of distributed sensing scenarios.

The rest of the paper is organized as follows. We first
summarize the related work in Section II. Section III pro-
vides an overview of the system model and architecture.
In Section IV, we formulate the generalized decision ag-
gregation problem as an optimization program. An efficient
algorithm is presented in Section V to solve this problem.
The proposed algorithm is evaluated in Section VI. Finally,
Section VII concludes the paper.

II. RELATED WORK

Classification techniques are widely used in a full range
of sensing scenarios, such as habitat monitoring [14]–[17],
target surveillance and tracking [18], [19], environmental
monitoring [20], activity recognition [21]–[23], road sensing
and monitoring [24], and many others. Our generalized
framework proposed in this paper can essentially be applied
to all these sensing scenarios, addressing the decision aggre-
gation problem by corroborating the scattered classification
results and making the consolidated near-optimal final deci-
sion for the target events, and doing so in a resource efficient
manner.

There are prior attempts on similar problems. For exam-
ple, Su et al. [3], [4] study the decision aggregation problem
for remotely deployed sensing systems where very limited
label information can be accessed. Recently, the problem
of truth discovery [5]–[7], [25], [26] is investigated in the
data mining and social sensing communities. Their goal
is to identify the truth from claims made by difference
information sources (e.g., websites, social network users).
These approaches suffer from a major limitation, that is,
they only take as input discrete decision information. In
contrast, our proposed decision aggregation framework is
able to take advantage of the confidence information of each
sensor about its decision, and thus achieves higher decision
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accuracy. Recently, Li et al. [27] propose a truth discovery
scheme that can deal with continuous values. Different from
this work, we customize the proposed GDA framework to
account for the sensor confidence probability vectors that
are subject to the decision constraint.

Moreover, the proposed problem and solution in this
paper are different from the traditional data aggregation or
data fusion schemes in wireless sensor networks. First, data
aggregation techniques [28], [29] do not consider sensor
reliability, and usually only involve applying simple opera-
tions (e.g., mean, min, and max) directly on the raw sensory
data. Second, data fusion (or classifier fusion) schemes [8]–
[13] are designed to gather and combine information from
multiple sensors in order to improve the accuracy of target
detection and recognition. However, the aforementioned
work does not take into consideration the reliability of
individual sensor nodes. In contrast, the proposed GDA
framework jointly optimizes aggregated decisions and sensor
reliability, and can be applied in more general sensing
scenarios where the sensor nodes, the observed event sets,
and the possible candidate classes can all be different, which
can thus be combined in arbitrarily complex manners.

III. SYSTEM OVERVIEW

We now give an overview of our system model and
architecture.

A. System Model

We consider a sensing system consisting of 𝑛 sensor nodes
that are denoted by 𝒮 = {𝑠𝑖∣ 𝑖 = 1, 2, . . . , 𝑛}. The sensor n-
odes collect information about the events taking place within
their sensing ranges, and classify these events into predefined
classes. Formally, we let ℰ = {𝑒𝑖∣𝑖 = 1, 2, . . . , 𝑡} denote the
sequence of events (sorted in chronological order) observed
by the sensor nodes. Generally, each sensor observes a subset
of events, and each event is observed by a subset of sensors.
The relationship between sensor nodes and events can be
represented as a bipartite graph, called belief graph, where
vertices are partitioned into sensors and events, and edges
represent the observation relationships of sensor-event pairs,
as illustrated in Fig. 1.

Sensors

Events

S5S1 S2 S3 S4

1 2 3 4 5 6 7 8 9 10

Figure 1. An example of belief graph

In this case, suppose the mission of the sensing system
is to classify different vehicle types, specifically, to find out
whether an observed vehicle is a tank, a jeep, or a truck.
As shown, 10 events are observed by 5 sensor nodes. Each
event corresponds to a vehicle. Each sensor can be either a

sensing device deployed on the roadside, or a pedestrian in
the vicinity.

B. System Architecture

In this section, we provide an overview of the system
architecture. The system contains three modules: a data
classification module, a decision aggregation module, and
a feedback module. They are deployed on two different
platforms: sensor nodes, and the base station. Figure 2
illustrates the system architecture. We next discuss each of
these three modules in more detail.

Sensor 1

Decision Aggregation Module

Data 
Classification

Module

Base Station

Feedback Module

Users System Administrators

Sensor 2

Data 
Classification 

Module

Sensor n

Data 
Classification

Module

Figure 2. System Architecture

1) Data Classification Module: The data classification
module runs on individual sensor nodes. It locally classify
the events observed by each sensor node, and upload the
classification result (i.e., decision vector) to the base station.

