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Abstract—Participatory sensing services based on mobile phones constitute an important growing area of mobile computing. Most

services start small and hence are initially sparsely deployed. Unless a mobile service adds value while sparsely deployed, it may not

survive conditions of sparse deployment. The paper offers a generic solution to this problem and illustrates this solution in the context of

GreenGPS; a navigation service that allows drivers to find the most fuel-efficient routes customized for their vehicles between arbitrary

end-points. Specifically, when the participatory sensing service is sparsely deployed, we demonstrate a general framework for

generalization from sparse collected data to produce models extending beyond the current data coverage. This generalization allows

the mobile service to offer value under broader conditions. GreenGPS uses our developed participatory sensing infrastructure and

generalization algorithms to perform inexpensive data collection, aggregation, and modeling in an end-to-end automated fashion. The

models are subsequently used by our backend engine to predict customized fuel-efficient routes for both members and non-members

of the service. GreenGPS is offered as a mobile phone application and can be easily deployed and used by individuals. A preliminary

study of our green navigation idea was performed in [1], however, the effort was focused on a proof-of-concept implementation that

involved substantial offline and manual processing. In contrast, the results and conclusions in the current paper are based on a more

advanced and accurate model and extensive data from a real-world phone-based implementation and deployment, which enables

reliable and automatic end-to-end data collection and route recommendation. The system further benefits from lower cost and easier

deployment. To evaluate the green navigation service efficiency, we conducted a user subject study consisting of 22 users driving

different vehicles over the course of several months in Urbana-Champaign, IL. The experimental results using the collected data

suggest that fuel savings of 21.5 over the fastest, 11.2 percent over the shortest, and 8.4 percent over the Garmin eco routes can be

achieved by following GreenGPS green routes. The study confirms that our navigation service can survive conditions of sparse

deployment and at the same time achieve accurate fuel predictions and lead to significant fuel savings.

Index Terms—Application, participatory sensing, transportation, energy, navigation
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1 INTRODUCTION

THE proliferation of smart phones has led to increased
interest in mobile participatory sensing as an important

branch of mobile computing. Mobile participatory sensing
relies on user devices that are on the move to obtain sensing
coverage of large areas for purposes of interest to the mobile
service [2], [3], [4], [5]. Early examples include mapping of
physical phenomena or computing community statistics of
interest [6], [7], [8], [9], [10], [11], [12], [13], [14]. An inherent
challenge in such a service is therefore to handle conditions
of sparse deployment, where coverage is small. Clearly, a

mobile participatory sensing service must offer value to cus-
tomers even when sparsely deployed. Otherwise, it may not
survive to see a larger deployment. The fundamental way
to improve value under conditions of sparse deployment is
to develop models for generalization from sparse data. This
paper describes a general approach for such generalization
and applies it to the specific context of GreenGPS, a novel
navigation service that finds the most fuel-efficient (hence,
green) routes for drivers as opposed to the traditional short-
est or fastest routes, offered by such services as Google
maps [15] andMapQuest [16]. We show that we are success-
ful at generalizing from sparse data and are able to offer
value (i.e., fuel savings) in conditions of sparse deployment.

GreenGPS collects the necessary information to compute
and answer queries on the most fuel-efficient route. We
show that the most fuel-efficient route between two points
may be different from the shortest and fastest routes. For
example, a fastest route that uses a freeway may consume
more fuel than the most fuel-efficient route because fuel
consumption increases non-linearly with speed or because
it is longer. Similarly, the shortest route that traverses busy
city streets may be suboptimal because of downtown traffic.

A GreenGPS client is offered as an Android application
that can be installed on participants’ smart phones. The
application collects data parameters involved in engine fuel
consumption, vehicle speed (VSS) and location. Fuel
consumption parameters are provided by the On-Board
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Diagnostic (OBD-II) interface of the vehicles, standardized in
all vehicles sold in the United States since 1996. The OBD-II
is a diagnostic system that monitors the health of the auto-
mobile using sensors that measure approximately 100 dif-
ferent engine parameters. Other examples of monitored
measurements include engine RPM, coolant temperature,
vehicle speed, and engine idle time. A comprehensive list of
measured parameters can be obtained from standard speci-
fications as well as manufacturers of OBD-II scanners.

There exist several commercial OBD-II scanner tools [17],
[18], [19], [20], that can read and record the sensor values.
Apart from such scanners, remote diagnostic systems such
as GM’s OnStar, BMW’s ConnectedDrive, and Lexus Link
are capable of monitoring the car’s engine parameters from
a remote location (e.g. home of driver of the car). With
respect to the increase in the use of bluetooth devices (e.g.,
cell-phones), GreenGPS utilizes a typical OBD-II to blue-
tooth adaptor in conjunction with its participatory data col-
lection framework. This enables GreenGPS to be offered at a
very low price. For example, in our deployment we use
ELM327 OBD-II bluetooth wireless transceiver dongle [21]
which is available for less than $10 at the time of writing.
The fuel consumption data, read via the adaptor, are wire-
lessly transmitted to the user-side hub of sensing, the phone
application, upon request. The application combines the
OBD-II data with other sensory data and opportunistically
uploads them to an aggregation and modeling backend
upon availability of WiFi Internet connectivity.

The general challenge in participatory sensing applica-
tions addressed in this paper is the sparsity of their high
dimensional data space. To address the data sparsity chal-
lenge, GreenGPS exploits prediction models that enable it to
extrapolate from fuel-efficiency data of some vehicles on
some streets to the fuel consumption of arbitrary vehicles on
arbitrary streets. The developed generalizationmethodology
employed by GreenGPS can be adopted by a variety of other
participatory sensing applications as well, where data fol-
lows discoverable models. The constructed prediction mod-
els in GreenGPS abstract vehicles and routes by a set of
parameters such that fuel efficiency can be computed simply
by plugging in the parameters of the right car and route.

Thanks to its generalization methodology, GreenGPS
offers value even when sparsely deployed. Sparse deploy-
ment, here, refers to the deployment of the GreenGPS appli-
cation, not deployment of OBD-II measurement devices (as
those are abundant in modern cars). One specific instance of
generalization in GreenGPS in the sparse deployment sce-
nario is to support two types of users; members and non-
members. Members are those who contribute their data to
the GreenGPS repository from the OBD-II sensors described
above. They have GreenGPS accounts and benefit from
more accurate estimates of route fuel-efficiency, customized
to the performance of their individual vehicles. Non-mem-
bers can use GreenGPS to query for fuel-efficient routes as
well. Since GreenGPS does not have measurements from
their specific vehicles, it answers queries based on the aver-
age estimated performance for their vehicle’s attributes
such as make, model, year and class (or some subset thereof,
as available). GreenGPS also allows members to get naviga-
tion advice on routes they had never driven before using
models developed from data collected on other routes.

The motivation for GreenGPS does not need elaboration.
GreenGPS users might be driven by benefits such as savings
on fuel or positive impacts on the environment by reducing
motor emissions such as COx and NOx air poisoning gases.
Further, GreenGPS equipment is very inexpensive and
the entire procedure of GreenGPS operation described is
performed in an end-to-end automated fashion.

A user subject study was conducted over the course of
several months using 22 different cars with different drivers
and a total of over 3,200 miles of data was collected for our
experimental study to determine the accuracy of the predic-
tion models. It is shown that on average fuel-savings of
21:5 percent over the fastest route, 11:2 percent over the
shortest route, and 8:4 percent over the Garmin eco-route
can be achieved by users.

In summary, the contributions of the paper can be briefly
enumerated as follows:

1) Demonstrates how to build an easy-to-deploy and
inexpensive participatory sensing system to support
data collection for building a fuel-saving navigation
system.

2) Demonstrates how to build a general but personaliz-
able fuel-saving navigation system using the data
collected by the participatory sensing system.

3) Demonstrates how sparse samples of high-dimen-
sional spaces can be generalized to develop models
of complex nonlinear phenomena, where one size
(i.e., model) does not fit all.

4) Provides an experimental performance evaluation of
the developed system from vehicles driven in the
area of Urbana-Champaign.

The rest of the paper is structured as follows. Section 2
presents an overview of our green navigation service.
Section 3 describes the participatory sensing framework uti-
lized for data collection. Fuel consumption modeling
and model generalization are elaborated in Section 4 and
Section 5, respectively. Implementation details are pre-
sented in Section 6. Then Section 7 provides evaluation of
the service as how accurate the prediction models are and
how much fuel savings can be achieved. Section 8 discusses
our experiences with GreenGPS and lessons learned.
Finally, Section 9 reviews related work and Section 10
concludes the paper.