2) Decision Aggregation Module: As shown in Fig. 2, the
decision aggregation module resides on the base station. It
combines the decision vectors from multiple sensor nodes,
and predict the class label of each unlabeled event.

3) Feedback Module: The feedback module is included
to visually present data collection and/or decision results
via a web service interface. It can also be used by system
administrators and users to correct decision errors or pro-
vide ground truth information, which is then sent back to
individual sensors for dynamic and adaptive performance
improvement.

IV. PROBLEM FORMULATION

With the previously defined notations and terminologies,
we now formulate the generalized decision aggregation
problem as an optimization program on the belief graph. In
this section, we first introduce the variables and constants
involved in the optimization program, then give detailed de-
scriptions on the objective function as well as the constraints.

A. Variables and Constants

Constants: The constants of the optimization program are
the inputs to the decision aggregation module, including the
following:
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∙ Belief Graph: We summarize the previously defined
belief graph into an affinity matrix called observation
matrix A = (𝑎𝑖𝑗)𝑡×𝑛, where 𝑎𝑖𝑗 indicates whether
event 𝑒𝑖 is observed by sensor 𝑠𝑗 .

∙ Individual Decision: The decision of node 𝑠𝑗 for 𝑒𝑖 is
a probability vector denoted by d𝑗

𝑖 = (𝑑𝑗𝑖1, . . . , 𝑑
𝑗
𝑖𝑚𝑖

),
where 𝑚𝑖 is the number of possible classes of event 𝑒𝑖.
In this vector, each element probability, say 𝑑𝑗𝑖𝑘, rep-
resents the confidence level in which 𝑠𝑗 “believes” the
observed event belongs to the 𝑘-th class. For example,
suppose sensor 𝑠1 in Fig. 1 outputs a decision vector
for event 𝑒2 (i.e., d1

2 = (0.8, 0.1, 0.1)). This implies
that 𝑠1 believes that with 80% probability 𝑒2 is a tank,
and is a jeep or truck with 10% probability each.

Variables: The variables of the optimization program serve
as the outputs of the decision aggregation module, including
the following:
∙ Aggregated Decision: The aggregated decision for an

event 𝑒𝑖 is also a probability vector, denoted by x𝑖 =
(𝑥𝑖1, . . . , 𝑥𝑖𝑚𝑖

). It represents the consensus of the sen-
sor nodes on the probability that 𝑒𝑖 belongs to each
candidate class.

∙ Sensor Reliability: As discussed in Section I, the relia-
bility levels of individual sensor nodes should be taken
into account when aggregating the decisions of multiple
nodes. To capture sensor reliability, we associate each
node, say 𝑠𝑗 , with a non-negative weight 𝑤𝑗 , where
higher weights indicate higher reliability.

B. Optimization Program

Given the constants and variables defined above, we
formulate the following optimization program:

P : min

𝑡∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖𝑗𝑤𝑗 ∣∣x𝑖 − d𝑗
𝑖 ∣∣2 (1)

s.t.
𝑛∑

𝑗=1

exp(−𝑤𝑗) = 1 (2)

x𝑖 ≥ 0, ∣x𝑖∣ = 1 for 𝑖 = 1, 2, . . . , 𝑡. (3)

Objective Function: The objective function (1) aims at min-
imizing the disagreement over the belief graph, namely, the
weighted summation of the distances between the decisions
of individual sensor nodes and the aggregated decision. In
this case, we use squared L2 norm as the distance function:

∣∣x𝑖−d𝑗
𝑖 ∣∣2 = (𝑥𝑖1−𝑑𝑗𝑖1)2+(𝑥𝑖2−𝑑𝑗𝑖2)2+. . .+(𝑥𝑖𝑚𝑖

−𝑑𝑗𝑖𝑚𝑖
)2.

Intuitively, the optimal aggregated decision should be
close to the majority of individual decisions1. Furthermore,
the sensors with higher reliability score (i.e., 𝑤𝑗) should have
more impact on the weighted summation. In other words,
more reliable sensors would incur higher penalties if they

1Here we assume the majority of the sensor nodes are functioning
appropriately and thus can make reasonable decisions.

deviate far away from the aggregated decision, as compared
to less reliable ones. This way, the objective function tends
to be minimized when the aggregated decision agrees with
that of reliable sensors.
Constraints: Next, we elaborate on the constraints that our
objective function is subject to.

∙ Reliability Constraint (2) is a regularization function.
It is used to prevent the sensor weight 𝑤𝑗 from going
to infinity, otherwise the optimization problem would
become unbounded. In fact, the most straightforward
choice of regularization function could be

∑𝑛
𝑗=1 𝑤𝑗 =

1, which is unsuitable for our purpose as an optimal
solution is achieved when the aggregated decision is
set to that of any single sensor, whose weight is set
to 1 and the rest sensors 0. Therefore we propose
to formulate the regularization function using the sum
over exponential value of weights. Exponential function
is used to regularize weights so that they are rescaled
by logarithm (the range of weights becomes smaller).
One advantage of this regularization formulation is that
a closed-form optimal solution can be derived.

∙ Decision Constraint (3) is used to guarantee that the
elements of the decision probability vector x𝑖 be non-
negative, and sum to 1 (i.e., x𝑖’s L1 norm ∣x𝑖∣ =∑𝑚𝑖

𝑘=1 𝑥𝑖𝑘 = 1).

Unfortunately, P is not a convex program. This makes
it difficult to find the global optimal solution. Next, we
present an efficient approximate solution for the optimization
program P.

V. GENERALIZED DECISION AGGREGATION

We propose to solve P using the block coordinate descent
method [30]. The basic idea is as follows: In each iteration,
we update the values of sensor reliability and aggregated
decision alternatively and separately. In particular, in the
first step, we fix the weight (𝑤𝑗) of each sensor node,
and solve P with respect to the aggregated decision (x𝑖)
only. In the second step, x𝑖 is fixed and P is solved
with respect to 𝑤𝑗 . The two-step process is repeated until
convergence, which is guaranteed by the property of the
block coordinate descent method. That is, if we can find the
optimal aggregated decision (sensor reliability) when sensor
reliability (aggregated decision) is fixed, convergence can be
achieved [30]. Next, we give detailed explanation on these
two steps, and show that each step itself is convex, and thus
has a globally optimal solution.

A. Updating Aggregated Decision

When the reliability 𝑤𝑗 of each sensor is fixed, we
update the aggregated decision x𝑖 for each event in order
to minimize the weighted distances between x𝑖 and the
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decisions d𝑗
𝑖 made by individual sensor nodes:

Px : min

𝑡∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖𝑗𝑤𝑗 ∣∣x𝑖 − d𝑗
𝑖 ∣∣2

s.t. x𝑖 ≥ 0, ∣x𝑖∣ = 1 for 𝑖 = 1, 2, . . . , 𝑡.

Different from P, Px has only one set of variables (i.e.,
x𝑖’s), and thus is a convex program. This ensures that we
can find globally optimal aggregated decisions. The detailed
steps are as follows. First, we denote the objective function
by

𝑓(x) =

𝑡∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖𝑗𝑤𝑗

𝑚𝑖∑
𝑘=1

(𝑥𝑖𝑘 − 𝑑𝑗𝑖𝑘)
2,

then the optimal solution can be obtained through setting
the partial derivative with respect to x to zero,

∂𝑓(x)

∂𝑥𝑖𝑘
=

𝑛∑
𝑗=1

2𝑎𝑖𝑗𝑤𝑗(𝑥𝑖𝑘 − 𝑑𝑗𝑖𝑘) = 0,

for 𝑖 = 1, 2, . . . , 𝑡 and 𝑘 = 1, 2, . . . ,𝑚𝑖.
Solving this equation, we are able to get the optimal value

of 𝑥𝑖𝑘:

𝑥𝑖𝑘 =

∑𝑛
𝑗=1 𝑎𝑖𝑗𝑤𝑗𝑑

𝑗
𝑖𝑘∑𝑛

𝑗=1 𝑎𝑖𝑗𝑤𝑗
.

Therefore, the optimal aggregated decision vector is ac-
tually the weighted average of individual decision vectors:

x𝑖 =

∑𝑛
𝑗=1 𝑎𝑖𝑗𝑤𝑗d

𝑗
𝑖∑𝑛

𝑗=1 𝑎𝑖𝑗𝑤𝑗
. (4)

One should note that when we solve for x𝑖, we do not
take into account the decision constraint (Eqn. (3)). This
is because the aggregated decisions obtained from Eqn. (4)
can automatically satisfy the constraint. In particular, each
individual decision d𝑗

𝑖 is a probability vector, obviously we
have d𝑗

𝑖 ≥ 0 and ∣d𝑗
𝑖 ∣ = 1. Thus, it can be derived that

∣x𝑖∣ =
𝑚𝑖∑
𝑘=1

𝑥𝑖𝑘 =

∑𝑛
𝑗=1 𝑎𝑖𝑗𝑤𝑗 ∣d𝑗

𝑖 ∣∑𝑛
𝑗=1 𝑎𝑖𝑗𝑤𝑗

= 1

Moreover, since both 𝑎𝑖𝑗 and 𝑤𝑗 are nonnegative, it is
clear that 𝑥𝑖𝑘 ≥ 0. Therefore, x𝑖’s automatically satisfy the
decision constraint.