2 THE GREENGPS APPROACH

A study of GreenGPS reported, on average, over 16 percent
fuel savings on selected routes, compared to the fastest and
shortest alternative routes. To estimate the amount of sav-
ings that can be achieved on a global scale, we provide
approximate calculations based on data from the Environ-
mental Protection Agency (EPA) [22]. An estimated 200mil-
lion light vehicles (passenger cars and light trucks) are on
the road in the US. Each of them is driven, on an average,
12;000 miles in a year. The average mile-per-gallon (mpg)
rating for light vehicles is 20:3 mpg. Even if 10 percent of
these vehicles adopted GreenGPS and 16 percent fuel sav-
ings were achieved on only 30 percent of the routes traveled
by each of these vehicles, the amount of overall fuel savings
is over 567 million gallons of fuel per year (ð12;000=
20:3Þ � ð0:10 � 200MÞ � 0:16 � 0:30). This translates into over
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1:6 billion dollars in savings at the pump (based on the cur-
rent national average pump prices for a gallon of gasoline
[23]). Authors consider the above prospective savings
acceptable.

The service provided by GreenGPS is similar to a regular
map application, such as Google maps [15] or MapQuest
[16]. Google maps and MapQuest provide the shortest or
fastest routes between two points, whereas GreenGPS com-
putes the most fuel-efficient route. A snapshot of the Web-
based GreenGPS’s user interface is shown in Fig. 1 along
with the most fuel efficient route between two points for a
member vehicle.

Individuals who want to compute the most fuel-efficient
route between two points enter the source and destination
address via the interface provided by GreenGPS. Members
of GreenGPS (i.e., those individuals who contributed partic-
ipatory data) can register their vehicles that were used for
data collection. Hence, GreenGPS can compute the route
specifically for the registered vehicle. Other users may enter
their vehicle’s make, model, and year of manufacture. Since
different vehicles have different fuel consumption charac-
teristics, these car details are used to compute the most fuel-
efficient route for the given vehicle brand.

It is impractical to assume that GreenGPS members will
measure all city streets and cover all vehicle types. Instead,
measurements of GreenGPS members are used to calibrate
generalized fuel-efficiency prediction models. These models,
discussed in Section 5, show that the fuel consumption on
an arbitrary street can be predicted accurately from a set of
static street parameters (e.g., the number of traffic lights, the
number of stop signs, and the slope of the roads) and a set
of dynamic street parameters (such as the average speed on
the street or the average congestion level), plus the route
parameters (such as the number of left turns and right
turns), the vehicle parameters (e.g., weight and frontal area)
and the driving behavior (e.g., making high acceleration or
hard breaking). It is the mathematical model describing the

relation between these general parameters and fuel-effi-
ciency that gets estimated from participant data. Hence, the
larger and more diverse is the set of participants, the better
the generalized model.

For most streets, static street parameters can be obtained
from traffic databases. (We show in this paper, how to esti-
mate static parameters not in databases, such as locations of
traffic lights and stop signs.) Dynamically changing param-
eters such as the congestion levels or average speed are
more tricky to obtain. In larger cities, real-time traffic
monitoring services can supply these parameters [24],
[25], [15]. Many GPS device vendors, such as Garmin
and TomTom, also collect and provide congestion infor-
mation. In this paper, speed information is obtained
from the collected data using our participatory sensing
infrastructure described in the next section.

Finally, note that the increasing availability of vehicular
fuel efficiency measurements to drivers in modern vehicles
is not a substitute for green navigation. In order to exploit
fuel efficiency measurements, a driver who wants to find a
most fuel-efficient route to a given destination would have to
drive on all the different alternative routes to that destination
multiple times and note the average fuel consumption over a
statistically significant number of trips on each route, then
decide (for future reference) which route was better. In con-
trast, our service computes the answer automatically from a
model trained using other trips on other routes that the
driver already drove. This highlights the benefits of our gen-
eralizationmodels over present affordances of modern cars.

3 A PARTICIPATORY SENSING SYSTEM

FOR DATA COLLECTION

In this section, we present the participatory sensing frame-
work that we utilize for data collection and sharing. We
implement a client-side interface for data collection that
automatically uploads all data to a central server called the
GreenGPS aggregation server. An individual who wishes to
share their OBD-II sensor and location data simply down-
loads our client-side software, publicly available as an
Android application on Google Play Store, and uses it to
automatically upload their data to the aggregation server.
The aggregation server uses the data to calibrate models
that relate street and vehicle parameters to fuel-efficiency
and offers the GreenGPS navigation interface for fuel-effi-
cient routes.

Individuals who wish to contribute OBD-II data to
GreenGPS, install an off-the-shelf and inexpensive OBD-II
to bluetooth adapter in their vehicle (Fig. 2a). The GreenGPS
phone application communicates with the vehicle OBD-II
via bluetooth to obtain the engine fuel consumption data.
The data is then timestamped and stored in a small database
on the phone. The parameters obtained from the car and the
GPS sensor on the phone include instantaneous vehicle
speed, mass air flow (MAF), command equivalence ratio
(EQV), engine rpm, throttle position, latitude, longitude,
altitude, bearing, time and phone IMEI.

3.1 OBD-II Communication

We sample fuel parameters from the OBD-II unit using the
OBD-II to bluetooth adaptor. The key parameters, namely

Fig. 1. The user interface of GreenGPS with the most fuel-efficient route
between two points for a member’s vehicle.
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mass air flow, speed, command equivalence ratio, engine
rpm, and throttle position are queried in sequential order.
The sequential sampling provides better overall response
rate as we discovered that frequently querying the OBD-II
for all the parameters (at the same time) resulted in
response gaps. For example, for the majority of the vehicles,
if we query for all five parameters at once, the likelihood of
receiving all five responses before reaching our timeout is
low. However, if we query for parameter values one at a
time, the likelihood of all values being present is very high.

The sampling is ordered in the sequence described above
to minimize the timing differences when calculating fuel
rate and fuel economy. Since we only calculate two fields,
we try to group the sampling parameters together so that
the values used for fuel equations are closer in time.

a) Fuel Rate uses two queries, mass air flow and com-
mand equivalence ratio, and is calculated in gallons
per second as,

FuelRate ¼ MAF

ð14:7� EQV Þ � 454:0� 6:17
; (1)

wherein MAF is in grams per second, 14:7 is grams
of air to 1 gram of gasoline (ideal air to fuel ratio),
jEQV j � 1, 454:0 is grams per pound, and 6:17 is
pounds per gallon of gasoline.

b) Fuel Economy needs three queries, MAF, EQV, and
vehicle speed, and is calculated in miles per gallon
(mpg) as,

FuelEconommy ¼ ð14:7� EQV Þ � 454:0� 6:17

MAF

� VSS � 0:621371

3;600
;

(2)

wherein VSS is in kilometers per hour, 0:621371 is
kilometers per hour to miles per hour conversion
ratio, and 3;600 is seconds per hour.

The engine rpm and throttle position are collected for
future uses.

We try to generate samples as quickly as possible, how-
ever, the sampling rate is not constant across all vehicles.
More specifically, the sampling rate varies with the OBD

protocol being used, the age of the vehicle and its OBD-II
unit, and the version of the OBD-II to bluetooth adaptor
(newer models support higher data transfer rates), please
see [21] p61 for more details.

3.2 Opportunistic Uploading

One of the design goals of the GreenGPS’s participatory
sensing framework was to eliminate the need for cellular
data connections for data collection. This helps to avoid
imposing communication overhead of data collection on
users, for which they may be reluctant to use their own data
plans (as opposed to the route navigation step that they
experience immediate benefit return and would be willing
to utilize their cellular data connections). The vehicles in
our study at the University campus presented DTN-like
mobility patterns. Because individual devices had a low
probability of coming into contact with the wireless access
points located around campus, we embraced the notion of
opportunistic uploading. We begin by storing generated
samples in a small database on the phone. Once our applica-
tion sends its samples to the data storage server, it clears out
the delivered samples to free up resources within the
database. We reduced the amount of characters per transfer
by replacing parameter names with numeric constants.
Duplicate samples were filtered out.

3.3 Collected Data

We conducted a study involving 22 users (with different
cars) over the course of several months. A total of over 3,200
miles was driven by our users to construct the initial mod-
els. Fig. 2b shows a partial map of the paths on which data
was collected. The details of the car make, model, year,
class, and the number of miles of data collected for each car
are summarized in Table 1. The distribution for the trips
distance is depicted in Fig. 3a. It can be observed that the
majority of the trips are very short. In particular, about
70 percent of the trips are less than 4 miles long and the
remaining 30 percent are from 4 to 10 miles long. The speed
distribution for various one-mile road segments driven is
plotted in Fig. 3b and represents a mixture of two normal
distributions. The distribution denotes that most of the road
segments are low speed (less than 45 miles per hour) and
that is due to the type of streets in the town in which exist
only few highways. Fig. 3c presents the average number of
stop signs, traffic lights, left turns and right turns per one-
mile road segments with respect to the distance of the trips.
It is denoted that, as path length increases, the average num-
ber of stop signs per segment shows an overall decreasing
trend while the average number of traffic lights, left turns
and right turns do not exhibit such overall trend change.
This is expected considering that short trips are mostly the
ones driven in campus and in low speed streets that an
intersection appears almost at every block.