B. Updating Sensor Reliability

Next, we fix the values of the aggregated decision x𝑖, and
update the reliability of each sensor 𝑤𝑗 through solving the
following optimization program:

Pw : min

𝑡∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖𝑗𝑤𝑗 ∣∣x𝑖 − d𝑗
𝑖 ∣∣2

s.t.
𝑛∑

𝑗=1

exp(−𝑤𝑗) = 1.

Similar to the previous step, Pw has only one set of
variables, the 𝑤𝑗’s. And the decision constraint (Eqn. (3))
in P is just constant here. Pw is clearly convex since the
objective function is linear with respect to 𝑤𝑗 , while the
constraint is a convex function.

We use the method of Lagrange multipliers to solve Pw.
We first take a look at the Lagrangian of Pw:

𝐿(w, 𝜆) =
𝑡∑

𝑖=1

𝑛∑
𝑗=1

𝑎𝑖𝑗𝑤𝑗 ∣∣x𝑖 − d𝑗
𝑖 ∣∣2

+ 𝜆(

𝑛∑
𝑗=1

exp(−𝑤𝑗)− 1).

In 𝐿(w, 𝜆), 𝜆 is a Lagrange multiplier, corresponding to
the reliability constraint. It can be interpreted as the “shadow
price” charged for the violation of the constraint.

Let the partial derivative of Lagrangian with respect to 𝑤𝑗

be 0:

∂𝐿(w, 𝜆)

∂𝑤𝑗
=

𝑡∑
𝑖=1

𝑎𝑖𝑗 ∣∣x𝑖 − d𝑗
𝑖 ∣∣2 − 𝜆 exp(−𝑤𝑗) = 0,

we can get
∑𝑡

𝑖=1 𝑎𝑖𝑗 ∣∣x𝑖 − d𝑗
𝑖 ∣∣2

𝜆
= exp(−𝑤𝑗). (5)

Summing both sides over 𝑗’s, we have,
∑𝑛

𝑗=1

∑𝑡
𝑖=1 𝑎𝑖𝑗 ∣∣x𝑖 − d𝑗

𝑖 ∣∣2
𝜆

=
𝑛∑

𝑗=1

exp(−𝑤𝑗) = 1,

from which we can derive that

𝜆 =

𝑛∑
𝑗=1

𝑡∑
𝑖=1

𝑎𝑖𝑗 ∣∣x𝑖 − d𝑗
𝑖 ∣∣2. (6)

Plugging Eqn. (6) into Eqn. (5), we obtain a closed-form
solution of reliability:

𝑤𝑗 = log
(∑𝑛

𝑗=1

∑𝑡
𝑖=1 𝑎𝑖𝑗 ∣∣x𝑖 − d𝑗

𝑖 ∣∣2∑𝑡
𝑖=1 𝑎𝑖𝑗 ∣∣x𝑖 − d𝑗

𝑖 ∣∣2
)
. (7)

As can be seen, the reliability of a sensor is the log ratio
between the summed decision deviation (i.e., the difference
between a sensor’s decision and the aggregated decision)
of all the sensors and the decision deviation of this sensor.
Sometimes, the summed decision deviation may dominate
individual decision deviations, and thus diminish the vari-
ance among the sensor radiabilities. In this case, we can
replace the the summed decision deviation by the maximum
decision deviation among all the sensors.

C. Algorithm

The detailed steps of the generalized decision aggregation
(GDA) algorithm are shown in Algorithm 1. The algorithm
takes as input the observation matrix A as well as the
individual decision of each sensor 𝑠𝑗 for each event 𝑒𝑖
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(i.e., d𝑗
𝑖 ). It starts by initializing the aggregated decisions

randomly2 (line 1). The iterative process then begins in line
3. First, we collect the aggregated decision of each event
observed by a sensor 𝑠𝑖, and update its reliability via Eqn. (7)
(line 5). Then, the sensors’ reliability information are used to
consolidate the aggregated decision of each event 𝑒𝑖 through
Eqn. (4) (line 8). Finally, each event is assigned to the class
corresponding to the highest probability in the aggregated
decision (line 13).

Algorithm 1 Generalized Decision Aggregation

Input: Observation matrix A, individual decisions d𝑗
𝑖 , and

error threshold 𝜖;
Output: The class label for each event 𝐿𝑖;

1: Initialize x
(0)
𝑖 , x(1)

𝑖 randomly.
2: 𝜏 ← 1

3: while
√∑𝑡

𝑖=1 ∣∣x(𝜏)
𝑖 − x

(𝜏−1)
𝑖 ∣∣2 > 𝜖 do

4: for 𝑗 ← 1 to 𝑛 do

5: 𝑤
(𝜏+1)
𝑗 ← log

(∑𝑛
𝑗=1

∑𝑡
𝑖=1 𝑎𝑖𝑗 ∣∣x(𝜏)

𝑖 −d𝑗
𝑖 ∣∣2

∑𝑡
𝑖=1 𝑎𝑖𝑗 ∣∣x(𝜏)

𝑖 −d𝑗
𝑖 ∣∣2

)

6: for 𝑖← 1 to 𝑡 do
7: x

(𝜏+1)
𝑖 ←

∑𝑛
𝑗=1 𝑎𝑖𝑗𝑤

(𝜏+1)
𝑗 d𝑗

𝑖
∑𝑛

𝑗=1 𝑎𝑖𝑗𝑤
(𝜏+1)
𝑗

8: 𝜏 ← 𝜏 + 1
9: for 𝑖← 1 to 𝑡 do

10: return 𝐿𝑖 ← argmax𝑘 𝑥
(𝜏)
𝑖𝑘

D. Performance Analysis

In each iteration, the GDA algorithm takes 𝑂(𝑚𝑛𝑡)
time, where 𝑛 and 𝑡 represent the number of sensors and
events, while 𝑚 = max𝑒𝑖∈ℰ 𝑚𝑖 is the maximum number of
classes among all the events. Also, the convergence rate of
coordinate descent method is usually linear [30] (we actually
fix the number of iterations in the experiments). In practice,
the number of candidate classes of the observed events and
the number of sensor nodes that observe the same events
are usually small. Thus, the computational complexity of
the algorithm can be considered linear with respect to the
number of events. Consequently, the proposed algorithm is
not more expensive than the classification algorithms, and
thus can be applied to any platform running classification
tasks. Furthermore, since wireless/wired communication is
the dominating factor of the energy consumption in dis-
tributed sensing systems, our algorithm actually saves much
more energy than it consumes since it significant reduces
the amount of information delivered by each sensor by
transforming its raw data into decisions.

2Since P is not a convex program, the block coordinate descent based
algorithm would probably converge to local optimum. A common way to
address this problem is to run the algorithm multiple times with a different
set of randomly chosen initial aggregated decisions and select the best
solution.

E. Example

We now walkthrough a simple example to illustrate the
iterative process of the GDA algorithm. Table I provides
the information of the first 5 events shown in Fig. 1. We
omit other events’ information due to space limitation. In
this table, we list the sensor nodes that observe each of the
5 events, and the corresponding decision probability vectors
generated by the sensors. In addition, the ground truth label
of each event is given in the last column.

Table I
EVENTS

Event Sensor Node Decision Vector Ground Truth

𝑒1
𝑠2 (0.1, 0.8, 0.1) 1
𝑠3 (0.6, 0.2, 0.2)

𝑒2
𝑠1 (0.3, 0.5, 0.2) 3
𝑠3 (0.1, 0.3, 0.6)

𝑒3
𝑠3 (0.8, 0.1, 0.1) 1
𝑠4 (0.8, 0.1, 0.1)

𝑒4
𝑠1 (0.4, 0.3, 0.3) 2
𝑠4 (0.2, 0.6, 0.2)

𝑒5
𝑠1 (0.5, 0.5, 0)

2𝑠2 (0.7, 0.3, 0)
𝑠5 (0.3, 0.7, 0)

We apply the GDA algorithm to the sensing system in
Fig. 1. Initially, the aggregated decision of each event is set
as the average of individual decisions made by the sensors
that observe this event. The predicted label corresponds to
the class with the highest probability. In rare cases where
ties occur, we break them randomly.