4 MODELING

In this section, we derive the fuel consumption model struc-
ture and explain how the impact of dynamic traffic condi-
tions on fuel consumption is modeled. We then elaborate
how the required information regarding the location of traf-
fic signs can be derived.

Fig. 2. (a) Deployed OBD-II to bluetooth adaptor; (b) Coverage map for
the paths on which data were collected.
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4.1 Derivation of Model Structure

The first part of data generalization is to derive a model
structure.

To motivate the need for modeling, we plot the distribu-
tion of miles per gallon for all the data collected in Fig. 3d.
We observe from this figure that the distribution spans a
wide range of values between 2 and over 60. The standard
deviation of the mpg distribution is 9:4 miles per gallon,
which is pretty high. Hence, an appropriate model is
needed to estimate the fuel consumption on various
segments.

The difference from the models in the literature [26], [27],
[28] lies in that we are interested in developing a model
whose parameters can be easily measured by our participa-
tory sensing system and later utilized in the route naviga-
tion phase. This imposes restrictions on what parameters
can be used which makes it different from developing first-
principle models whose goal is simply to understand the
physics.

Several factors affect the fuel consumption on streets. We
classify these parameters into five categories, which are (i)

static street parameters, (ii) dynamic street parameters, (iii) route
parameters, (iv) car specific parameters, and (v) personal parame-
ters. Static street parameters model the street characteristics
and do not change (or change with a very high time con-
stant) over a period of time. For example, the speed limits of
streets change much less frequently and the number of traf-
fic lights on the street (in a given stretch) remain more or
less constant. The dynamic street parameters are character-
istics that change with time, for example, the congestion lev-
els on a street or the average speed on a street. The static
and dynamic street parameters together determine the fuel
efficiency of a particular street. The fuel usage is also
affected by the number of left turns and right turns through
the route. Hence, route parameters are parameters that
depend on the shape of the overall route (such as turns), as
opposed to the individual street segments. Other variations
in the fuel consumption can occur due to the type of car
being driven and the nature of the person’s driving. For
example, a big SUV may consume more fuel than a small
sedan or a person who is aggressive (making higher acceler-
ation or hard braking) is likely to consume more fuel than a

TABLE 1
The Average Error Percentage (Magnitude) for the Individual Car Models, the Generalized Case When All the Data Is Used to

Obtain the Model, and the Cluster-Based Model Constructed Based on the Optimal Generalization Order

Car
Make

Car
Model

Car
Year

Car
Class

City
MPG

Hwy
MPG

Miles
Driven

Individual
Error %

General
Error %

Cluster-based
Error %

Toyota Camry 2004 Mid-Size 24 33 80 1.55 8.44 1.72
Chevrolet Impala 2002 Large 21 32 69 3.02 17.16 2.48
Ford Ranger 2008 Van 15 19 29 0.89 25.26 5.26
Toyota Corolla 2000 Compact 31 38 259 6.06 10.68 6.01
Buick LeSabre 2002 Large 20 29 54 3.38 7.46 2.45
Ford E-250 2011 Van 13 17 99 3.59 7.93 3.59
Toyota Corolla 2010 Compact 26 35 53 4.31 18.47 9.32
Toyota Celica 2001 Sub-Compact 28 34 497 4.94 11.69 4.94
Nissan Altima 2006 Compact 24 31 95 3.83 7.04 3.83
Subaru Impreza 2010 Sub-Compact 19 24 26 0.09 3.82 4.74
Toyota Corolla 2004 Compact 32 40 141 3.67 13.59 3.67
Mazda Mazda6 2003 Mid-Size 23 29 62 3.94 18.5 3.94
Audi A4 2005 Compact 22 31 88 6.86 14.58 6.86
Toyota Camry 2012 Mid-Size 25 35 90 4.96 7.59 4.96
Subaru Impreza 2010 Sub-Compact 19 24 69 9.22 15.47 8.23
Hyundai Santa-Fe 2001 Sport-Utility 21 28 87 3.3 17.92 3.3
Ford Taurus 2002 Mid-Size 20 28 65 4.01 5.51 5.06
Mitsubishi Eclipse 2002 Sub-Compact 23 30 184 5.32 15.91 5.32
Nissan Altima 2010 Mid-Size 23 32 103 2.44 9.59 2.44
Mitsubishi Galant 2002 Mid-Size 21 28 112 4.45 12.19 8.11
Toyota Celica 2000 Compact 28 34 882 6.24 8.74 6.06
Toyota Camry 2004 Mid-Size 24 33 57 0.73 13.76 2.21

Average Error Percentage (magnitude): 4.91 11.33 5.07

Fig. 3. The distribution of trip data collected from all cars: (a) The path distance distribution; (b) The average speed distribution; (c) The average num-
ber of stop signs, traffic lights, left turns and right turns per one-mile road segments with respect to the distance of the trips; (d) The real mpg
distribution.
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sluggish driver. These parameters account for the variation
in fuel consumption due to the route parameters, the car
type and the driver behavior.

The inputs to our prediction model include street seg-
ment parameters, route parameters, and car parameters. We
do not consider driver factors in the model and will explore
it in our future work. Note that, we are interested in predict-
ing long-term fuel consumption only. While actual savings
of a user on individual commutes to work may vary, the
user might be more concerned with their net long-term sav-
ings. Hence, it is important to capture only the statistical
averages of fuel consumption. As long as the errors have
near zero mean, the savings are accurate in the long term.
As a given user drives more segments, a value of interest is
the end-to-end prediction error that results, which improves
over time and represents how far we are off in our estimate
of total fuel consumption.

The free body diagram of a car is given in Fig. 4a. Assum-
ing that the car is on an upslope, the final force acting on the
car is given by the following equation:

Fcar ¼ Feng � Fd � Fr � Fgx ; (3)

where Feng is the engine force, Fd is the air resistance force
(drag), Fr is the rolling resistance force, and Fgx is the gravi-
tational force acting on the car. These forces will be elabo-
rated on in the following.

Assuming that the engine RPM is v, the torque generated
by the engine is tðvÞ, the k-th gear ratio is rgk , the differen-

tial ratio is rd, the transmission efficiency is et and the radius
of the tire is r, then the engine force Feng is given by the fol-
lowing equation:

Feng ¼
tðvÞ � rgk � rd � et

r
: (4)

The force due to air resistance, Fd, is given by the follow-
ing equation:

Fd ¼ 1

2
� r � cd �A � v2: (5)

In the above equation, r is the air density, cd is the drag
coefficient, A is the frontal area of the car, and v is the
instantaneous speed of the car. The drag coefficient
quantifies the resistance in a fluid environment (air). For
example, for a streamlined body the coefficient is about
0.05, for a regular sedan is about 0.4-0.5, and for a truck
could be about 1.

The rolling resistance force Fr is characterized by the
instantaneous speed of the car, the normal force, and the
corresponding coefficients as:

Fr ¼ cr1 � vþ cr2 � Fn (6)

in which Fn is the normal force given by:

Fn ¼ Fgy � Fl; (7)

wherein Fgy is the gravitational force acting on the car and
Fl is the lift force. The Fgy is given as follows:

Fgy ¼ m � g � cosðuÞ; (8)

wherem is the mass of the car, g is the gravitational accelera-
tion, and u is the slope of the road. The Fl is given as follows:

Fl ¼ 1

2
� r � cl � A � v2: (9)

The gravitational force due to the slope, Fgx , is given by
the following equation:

Fgx ¼ m � g � sinðuÞ: (10)

In order to obtain a relation between the fuel consumed
and the above forces, we note that the fuel consumed is
related to the power generated by the engine at any instance
of time t. If fr is the fuel rate (fuel consumption at a given
time instance) and P is the instantaneous power, then
fr / P . Power is related to the torque function and engine
RPM as follows:

P ¼ 2 � p � v � tðvÞ: (11)

Hence, we obtain,

fr ¼ b � v � tðvÞ: (12)

In the above equation, b is a constant. Further, we also have
the following relationship from rotational dynamics:

v ¼ r � v

rgk � rd
: (13)

Substituting for v in Equation (12) from Equation (13)
and for tðvÞ in Equation (4) from Equation (12), Feng can be
written as:

Feng ¼ etfr
bv

: (14)

Fig. 4. (a) The free body diagram of a car; (b) Intersection approach concept and classification features; (c) The path error percentage distribution for
one car; (d) Average error percentage (magnitude) of the models obtained from various clusters.
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Subsequently, substituting Equation (14) and Equa-
tions (5) to (10) in Equation (3) gives the following:

Fcar ¼ ma

¼ etfr
bv

� 1

2
rcdAv

2 � cr1v� cr2mgcosðuÞ

þ 1

2
cr2rclAv

2 �mgsinðuÞ;

(15)

where a is the instantaneous acceleration of the car.
From the above equation, we obtain the fuel consump-

tion rate as a function of the forces acting on the car shown
below:

fr ¼ k0mavþ k1cdAv
3 þ k2v

2 þ k3mvcosðuÞ
þ k4Av

3 þ k5mvsinðuÞ; (16)

wherein k0, . . ., k5 are constant coefficients.
In order to further derive a model that can be used for

regression analysis, we will detail the various components
that are part of the fuel consumption of a car. As shown in
the above equation, a moving car at a constant speed on a
straight road which does not encounter any stop signs, traf-
fic lights or turns will only need to overcome the frictional
forces caused by the air, the road, and gravity. These are
represented by k1cdAv

3, k2v
2 þ k3mvcosðuÞ þ k4Av

3, and
k5mvsinðuÞ, respectively. On the other hand, the first com-
ponent k0mav can be broken down further into two compo-
nents, one is the extra fuel rate due to congestion, and the
second one is the extra fuel rate due to encountering stop
signs (ST ), traffic lights (TL), left turns (LT ) and right turns
(RT ). Hence, the previous equation now becomes the
following:

fr ¼ k1cdAv
3 þ k2v

2 þ k3mvcosðuÞ
þ k4Av

3 þ k5mvsinðuÞ þ k00mav

þ ðk01 þ k02mavÞðn01nST þ n02nTL þ n03nLT þ n04nRT Þ;
(17)

where n01, n
0
2, n

0
3 and n04 are constant coefficients, nST , nTL, nLT

and nRT are the number of stop signs, traffic lights, left turns
and right turns, respectively. In the above equation, the last
component represents the fuel rate during the idle time and
consequent acceleration when encountering traffic signals,
stops and turns.

Finally, we can obtain the equation for the consumed
fuel, fc, by integrating the rate of the fuel consumption with
respect to time:

fc ¼
Z tfin

tini

frðtÞ dt (18)

in which tini denotes the time a new trip is initiated, tfin
denotes the time the trip is finished.

If we assume the road gradient u remains constant, for
each road segment i replace v with �vi, the segment average
speed, and consider a ¼ dv=dt, we can further simplify the
above integral to the following equation for the purpose of
regression analysis:

fc ¼ k1cdA
Xn
i¼1

�vi
2DLi þ k2

Xn
i¼1

�viDLi þ k3mLcosðuÞ

þ k4A
Xn
i¼1

�vi
2DLi þ k5mLsinðuÞ þ k6mðv2fin � v2iniÞ

þ k7ðn1nST þ n2nTL þ n3nLT þ n4nRT Þ

þ k8m n1
XnST
i¼1

�vi
2 þ n2

XnTL
i¼1

�vi
2 þ n3

XnLT
i¼1

�vi
2 þ n4

XnRT
i¼1

�vi
2

 !
;

(19)

wherein k1, . . ., k8 are regression coefficients, n is the total
number of road segments along the trip, L is the trip dis-
tance, and n1, n2, n3 and n4 are constant coefficients. In the
equation, �vi denotes the speed of the segment immediately
following the traffic signals, stops or turns which lays on
the path. Note that at the beginning of such street segment
viini ¼ 0 as the vehicle has come to stop at the intersection.

In Section 5.1, we show that the coefficients of our model,
k1, . . ., k8 differ among different vehicles making it harder
to generalize from vehicles we have data for to those we
do not.

4.2 Dynamic Traffic Conditions Modeling

Our experience reveals, not surprisingly, that the degree of
traffic congestion plays the largest role in accounting for
fuel consumption variations among individual trips of the
same vehicle. To model the effect of dynamically changing
traffic, the street segments real-time speed should be used
as the speed rating in the fuel consumption model pre-
sented in equation (19). However, it should be noticed that
the current speed at distant locations would become obso-
lete when the vehicle arrives there. Therefore, for distant
areas the appropriate future traffic status should be pre-
dicted to be used in the model. Here we address such spa-
tio-temporal parameters contributing to the model.

Let the overall speed of a street segment at location x at
time t be denoted by vx;t and defined as:

vx;t ¼ mx;t þ gx;t; (20)

wherein mx;t represents the speed mean value and gx;t rep-
resents the deviation from the mean. The former, mx;t, is cal-

culated through a weighted average over the past speed
values taken from traffic history for street segment located
at x. In the calculation higher weights are given to the more
recent speed values. The latter, gx;t, can be modeled as a sta-

tionary process with mean zero modeled using an autore-
gressive moving average (ARMA) model, as follows:

gx;t ¼
Xp
l¼1

flgx;t�l þ ex;t �
Xq
l¼1

ulex;t�l; (21)

where the first p terms correspond to the autoregressive
terms and the last q terms correspond to the moving average
terms. The coefficients f1; . . . ;fp and u1; . . . ; uq are the model

parameters. The subscript l denotes the time lag and t� l
means l time units before the current time t. The ex;t’s are
independent, identically distributed random variables each

with mean zero and variance s2
e .
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However, it is evident that there exists spatial correlation
in road traffic, that is, the traffic status at some street
depends on that of the neighboring streets as well. In order
to incorporate the spatial correlation into the model, let the
spatial correlation matrix be denoted as Phti ¼ �phti

x;x0
�
N�N

where x; x0 2 f1 � � �Ng and N denotes the number of street

segments. The entry p
hti
x;x0 2 N specifies the number of time

units needed for the traffic at street segment x0 to influence
the traffic at x according to the average historical speed of

the area. Note that p
hti
x;x0 ¼ 0 implies x ¼ x0. Also that, when

there is no spatial correlation between x and x0 at time inter-

val t, p
hti
x;x0 ¼ 1. The superscript t will be described shortly.

The spatial correlation is then reflected in the model as
follows:

gx;t ¼
Xp
l¼1

XN
x0¼1

fl Iðphti
x;x0 � p� lþ 1Þ gx0;t�l þ ex;t

�
Xq
l¼1

XN
x0¼1

ul Iðphti
x;x0 � q � lþ 1Þ ex0;t�l:

(22)

Thus, to predict the future street speed, the model expres-
sion includes not only the impact of the traffic history at the
same location x, but also the effect of the traffic at nearby
correlated streets as well. To make the model expression

concise, let Gt ¼ ½g1;t � � � gN;t�t, et ¼ ½e1;t � � � eN;t�t, �p ¼
�
I

ðphti
x;x0 � p� lþ 1Þ�

N�N
and �q ¼

�
Iðphti

x;x0 � q � lþ 1Þ�
N�N

.

The model can thus be rewritten as:

Gt ¼
Xp
l¼1

fl �p Gt�l þ et �
Xq
l¼1

ul �q et�l: (23)

To compute the most fuel-efficient route the speed values
in equation (19) are computed as follows. The real-time speed

Vt ¼ Mt þ Gt, where Vt ¼ ½v1;t � � � vN;t�t and Mt ¼ ½m1;t � � �
mN;t�t, is used for the speed of the street segments up to

5 minutes (one time unit) away from the source address. For
streets tþ 5n to tþ 5ðnþ 1Þ minutes away, where
n 2 f1 � � � 11g, the predicted speed value Vtþn ¼ Mt þ Gtþn is
utilized. To calculate Gtþn, n > 1, first the future speed Gtþ1 is
computed through equation (23) and using the real-time
speed Gt and the speed values from history, Gt�l. The pre-
dicted speed Gtþ1 is then used in the prediction of the Gtþ2.
The computation continues until Gtþn is calculated. Finally,
for streets more than one hour away, the average historical
speed Mt is utilized. Note that utilizing the predicted speed
values the approximate time that the vehicle reaches each
street segment along the path can be computed.

The computed most fuel-efficient route is updated every
5 minutes using the most recent traffic information. This
calls for the speed predictions to be performed every
5 minutes, however, the spatial correlation matrix is com-
puted once. To compute Phti, we divide the time horizon
based on the time of the day and the day of the week, and
then for each time period, referred to by t, the spatial corre-
lation matrix is computed accordingly. For example for Fri-

day 3 pm to 8 pm PhFri 3pm�8pmi is computed once.
For holidays a separate time period can be considered.

It should be mentioned that the results reported in this
paper are based on data collected in the area of Urbana-
Champaign. The county is almost never congested and has
very low traffic variability that renders the extensions men-
tioned in this section unnecessary. The approach can be used
in larger cities, where savings will likely be higher than those
reported in this paper due to the the larger variability in traf-
fic conditions that could be taken advantage of, and because
of the larger connectivity which offers more alternatives in
the choice of route. Currently, Google maps [15], INRIX [29],
Nokia Here [30], Microsoft Bing [31], MapQuest [16], PeMS
[25] and 511NY [32] are traffic data providers that offer real-
time and/or historical traffic information.