Table II
FINAL RESULTS

Event Aggregated Decision Label Sensor Reliability
𝑒1 (0.5701,0.2358,0.1941) 1 𝑠1 1.6093
𝑒2 (0.1517,0.3517,0.4966) 3 𝑠2 0.2731
𝑒3 (0.8,0.1,0.1) 1 𝑠3 4.5801
𝑒4 (0.2505,0.5243,0.2252) 2 𝑠4 4.7438
𝑒5 (0.3712,0.6288,0) 2 𝑠5 3.9157

Then, the algorithm starts to iterate, and update the values
of sensor reliability and aggregated decisions repeatedly.
After the algorithm converges, as shown in Table II, the
predicted label for each event exactly matches the ground
truth. From the results, we have several observations. For
example, sensor 𝑠2 and 𝑠3 have conflicting decisions about
event 𝑒1, and 𝑠2 is more confident with its decision. Thus,
the simple averaged decision gives a predicted label of 2,
which contradicts against the ground truth. In this case, the
GDA algorithm outputs the correct label, because it takes
into account the reliability of individual sensors. As can be
seen in Table II, the reliability score of 𝑠3 is much higher
than that of 𝑠2, so the aggregated result should favor 𝑠3’s
decision. A decision is considered to be correct (or incorrect)
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if the class with the highest probability in the decision vector
matches (or differs from) the ground truth label. As shown
in Table II, the sensors that can make more correct decisions
are assigned higher reliability scores.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the proposed generalized de-
cision aggregation (GDA) framework. Experiment results on
both synthetic data and a set of realistic audio recordings are
presented and discussed. We compare our GDA framework
against the naı̈ve majority voting scheme as well as state-
of-the-art truth discovery and data fusion approaches. The
experiment results show that GDA excels under various
settings.

A. Synthetic Data

In this experiment, we simulate a sensing system where a
set of events are observed and monitored by multiple sensor
nodes. In particular, we randomly generate events belonging
to different classes. For simplicity, we assume that each class
contains the same number of events. Then, we generate sen-
sor nodes with uniformly distributed reliability. The sensors
with higher reliability are more likely to generate decision
vectors whose highest probabilities correspond to the ground
truth event label.

For comparison purposes, we include four baseline meth-
ods in the experiment.

The first two baselines take the discrete decision informa-
tion as input:

∙ Majority Voting: counts the votes for each class, and
picks the one with the highest vote count.

∙ EM TruthFinder: is a state-of-the-art truth discovery
approach [5], [6], which uses Expectation Maximiza-
tion (EM) algorithm to jointly optimize the correctness
of the claims made by a group of sources and the
reliability of these sources.

For each individual sensor decision, we feed these two
baselines with the class label that has the highest confidence
in the decision vector.

The other two baselines are representative data fusion
schemes [8]–[11] that also take advantage of confidence
levels of individual sensors when integrating their decisions:

∙ Product-Rule Fusion: under our problem setting, is
equivalent to multiplying the decision probabilities over
the sensors and labeling the event with the class corre-
sponding to the largest probability product:

𝐿𝑖 ← argmax
𝑘

𝑛∏
𝑗=1

𝑑𝑗𝑖𝑘. (8)

∙ Sum-Rule Fusion: behaves exactly the same as the
product rule fusion, except that summation is used
instead of multiplication:

𝐿𝑖 ← argmax
𝑘

𝑛∑
𝑗=1

𝑑𝑗𝑖𝑘. (9)

As can be seen, if normalized by dividing each sum
by 𝑛, the sum rule fusion is equivalent to simply
averaging the decision probability vectors on each event
and labeling this event corresponding to the class with
the highest probability in the averaged decision vector.

Both of the above fusion schemes, despite of being able
to deal with continuous confidence probabilities, fail to take
into account the varying sensor reliability.
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Figure 3. Classification performance under different sensor numbers on
synthetic data.

1) Classification Performance under Varying Number of
Sensors: We first demonstrate the classification performance
under varying number of sensor nodes that observe the same
events. We generate 6 classes with 100 events each, where
the number of observing sensors varies from 3 to 18. The
experiment is repeated 10 times. We report the average
results.