4.3 Detection of Traffic Signs Location

A considerable portion of fuel consumption in transporta-
tion is contributed by the traffic regulators due to the
implicit non-negligible idling time and acceleration. To
build accurate models leading to navigation of reliable most
fuel-efficient routes the impact of these players cannot be
ignored. As also invoked by equation (19) we should be
able to locate traffic lights and stop signs along a route to
measure its fuel efficiency. This becomes an issue as there
exist no public database providing the information on the
location of traffic signs. Such information is either not pres-
ent at all (for some areas) or fragmented in the municipali-
ties (mostly in the form of physical copies). On the other
hand, the collection of such information would be a very
time and labor expensive task. Consequently we aim at
establishing an automated learning-based methodology for
this purpose.

To detect the location of traffic signs we train a classifier
utilizing the map information provided by OpenStreetMap
(OSM) [33] and exploit it in modeling and navigation stages.
Our designed approach follows: we describe how our
required data is obtained, explain our learning approach,
and present its detection accuracy.

We extract our required data from OSM which provides
good coverage across the world. OSM is the equivalent of
Wikipedia for maps, where data are collected from various
free sources (such as the US TIGER database [34], Landsat 7
[35], and user contributed GPS data) and an editable street
map of the given area is created in an XML format. The
OSM map is essentially a directed graph, which is com-
posed of three basic object types, nodes, ways, and relations.
A node has fixed coordinates and expresses points of inter-
est (e.g. junction of roads, Marriott hotel). A way is an
ordered list of nodes with tags to specify the meaning of the
way, e.g. a road, a river, a park. A relation models the rela-
tionship between objects, where each member of the rela-
tion has a specific role. Relations are used in specifying
routes (e.g. bus routes, cycle routes), enforcing traffic (e.g.
one way routes).

The intersections are extracted from the OSM through
finding nodes present in more than one way. Afterwards
some data cleaning is carried out to refine valid street inter-
sections. The intersections are then decomposed into multi-
ple approaches corresponding to the joined ways and
directions. For example, a four-way intersection is decom-
posed into four approaches.
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The collection of the intersection approaches serves as
input to train our classifier. The approach features used in
the training are Street Length, Street Speed, Road Type, and
Distance to the Nearest Intersection. The street length
denotes the total end-to-end length of the streets which
intersect at the junction. The street speed is defined as the
OSM assigned speed of the intersecting street segments.
The road type denotes the category and importance of the
road within the road network. The distance to the nearest
intersection is equal to the length of the street segment
between the junction and the nearest intersection on the cor-
responding approach.

The classification is performed based on support vector
machines (SVM) which utilizing a non-linear mapping
transform the original feature space into a higher dimen-
sional space, resulting in better separation of the training
classes with linear boundaries. The SVM is able to maxi-
mize the geometric margin while minimizing the classifi-
cation error.

The classifier is provided with a training set, containing
the set of intersection approaches with their features and
labeled with the type of the approach traffic sign. The label
could be either TL, denoting the presence of a traffic light,
ST , denoting the presence of a stop sign, or None, denoting
the absence of any traffic regulator.

To evaluate the performance of the methodology, we
collected data from three different cities: Urbana, Cham-
paign (most of the city covered), and Los Angeles (part of
the city covered). This choice aimed at considering two
extremes: a small campus town (Urbana and Champaign)
and a large city. A total of 3,691, 2,803, and 7,561 intersec-
tion approaches were extracted for the city of Urbana,
Champaign, and LA, respectively, the ground truth data
for which was gathered manually through GoogleStreet-
View. We first considered training and testing a classifier
using data from the same city. Hence, for each city data-
set, we divided the data in half, one part served for train-
ing the classifier and the other part was used as the test
set. It turned out that our methodology achieves 82, 83,
and 84 percent accuracy in predicting whether a given
intersection approach faces a stop sign, a traffic light, or
neither in the cities of Urbana, Champaign, and LA,
respectively.

We then evaluated the accuracy of the classifier when
the training and test data are from different cities. Spe-
cifically, the dataset gathered from LA was used as train-
ing data. The trained classifier was then utilized to
predict the existence of stop signs, traffic lights, or the
absence thereof in the area of Urbana-Champaign. It
resulted in a classification accuracy of 80 percent. The
result shows that classifier training and testing does not
need to use same city data. A trained classifier from LA
was able to predict traffic regulators in the small college
town of Urbana-Champaign almost as accurately as a
classifier trained in Urbana-Champaign. This observation
eliminates the need for city-by-city training. Note also
that the trained classifier needs only data from OSM
maps to perform the classification. This is in contrast to
crowd-sensing based methods [36] that require GPS
traces. OSM maps are freely available and have broad
coverage worldwide.

5 MODEL GENERALIZATION TO PREDICT

GREEN ROUTES

In this section, we demonstrate the foundations of one of the
key mechanisms in participatory sensing applications that
are tolerant to conditions of sparse deployment; namely, the
generalization from sparse multidimensional data. The gen-
eralization mechanism solves a key problem at a critical
phase of most newly deployed systems, which makes it
important. Such generalization is complicated by the fact
that, in high-dimensional datasets, one size does not fit all.
Hence, for example, developing a single regression model
to represent all data is highly suboptimal. In the case of
GreenGPS, the data contributed by users of our participa-
tory sensing application will be a sparse sampling of routes
and cars. Hence, we aim to use data collected by a smaller
population to build models capable of predicting the fuel
consumption characteristics of a larger population.

5.1 Model Evaluation: One Size Fits All?

Regression analysis is a standard technique for estimating
coefficients of models with known structure. In this section,
we demonstrate that a single regression model is a bad fit
for our data. Said differently, while a regression model that
accurately predicts fuel consumption can be found for each
car from data of that one car, the model found from the col-
lective data pool of all cars is not a good predictor for single
vehicles. Hence, in a sparse dataset (where data is not avail-
able/sufficient for all cars) it is not trivial to generalize. We
illustrate that challenge by first evaluating the performance
of car models obtained from their own data (which is good),
then comparing it to the trivial generalization approach:
one that finds a single model based on all car data then uses
it to predict fuel consumption of other cars. A solution to
the challenge is presented in the next section.

We evaluate the accuracy of models derived from vehicle
data according to a cross validation approach. We predict
fuel consumption of a randomly chosen trip using a model
trained based on data from other trips. We distinguish mod-
els based on other trips of the same car from models based
on data from other cars as well in predicting the fuel con-
sumption of the one trip. The eighth and ninth columns of
Table 1 summarize the resulting errors, respectively, for the
set of cars used. More specifically, to compute the error of a
particular trip, the trip is removed and a model is trained
based on other trips of the same car which is then utilized to
predict fuel consumption for the trip. Using the collected
actual fuel consumption of the trip, the relative prediction
error percentage is then computed. This is repeated for all
trips in the dataset. The average error percentage across all
trips of the same car (i.e., the summation of all trips’ abso-
lute errors divided by the number of trips) is considered as
Individual error percentage. As for the General error per-
centage, when training the model, the trips of other cars are
included in the training dataset as well. The errors reported
here are for trips from four miles up to 10 miles; the errors
for shorter and longer trips will be presented later in Fig. 6.

We also plot the error distribution for individual trips
(for one car) in Fig. 4b. We observe that the distribution is
near normal and the mean is near zero (�0:14 percent). We
observe a similar distribution for other cars too.
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We also observe from Table 1 that the prediction errors of
the single model computed from the data of all cars are sig-
nificantly (over several times) worse than those of the mod-
els obtained from each individual car. This suggests the
existence of non-trivial bias in the error of the former model
that does not cancel out by aggregation. In the next section,
we propose a way to mitigate this problem based on group-
ing cars into clusters, such that prediction can be done
based on other similar cars by some metric of similarity.

5.2 Model Clustering

The above suggests a need for better generalization over
vehicle data. Different car types behave differently. Even
though the model is parameterized by factors such as car
weight and frontal area, they are not enough to account for
differences among cars. This is a common problem in high-
dimensional datasets collected in participatory sensing
applications. The question becomes, if we cannot generalize
over the whole set, can we generalize over a subset of
dimensions?

A solution is borrowed from the general literature on
data cubes [37]. Data cubes are structures for online analyti-
cal processing (OLAP) that are widely used for multidimen-
sional data analysis. They group data using multiple
attributes and extract similarities within each group. For
example, previous work showed how to efficiently con-
struct regression models for various subsets of data [38].
The data cube framework can thus help compute the opti-
mal generalization order in that it can help generalize data
based on those dimensions that result in the minimum
modeling error.

We consider four major attributes (data dimensions) of a
given car: make, model, year and class.1 Based on these four
attributes, data can be grouped in 16 ways, out of which six
are redundant since vehicle model specifies make and class
as well. At one extreme, all cars may be grouped together,
thus producing a single regression model (which we have
shown is not acceptable). At the other extreme, cars can be
partitioned into clusters based on their four attributes. Inter-
mediate clusters are constructed based on a subset of these
attributes. A separate model is derived for each cluster. One
should note that in cluster (model, year) for example, a
Camry 2004 is modeled differently from a Camry 2012 and
a Civic 2004.

Between the two extremes, to find out which clustering
scheme gives the best accuracy, we obtain the average per-
centage error for each scheme. The results, summarized in
Fig. 4c, show that different generalizations have different
quality. These generalizations are better than using all
cars data lumped together. While our dataset is small to
make general conclusions, as more data is collected in our
deployed participatory sensing infrastructure (e.g., say
deployment reaches 100 s of cars), progressively better gen-
eralizations can be attained. In the figure it can be observed
that some of the clusters present quite similar accuracy.
This behavior is induced due to limited vehicle type overlap
in our dataset and the performance of the intermediate

clusters is not well differentiated thereof. Specifically, these
clusters end up having several single vehicle groups in com-
mon. To draw general conclusions, a further scaled vehicle
set with adequate vehicle overlap with respect to the consid-
ered attributes is required.

To use results of Fig. 4c, one would build models for each
cluster shown in the Fig. 4c which has sufficient data for reli-
able modeling. The reader is encouraged to refer to [39] on
how the reliability of a model can be inferred. To model a
car, an instantiated cluster with the same attributes as the car
is utilized that has the least error. If a car is encountered for
which none of the clusters match the car, we have no
recourse but to use the model computed from all data. That
is, the clusters in Fig. 4c are traversed sequentially, from the
most accurate to the least accurate, until a cluster containing
sufficient data is reached. We evaluate the performance of
the Cluster-based modeling technique by measuring how
accurately an individual car can be modeled using the data
from cars with similar attributes. Specifically, we construct
the model cluster while removing data of a certain car trip.
We use the model cluster to estimate the fuel consumption
for the given car trip. This is done for all car trips. The result-
ing average error percentage is presented in the 10-th column
of Table 1. As it can be observed from the table, the cluster-
based modeling technique has led to significant accuracy
improvements compared to the General model. In a few
cases, such as the second vehicle in the table (Chevrolet
Impala 2002 Large) the error has reduced even over the Indi-
vidual model. This is because the individual vehicles
involved did not collect representative enough data to gener-
ate an accurate model. Hence, improvements are achieved
from grouping of this vehicle and Buick LeSabre 2002 Large
into the same cluster (i.e., Year-Class) that results in reducing
the errors even over the Individualmodel for both vehicles.

6 IMPLEMENTED GREEN NAVIGATION

The GreenGPS server combines several open source soft-
ware services to provide the fuel-efficient route computa-
tion service. The various modules that are part of the
GreenGPS implementation are depicted in Fig. 5.

Fig. 5. The various modules of GreenGPS.

1. Other vehicle attributes can be employed as well, for example, city
mpg, highway mpg, mpg difference (the difference between highway mpg
and city mpg) and mpg ratio (the ratio of highway mpg to city mpg).
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6.1 Data Collection

We implement the user-facing participatory sensing module
as an Android application in Java that runs on users’ smart
phones. This application gathers fuel consumption and speed
information data from the car’s engine, combines that with
location data gathered using phone’s GPS, and opportunisti-
cally uploads the data to the backend aggregation server.

For further details about the implementation refer to
Section 3.

6.2 Modeling and Generalization

The OBD-II data shared by individuals is used to compute
regression models that predict the fuel consumption on spe-
cific streets given the car details (e.g. make, model, age, cate-
gory ). The regression variables are stored in the Trip
Database, whereas the car specific variables are stored in a
similar database. The modeling module queries this database
to compute fuel consumption on a givenway for a given car.

Each trip is organized as a row in a database where 14 of
its attributes are the values of the physical model parame-
ters in Equation (19) and are used for regression. Four other
attributes (Make, Model, Year, Class ) are used for group-
ing. After computing the regression models for all clusters ,
search for a specific four-tuple of (Make, Model, Year, Class )
is done according to the optimal generalization order based
on Fig. 4c. The first regression model that matches the query
is used for prediction.

6.3 Detection of Traffic Signs Location

To implement the traffic signs location detection module,
we built our SVM-based classifier using the “kernlab” pack-
age [40] in the statistical tool R. The classifier was trained
using a dataset collected in part of the city of Los Angeles
and used to predict the traffic signs at each intersection in
the area of Urbana-Champaign, needed for evaluating the
performance of the GreenGPS in Section 7.1. For details on
the foundation and construction of the classifier please refer
to Section 4.3.

6.4 Navigation

GreenGPS maintains the map of a given area as an OSM.
Navigation is achieved in GreenGPS by customizing the
open source routing software, Gosmore [41]. Gosmore is a
C++ based implementation of a generic routing algorithm
that provides shortest and fastest routes between two arbi-
trary end-points. Gosmore uses OSM XML map data for
doing routing. Gosmore’s routing algorithm, A*, by default
computes the shortest route. This routing algorithm works
on the OSM map, where the nodes of the graph are OSM
nodes and the edges of the graph are OSM ways and the
weights of the edges are the lengths (distance) of the ways.
The fastest route is then computed by multiplying the dis-
tance by an inverse speed factor (thus giving lower weights
to faster ways). Our fuel-optimal routing algorithm multi-
plies the distance by an inverse mpg metric that results in
lower weights for fuel-optimal ways.

6.5 Graphical User Interface (GUI)

When a query is posed to GreenGPS for the fuel-optimal
route between the source address and destination address

provided by the user inputs, the addresses are first trans-
lated into latitude/longitude pairs using the open source
geocoding perl module, Geo::Coder::US. This module is
used for geocoding US addresses only. Geocoding is the
process of finding corresponding latitude/longitude data
given a street address, intersection, or zipcode.

After the source and destination addresses are geocoded
into their corresponding latitude and longitude pairs using
the geocoder module, the latitude and longitude pairs are
fed to the navigation module which computes the fuel-opti-
mal route (along with the shortest and fastest routes) using
the OSM XML database and the prediction models of fuel
consumption on streets (computed from the OBD-II sensor
data contributed by users). The computed routes are then
displayed on the GUI frontend along with the estimated
fuel consumption for the given routes. The GUI frontend to
display the routes (shown in Fig. 1) utilizes Microsoft Bing
maps. Routes are color coded and rendered as polylines on
Bing maps. For example, the fuel-optimal route is a “green”
color polyline.

7 EXPERIMENTAL EVALUATION

The performance of GreenGPS is evaluated in two stages.
First, we evaluate performance of our model by using it to
predict the end-to-end fuel consumption for long routes.
Second, we evaluate the potential fuel savings of an individ-
ual using GreenGPS.

7.1 Part I: Green Navigation Model Accuracy

In this section we evaluate the accuracy of our prediction
model in estimating fuel consumption on long routes. For
that, the attributes contributed to each trip in our collected
driving dataset in the Urbana-Champaign, called for by
Equation (19), are extracted and/or computed for each cor-
responding path.

In the experimental evaluation, the number and location
of stop signs and traffic lights along each path is predicted
using our SVM-based classifier. The classifier is trained using
a dataset collected from part of the city of Los Angeles (and
not from Urbana or Champaign). It was tested in Urbana-
Champaign to demonstrate cross-city generalizability.When
testing, street features were extracted from OSM maps for
each intersection then input to the classifier. Ground truth
(for both training and testing) was collected using GoogleS-
treetView. As mentioned earlier in Section 4.3, the LA-based
classifier achieved an accuracy level of 80:2 percent in pre-
dicting the existence and types of traffic regulators on the
streets of Urbana-Champaign. The next question was: given
the imperfect prediction of traffic regulators, what is the
accuracy in predicting fuel consumption?

The accuracy of our green navigation service is measured
using path-based cross validation in which the fuel con-
sumption along one path is predicted using the models
trained based on data collected along other paths. The pre-
diction error for the path is then obtained. This is repeated
for all paths.

The path error distribution corresponding to the above
experiment when prediction for each car is done based on
data of the same car (on other paths) is shown in Fig. 6a as
“GreenGPS Individual”. We observe that the path error

682 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 3, MARCH 2016



distribution is nearly normal and that the mean of this dis-
tribution is near zero (�0:28 percent).

We conduct a similar experiment to derive the path error
distribution that is achieved by employing Cluster-based
training such that fuel consumption of a car trip is predicted
from the model trained based on trips of other cars in the
nearest cluster as well, as described in Section 5.2. The pre-
diction error for each path is computed as before and the
distribution is presented in the figure as “GreenGPS Clus-
ter-based”. Again, a normal distribution of the path errors is
observed with near zero mean (�0:25 percent).

In order to compare the accuracy of our technique, three
other fuel prediction approaches are evaluated in Fig. 6a in
which mpg values are the basis of the prediction. In these
approaches the fuel consumption along a path is estimated
using:

fmpg
c ¼ L

MPG
(24)

in which L is the length of the path and MPG is the mpg of
the car. In Mean MPG approach, the MPG is the average
mpg computed from data of the car. In Rated MPG
approach, the MPG is computed as the average of rated city
mpg and rated highway mpg for the car. In the last
approach, City & Hwy MPG, for each individual road seg-
ment along a path, depending on the road segment type
either city mpg or highway mpg is used for fuel prediction.