Figure 3(a) and 3(b) show, for all approaches, their
classification accuracies (the percentage of correctly clas-
sified events, equivalent to true positive rate in this case),
and false positive rates (the percentage of misclassifications
of all the events that are classified to be of a particular
class, then averaged among all classes), respectively. As
clearly seen, our GDA framework outperforms the other

7



approaches under any number of observing sensors in terms
of both classification accuracy and false positive rate, as
the classification benefits from accounting for both sensor
reliability and decision confidences. On the other end of the
spectrum, the majority voting yields the worst performance
as it disregards useful information (sensor reliability and
decision confidences) that otherwise would be useful for
reaching more accurate final decisions. The EM TruthFinder
and data fusion approaches take only one factor (sensor
reliability for EM TruthFinder, or decision confidences for
data fusion) into consideration when aggregating individual
decisions, therefore they, though outperforming majority
voting, still fall short compared to our GDA approach,
which utilizes all useful information. One other interesting
observation is that all methods show similar performance
when the number of sensors is either very small or quite
large (e.g., 3 and 18, respectively in our experiments). This
makes sense because, on one hand, when the number of
sensors that observe the same events is small, it is hard to
improve upon their individual poor decisions; On the other
hand, as the number of sensors increases, each event is being
observed by more and more diversified sensor nodes, which
are more and more likely to cancel out each other’s biases
and errors, thus reaching better classification results. When
there are a sufficiently large number of observing sensors,
even the most naı̈ve approach (e.g., majority voting) can
achieve near perfect classification accuracy.
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Figure 4. Classification performance under different number of classes on
synthetic data.

2) Classification Performance under Varying Number of
Classes: Next, we look at how GDA’s classification per-
formance compares to the other approaches with varying
number of classes. The results are shown in Fig. 4. In this
experiment, we assume that each event is observed by 10
different sensors, and each class contains 100 events. The
number of classes ranges from 2 to 8.

Figure 4(a) and 4(b) show the classification accuracies
and false positive rates of all approaches. As seen, our
GDA approach consistently outperforms the other methods
regardless of the number of classes, where the relative
effectiveness of all studied approaches remains the same as
that of the previous experiment. This is not surprising, as,
still, the scheme that can take advantage of more information

performs better. Also seen from the figures, it is clear that
all approaches’ classification performance degrades as the
number of classes increases. This is generally expected for
any classification task as the more candidate classes there
are, the more confusion the classification algorithms need to
comb through. We do, however, notice that as the number
of classes increases, our GDA’s performance degradation is
slightly slower than the other approaches in general.
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Figure 5. Estimation errors of sen-
sor reliability under different num-
ber of classes.
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Figure 6. Reliability measures of
10 sensors observing the same set
of events.

3) Sensor Reliability: Using the same setting as the
previous experiment, we now examine how the different
schemes perform in terms of estimating sensor reliability by
comparing the reliability estimation errors of our proposed
GDA framework to that of the other four approaches, under
varying number of classes. In particular, the reliability
estimation error is computed as follows. For each individual
sensor node, its ground truth reliability is defined as its
standalone classification accuracy derived from comparing
its individual decisions to the ground truth event labels,
and its estimated reliability under a particular scheme is the
classification accuracy derived from comparing its individual
decisions to the aggregated decision reached by that scheme.
A sensor’s reliability estimation error is thus computed as
the normalized distance between its estimated and ground
truth reliability.

The results are shown in Figure 5. Similar to previous ex-
periments’ results, our proposed GDA still consistently out-
performs the others. In particular, we see that the approaches
that take sensor reliability into account when performing de-
cision aggregations (i.e., GDA and EM TruthFinder) achieve
better performance than those who do not (i.e., Data fusion
and Majority voting). Also, as the number of classes be-
comes larger, the estimation performance of all approaches
gets poorer. Similar to the previous experiment, a higher
number of classes would lengthen the distance between the
aggregated decisions and ground truth event labels, thus
causing more inaccurate sensor reliability estimations. That
said, we do, however, still observe that our GDA scheme
shows higher robustness than the other four methods as the
number of classes increases.

Figure 6 shows the reliability of 10 sensor nodes that
observe the same set of events. For ease of illustration, we
sort the sensor nodes in the increasing order of ground truth
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reliability. As can be seen, the ground truth reliability of
these 10 sensor nodes roughly follow a uniform distribution.
In Fig. 6, we also show the reliability as estimated by our
GDA as well as the truth discovery schemes. It is clearly
seen that the estimations from our GDA framework follow
more closely to the ground truth.

4) Convergence: Next up, we demonstrate the conver-
gence of GDA. Specifically in the experiment we have 600
events equally distributed under 6 classes, where each event
is observed by 10 different sensor nodes.

Figure 7 shows the evolution of the objective value
(Eqn. (1)) of P, which denotes the weighted summation
of the distances between individual decisions and the ag-
gregated decision. According to the GDA algorithm, the
objective value is initialized based on randomly selected
aggregated decisions and the resultant sensor reliability. In
the subsequent iterations of the algorithm, the objective
value is progressively reduced by optimizing the aggregated
decisions and the sensor reliability alternatively. As shown
in Fig. 7, the objective value converges quickly within just
a few iterations.
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5) Complexity: Lastly, we look at GDA’s computational
complexity. We demonstrate that GDA’s running time is
linear with respect to the number of events under practical
settings where, in particular, events are equally distributed
under 6 classes with each event being observed by 10
different sensor nodes.

Figure 8 shows the running times of GDA under different
input sizes (i.e., the number of events in each class). As seen,
GDA displays linear complexity with respect to the number
of events. To further demonstrate this, we compute Pearson’s
correlation coefficient, a commonly used metric for testing
linear relationship between variables. The coefficient ranges
between -1 and 1, and the closer it is to 1 (or -1), the
stronger the variables are positively (or negatively) linear-
ly correlated. In our experiment, the Pearson’s correlation
coefficient for running time and the number of events is
0.985, indicating strong positive linear correlation.

B. Audio Data

We next shift our attention from synthetic data to real-
istic audio data, using which we examine the classifica-
tion performance of our GDA framework as well as the
aforementioned baseline approaches except the product rule

fusion scheme. The product rule fusion scheme suffers when
sources give confident but conflicting decision vectors. For
example, if two sensors come up with the decision vectors
like (0, 1, 0) and (0.8, 0, 0.2) for a particular event, then the
resulted vector product would be (0, 0, 0) no matter what
decision vectors other sensors may provide, resulting in an
undecidable 𝐿𝑖. We found that such cases occur frequently
with the real audio data, and thus exclude this baseline from
this experiment.

The audio clips we use in this experiment include the
sounds of a tank moving, a helicopter flying, and a machine
gun firing, corresponding to 3 different classes. We cut
the audio clips into pieces with equal time duration, and
make a copy for each sensor node. We then add random
noise to the sounds received by sensor nodes with various
SNRs (Signal-to-Noise Ratios). Next, we extract the MFCC
(Mel-Frequency Cepstral Coefficients) features from each
audio clip, and feed them as the input to the classification
algorithms. In this experiment, we choose random forest
as individual sensor node’s local classifier. Random forest
is a decision tree based classification algorithm that trains
multiple decision trees simultaneously and has them vote for
the final classification decision. Random forest can output
both decision probability vectors and discrete labels (derived
from decision probability vectors) that are fed to different
approaches under evaluation.
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Figure 9. Classification performance under different number of sensors
on realistic audio data

The classification result with varying number of sensor
nodes is shown in Figure 9, which, as seen, is quite similar
to that of the experiment on synthetic data shown in Fig-
ure 3. The curves, however, are not as smooth, due to the
randomness in the audio sounds themselves. Nevertheless,
we can still observe the same general performance trends as
displayed in the previous experiment.

Figure 10 shows the classification performance of studied
approaches under varying training data availability levels.
We see that the general relative classification effectiveness of
all approaches remains the same as all previous experiments,
with our GDA framework consistently yielding the best
performance. Also, the figure shows that, for all approaches,
higher training data availability lead to better classification
performance, as expected.

9



4 8 12 16 20 24 28 32 36 40
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Percentage of Training Data (%)

A
cc

ur
ac

y

 

 

GDA
Sum−Rule Fusion
EM TruthFinder
Majority Voting

(a) Classification Accuracy
4 8 12 16 20 24 28 32 36 40

0.2

0.3

0.4

0.5

Percentage of Training Data (%)

F
al

se
 P

os
it

iv
e 

R
at

e

 

 

GDA
Sum−Rule Fusion
EM TruthFinder
Majority Voting

(b) False Positive Rate

Figure 10. Classification performance under varying training data avail-
ability levels on realistic audio data

VII. CONCLUSIONS

In this paper we take a closer look at the decision aggre-
gation problem in distributed sensing systems. Though some
efforts have been made towards this problem, the resulting
approaches suffer from the limitation of only examining
discrete decisions from individual sensor nodes as a way
to avoid high energy cost potentially caused by excessive
network transmission if raw data from sensor nodes were
to be transmitted. Our proposed generalized decision ag-
gregation (GDA) framework overcame this limitation by
thoroughly accounting for and intelligently taking advantage
of the decision confidence and reliability of each sensor, thus
consistently achieving higher final decision accuracy over
the state of the art approaches, as we extensively demon-
strated through various experiments using both synthetic and
realistic data. We believe our GDA framework’s superior
generalizability and flexibility make it suitable for a broad
spectrum of sensing scenarios.
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