In order to compare the approaches more clearly, the dis-
tribution of the corresponding unsigned error is shown in
Fig. 6b. As depicted in the figure, GreenGPS approach out-
performs the other prediction methods. It is observed in the
figure that GreenGPS Individual and Cluster-based training
approaches differ only slightly in accuracy. The reason lies
behind the lack of overlap among car types in our vehicle
set. As a result, for most of the cars the nearest cluster in
Cluster-based training becomes a cluster with one single

car—the car for which prediction accuracy is being calcu-
lated. Therefore it should be emphasized that these two
approaches may significantly differ from each other for a
different dataset; this is explained later in Fig. 7a.

It is worth noticing that, as expected, the Mean MPG
approach beats the other mpg-based approaches in Fig. 6b.
This is because the Mean MPG approach uses the collected
data to compute cars’ mpgs as opposed to considering a
predetermined fixed constant.

In order to understand how path errors vary with path
lengths, we bin the paths based on their length and compute
the average of the absolute path errors as a function of path
length. We repeat this experiment for the case where models
are derived for each car individually and the case where
models are derived for clusters and the nearest cluster is
used. We plot the mean of the absolute path errors for
varying path lengths in Fig. 6c.

We observe from Fig. 6c that the error decreases with
increasing path length for both GreenGPS and mpg-
based approaches, which is what we want. In order to
show the performance of these approaches for longer
routes beyond 10 miles, the trips in our original dataset
are concatenated to form longer trips. We concatenate
every up to ten chronologically consecutive trips (time-
stamped based on start and finish time) together and
form longer trips. The features of the new trips (such as
distance and the number of traffic regulators) are com-
puted based on those of the original constituting trips.
We then added the new longer trips to the original set
of trips. Fig. 6d presents the accuracy results on the new
dataset. As expected, the decreasing trend of the predic-
tion errors continues for trips beyond 10 miles long
as well. The average percentage error for the dataset is
4:74 percent and for trips longer than four and ten miles
is 3:67 and 3:08 percent, respectively.

We have not explored if the progressively improving
accuracy of the approaches with respect to the trip distance

Fig. 7. (a) Impact of the amount of training data on different prediction models accuracy; (b) Average normalized fuel consumption for the various trips
between different landmarks; (c) Percentage fuel saved by using GreenGPS green routes, relative to the Fastest, Shortest, and Garmin Eco routes.

Fig. 6. Distribution of path error percentage for different prediction models: (a) signed error, (b) unsigned error. Mean path error percentage for differ-
ent prediction models when path length is varied: using (c) original data, (d) synthetic data.
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holds true when the commutes have large dynamics in
speeds, such as in larger cities. The current dataset is limited
in that it was collected in a fairly quiet town.

The accuracy of our approach depends on the amount of
training data. Fig. 7a presents the impact of the training
dataset size on the performance of fuel prediction
approaches. The 100 percent point denotes using the whole
dataset, 50 percent denotes using half of the dataset, and so
on. The dataset down-scaling was performed in an alternate
manner on the set of all chronologically ordered trips that
were grouped based on the contributing vehicles. For exam-
ple, for the 50 percent dataset size, one out of every two con-
secutive trips in the list was selected, for the 33 percent
dataset size, one out of every three consecutive trips was
selected, and so on and so forth.

As depicted in the figure, as the training dataset becomes
quite small, the GreenGPS Individual training becomes
inaccurate. This is while the accuracy of the Cluster-based
approach slightly decreases and it significantly outperforms
Individual training approach for small datasets. Hence as
the dataset becomes smaller, the performance gap between
the Individual training and the Cluster-based training
increases. At the same time, the accuracy of the mpg-based
approaches remains nearly constant. This suggests to
adopt an mpg-based approach at the very beginning of
the deployment phase (when there is no or very limited
data collected) and then shift to GreenGPS train-based
approach as sufficient data for constructing reliable mod-
els is collected. The figure also depicts the GreenGPS
potential for further increase in precision (compared to
the results presented in this paper) through collection of
more driving data.

From the perspective of building participatory sensing
applications, the above suggests the importance of finding
models that do not have biased error. Since the models often
try to predict aggregate or long-term behavior (such as long
term exposure to pollutants, annual cost of energy con-
sumption, eventual weight-loss on a given diet, etc.), if the
error in day-by-day predictions is normally distributed
with zero mean, the long-term estimates will remain accu-
rate. Hence, rather than worrying about exact models,
GreenGPS attempts to find unbiasedmodels, which is easier.

7.2 Part II: Fuel Savings in Urbana-Champaign

In this section, we evaluate the fuel savings achieved when
using the GreenGPS system. To evaluate fuel savings, we
chose landmarks in the city of Urbana-Champaign that are
regularly visited in our commutes, such as library, the
university health center, stadium, frequently visited restau-
rants and parks, and shopping complexes. Then the short-
est, the fastest, the Garmin eco-route, and the GreenGPS
green routes were looked up for each pair of landmarks.
Each person selected two pairs of landmarks and for each of
which drove twenty round trips (of approximately 15-35
minutes each): five on the shortest route, five on the fastest
route, five on the Garmin eco-route, and five on the
GreenGPS green route. The actual fuel consumption for
each trip was recorded. The landmarks together with the
shortest, fastest, Garmin eco, and GreenGPS green routes
are shown in Fig. 8. The routes for the trips in the opposite

direction (i.e., driving from point B to point A) are very sim-
ilar to the ones presented in the figures for forward direc-
tion and are thus omitted.

We observe from Fig. 8 that the fuel-optimal route for the
source-destination pair in the b, c, and e were similar to the
shortest route and in the d it was the fastest route, whereas,
in the a and f the fuel-optimal route was neither the short-
est, nor the fastest. Hence, picking the shortest or fastest
routes consistently is not optimal.

The average fuel consumption for the trips in the experi-
ment are shown in Fig. 7b. It can be observed that the
GreenGPS, except for the trip ðfÞ � Forward, consistently
finds the most fuel-efficient route. To confirm that the differ-
ences in fuel consumption between the compared routes are
not due to measurement noise, we tested the statistical sig-
nificance of the difference in means using the two-way
ANOVA. The test yielded that the differences are statisti-
cally significant with a confidence level of 95 percent.

The average fuel saving percentage achieved by follow-
ing the GreenGPS green routes as opposed to the fastest, the
shortest, and the Garmin eco routes is presented in Fig. 7c.
The results report that the GreenGPS routes can lead to fuel
savings of on average, 21:5 percent over the fastest routes,
11:2 percent over the shortest routes, and 8:4 percent over
the Garmin eco routes. Although only a handful of routes
were used in the experiments above, it nevertheless shows
promise as a proof of concept.

8 DISCUSSION

This section presents a brief discussion of lessons learned
and experiences with the GreenGPS service and its compo-
nents, as a participatory sensing application using a mobile
platform.

Data cleaning. We observed that data cleaning is an
important problem and it is application dependent. We had
several occasions when several fields were missing from the
data (e.g., some OBD parameters were empty due to timing
subtleties). A simple scheme was used to filter complete
datasets from those that were missing values.

Heterogeneity. An application-specific challenge was
observed due to the variations in the OBD-II standards
among different cars. It was experienced that some car man-
ufacturers use non-standard OBD-II parameter identifiers
(PIDs). A few such examples we encountered in our initial
deployment include Honda Civic 2004, Honda Accord 2005
and General Motors Sonoma 2002. As a result we had to dis-
card data from those vehicles due to missing fuel parame-
ters. This suggests that participatory sensing applications
involve a large number of heterogeneous components (e.g.,
different car types in GreenGPS) that one should take into
account and resolve before scaled deployments.

Slow start. A major hurdle in getting participatory sens-
ing systems off the ground is to provide the right incentives
to the individuals (who are part of the system) [42]. We
believe that the initial deployment, which tends to be
sparse, should be carefully designed in order to provide
incentives for larger adoption. It should therefore be useful
from the very early stages. The very low price of the
GreenGPS was one of our main design targets in order to
incentivize users to adopt the service. In addition, at the
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early deploy stage collected data may not be sufficient for
building reliable models for some cars. Instead, an mpg-
based prediction approach is employed. As further related
data is collected and probabilistic guarantees on construct-
ing reliable models are provided, the Individual or Cluster-
based training approach is utilized. This ensures one that
even at the very early stages GreenGPS would not lead to
lower savings compared to available baselines employed by
commercial products such as Garmin.

Utility of generalization. The utility of the generalization
methodology described in this paper is not compromized
by the increasing prevalence of fuel-efficiency measure-
ments in modern cars. This is because modern cars measure
fuel efficiency on routes they traverse. Cars do not predict
fuel efficiency before route traversal. Hence, the only way
drivers can compare gas consumption on different routes at
present would be to drive all of them and compare results.
In contrast, GreenGPS predicts the final answer without the
driving. The contribution of this paper is thus complemen-
tary to (and not subsumed by) affordances offered in mod-
ern vehicles.

Privacy. In participatory sensing systems, privacy chal-
lenges come to the forefront. A large class of participatory
sensing systems monitor location information continuously,
which poses significant privacy issues. Simple anonymiza-
tion of data will not work in such situations, as the GPS
traces can lead to privacy breaches (e.g., reveal the home
location of the user and thus uncover their identity).

Techniques such as the one proposed in [43] can be used to
preserve privacy, while still allowing accurate modeling. In
[43], measurement samples are first integrated into, so
called, segments in order to remove correlation. The uncorre-
lated segments are then converted into some neutral features
appropriate to be used in modeling the phenomena
(vehicles fuel consumption) while preserving the users pri-
vacy. The privacy preserving methodology has been
applied to our green navigation service as a case study in
the paper. In our current study, individual users simply
switch off data collection application when they feel the
need for privacy. The latter is simple and fast, however, the
participatory sensing service employing it may be permitted
for gathering data only intermittently. Nevertheless, the for-
mer approach and data perturbation-based approaches
such as [44] and [45] enable perpetual privacy-preserving
data collection for a reasonable extra computation cost.

Long term investment.As expected, the main factors affect-
ing fuel consumption of a vehicle on a path are the average
speed, the speed variability (estimated by averaging the
speed squared), and the engine idle time (estimated from
the number of stop signs, traffic lights and turns on the
path). Rather than exploring the use of real-time traffic con-
ditions, we opted to use statistical averages of speed, speed
variability and idle time. It is easy to see how such statistical
averages can be computed for different hours of the day and
different days of the week given a sufficient amount of his-
torical data, yielding expected fuel consumption (in the

Fig. 8. The landmarks and the corresponding shortest (in red), fastest (in blue), Garmin eco (in purple), and GreenGPS green (in green) routes: (a,
b): Toyota Camry 2004; (c, d): Nissan Altima 2006; (e, f): Toyota Corolla 2000.

SAREMI ETAL.: EXPERIENCESWITH GREENGPS—FUEL-EFFICIENT NAVIGATION USING PARTICIPATORY SENSING 685



statistical sense of expectation). The outcome is that individ-
ual trips may differ significantly from the statistical expecta-
tion. However, by consistently following routes that have a
lower expected fuel consumption, savings will accumulate
in the long term. Drivers may think of GreenGPS as a long-
term investment. Short-term results may vary, but long-
term expectations should tend to come true.

One should add that our evaluation is not intended to be
a definitive study on vehicular fuel consumption. For exam-
ple, we evaluate fuel consumption in Urbana-Champaign
only, which is quite flat. Hence, u ¼ 0 is a good approxima-
tion. Furthermore, the range of cars used in the study is
rather skewed towards sedans, and hence not representa-
tive of the diversity of cars on the streets. Fortunately, even
this rather homogeneous dataset was sufficient to show that
the generalization challenge is hard.

With the above caveats, we believe that the study
remains of interest in that it explores problems typical to
many participatory sensing applications, such as overcom-
ing conditions of sparse deployment, adjusting to heteroge-
neity, and living with large day-to-day errors towards
estimating cumulative properties. The GreenGPS study
could therefore serve as an example of what to expect in
building similar services, as well as a recipe for some of the
solutions.

9 RELATED WORK

Previous work in participatory sensing and transportation
fuel saving are relevant and reviewed below.

9.1 Participatory Sensing

Our navigation service is an example of participatory sens-
ing services, that have recently become popular in net-
worked sensing. The concept of participatory sensing was
introduced in [2]. In participatory sensing, individuals are
tasked with data collection which is then shared for a com-
mon purpose. A broad overview of such applications is pro-
vided in [3], [4], [5]. Several early applications include
CenWits [6], a participatory sensing network to search and
rescue hikers, CarTel [7], a vehicular sensor network for
traffic monitoring, CabSense [8], a cabs sensor network to
find best corners to catch taxis depending on the current
location and time, BikeNet [9], a bikers sensor network for
monitoring popular cyclist routes, and ImageScape [46], a
cellphone camera network for sharing diet related images.
Some more recent applications include Micro-Blog [10],
a content-sharing platform, PEIR [11], a report system
enabling individuals to measure and compare their impact
on environment as well as their exposure to environmental
emissions, Escort [12], an electronic escort system that ena-
bles localizing people, MoVi [13], a service for covering
social events, and [14], a service to determine buses arrival
time. Our application, GreenGPS, introduces a novel exam-
ple of this genre that enables individuals to compute fuel
efficient routes customized for their vehicles.

9.2 Fuel Saving in Transportation

There exist a body of work addressing transportation fuel
consumption factors to achieve savings in the field. A com-
prehensive study that provides optimal route choices for

lowest fuel consumption is presented in [47]. In the paper,
fuel consumption measurements are made through the
extensive deployment of sensing devices (different from the
OBD-II) in experimental cars. In contrast, our service uses a
sparse deployment to build mathematical models for pre-
dicting fuel consumption for other streets and cars.

UbiGreen [48] is a mobile tool that tracks an individual’s
personal transportation and provides feedback regarding
their CO2 emissions. Chen et al. [49] proposes to exploit
information on surrounding vehicles and road conditions in
designing eco-driving systems to achieve higher fuel-sav-
ing. Social drive [50] is a crowdsourcing service that pro-
vides feedback to drivers regarding their driving behavior
and enables them to share their real-time trip information
through social networks, stimulating users to reduce their
gas consumption. CarMA [51] provides high-level abstrac-
tions for sensing and tuning automobile engine parameters
to achieve fuel efficiency. The tuning can be done at the
granularity of individual trips.

SignalGuru [52], a participatory sensing based system,
is a traffic signal schedule advisory application that
assists drivers to adjust speed and avoid coming to a
complete stop. The authors in [53] propose a mechanism
based on communication between traffic light signals and
approaching vehicles in which a fuel-optimal speed is
computed and sent to the vehicles to reduce fuel con-
sumption. Qiao et al [54] proposes to use RFID-based e-
stop signs at unsignalized intersections to alter drivers
behavior properly early and achieve potential emissions
reduction and fuel-economy improvement.

There exist a large category of works, such as VTrack
[55], that collect real-time traffic information and provide
estimations on road travel times in order to aid users
route around traffic congestion, being a major cause of
excess fuel consumption. VTrack utilizes WiFi and GPS
sensors of smart phones to perform localization in an
energy-aware fashion. Kyun [56] develops a networked
sensors based real-time traffic queue monitoring system
for developing countries which can lead to improved
automatic traffic signals scheduling in order to reduce
fuel inefficiency. Some other works like PhonePark [57]
approach reduction of vehicles gas consumption by
detection of available on-street parking spaces which
enables users to minimize their travel distance searching
for parking. PhonePark uses the GPS and accelerometer
sensors of travelers mobile phones.

coRide [58], among others, proposes the use of carpool-
ing to share rides and reduce gas consumption. coRide
service adopts a fare model that incentivizes both drivers
and passengers to participate. In a separate study [59], it
was shown that rising obesity has a significant impact on
the total fuel consumption in the US. Models were devel-
oped that studied the impact of obesity on the amount of
fuel consumed in passenger vehicles.

In contrast, GreenGPS represents a participatory sens-
ing service that aims at improving fuel consumption
through green routing. Using sparse data collected from
volunteer participants, models are built and continuously
updated that enable vehicle customized navigation on the
minimum-fuel route for both members and non-members
of the service.
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10 CONCLUSIONS

We presented GreenGPS, an end-to-end automated partici-
patory sensing navigation service that finds fuel-efficient
routes. GreenGPS is offered as a phone application and can
be easily deployed and used by individuals. The required
data is collected from the engine OBD-II of members’
vehicles and processed on the backend server in an end-to-
end automated manner. GreenGPS enables users including
non-members to acquire fuel-efficient routes customized for
their vehicles between any arbitrary end-points. To survive
conditions of sparse deployment, GreenGPS exploits a
sparse data generalization technique from data mining
literature to construct reliable fuel prediction models. A
moderate-sized user subject study was conducted in
Urbana-Champaign and data on users daily commutes was
collected and used to train our fuel consumption models
and evaluate efficiency of our green navigation service.
Lessons were presented that extrapolate from experiences
with our deployed service to broad issues with participa-
tory sensing service design in general. Our experimental
results show that significant fuel savings can be achieved by
using GreenGPS, which not only reduces the cost of fuel,
but also has a positive impact on the environment by reduc-
ing engine emissions of air poisoning gases. Importantly,
the results demonstrate the feasibility of generalization
from sparse deployment data.
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