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We introduce Markov chain Monte Carlo quantum 
(MCMCQ), a novel compiler-level optimization of quantum 
programs that accounts for the emerging quantum 
programming mode. MCMCQ is the first systematic 
approach for stochastic quantum-program optimization, 
targeting program performance, correctness, and 
noise tolerance. An evaluation of MCMCQ over 500 
quantum programs confirms its effectiveness.

Tech giants1–4 are investing heavily in quan-
tum computing. To interact with the quantum 
hardware, users write quantum programs in a 
high-level language. Such programs are trans-

lated to a sequence of hardware instructions. Quantum 
programming has a unique programming model under-
pinned by the quantum hardware: Unlike a classical bit, 
which exclusively represents either 0 or 1, a qubit may 

probabilistically represent both 0 and 1 simultaneously. 
A quantum instruction modifies the probability informa-
tion carried by the qubit.

THE PROBLEM
In this article, we propose a compiler technique applicable 
to quantum programs that improves performance through 
program simplification while guaranteeing correctness. 
More importantly, the near-term quantum hardware 
suffers from noise and has a very short decoherence time, 
thereby leading to unreliable results if the execution of a 
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circuit takes too long. The technique 
we propose mitigates this problem by 
reducing the number of gates and short-
ening the execution time.

Existing work in quantum-
program optimization
We classify existing work for quan-
tum-program optimization into two 
categories.

1. Rule-based techniques rely on 
heuristics-based specifications, 
or rules, defined by human 
experts. Numerous existing 
approaches,5–8 including recent 
ones,9 are rule based. Although 
these techniques can be quite 
effective, they demand great 
manual efforts. Furthermore, 
human experts may miss 
optimization opportunities. 
More importantly, these tech-
niques are required to preserve 
correctness at every step. As 
such, they are forced to exclude 
aggressive optimization 
sequences,10–12 which ensure 
correctness at the final step 
but also allow correctness to be 
temporarily sacrificed at inter-
mediate steps. For this reason, 
important opportunities for 
optimization may be missed.

2. Systematic techniques leverage 
systematic algorithms, such as 
genetic algorithms and discrete/
continuous optimization, to 
achieve circuit optimization 
without getting human experts 
involved.13,14 Systematic solu-
tions complement the rule-
based ones because they may 
find optimization opportunities 
missed by the experts. While 
inspiring, systematic search 
procedures are not guided by the 

quality of the circuits, where by 
quality we mean performance, 
correctness, and noise tolerance. 
For instance, the genetic algo-
rithm in Williams and Gray13 
is directed toward maximizing 
population diversity, as opposed 
to quality. For this reason, the 
existing systematic approaches 
are not very effective at quan-
tum-circuit optimization.

Novel contributions of this work
In this article, we propose MCMCQ, the 
first quality-driven systematic opti-
mizer of quantum programs. It is built 
upon stochastic optimization,10,11 which 
has achieved success in classical optimi-
zation. An important contribution of 
MCMCQ is that it makes stochastic opti-
mization applicable to quantum programs 
by accounting for the unique quantum 
programming model. For example, in 
contrast to classical computing, a quan-
tum program state represents a proba-
bility distribution. Therefore, the exe-
cution semantics of quantum programs 
are drastically distinct from the seman-
tics of classical programs. Consequently, 
compiler analysis must account for 
such differences.

Stochastic optimization10,11 is a 
search-based technique that, from the 
original program, randomly generates 
a mutant and stochastically accepts 
or rejects that mutant with probabil-
ity determined by the Markov chain 
Monte Carlo (MCMC) theory (see the 
“Theoretical Stochastic Optimization 
Framework ” section). If a mutant is 
accepted, the search continues from it 
instead of the original program. This 
process is iteratively applied. MCMC 
guarantees that a mutant is visited with 
probability exponentially proportional 
to its quality—a mutant with higher 

quality is visited with higher probability 
(see the “Applying MCMC to Optimize 
Quantum Programs” section).

We observe that prior work10 con-
firms the correctness of a mutant by 
checking whether it produces the same 
outputs as the original program for a 
set of inputs. However, the notion of 
output in quantum computing is dras-
tically different from its classical coun-
terpart and cannot be used for checking 
correctness. In particular, the program 
state of a quantum program represents 
a probability distribution of all possi-
ble outcomes, and the observed out-
put is a sample from the distribution, 
which varies from run to run nondeter-
ministically and hence cannot be used 
for correctness checking. To address 
these challenges, we designed MCMCQ 
fully accounting for all the aspects of 
the emerging quantum programming 
model and execution semantics and 
carefully examining the full stack, 
ranging from the hardware abstrac-
tions consisting of qubits, gates, and 
circuits, to the high-level notions of 
correctness, performance, and noise 
tolerance. Thus, our approach is not 
affected by the discrepancy caused by 
the probabilistic nature of a quantum 
program’s output. Theorem 2 formally 
proves that MCMCQ guarantees cor-
rectness for any input as long as cor-
rectness can be established for a finite 
number of specific inputs.

We applied the technique to optimize 
an implementation of Grover’s search 
algorithm thoroughly engineered by 
experts, for which MCMCQ found 1,989 
optimized versions. In one of them, as 
shown in Figure 1(b), MCMCQ was able 
to optimize the original program by 
reducing it by five gates and three steps, 
evidence that the approach can discover 
implementations more efficient than 
those provided manually by experts. 
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Furthermore, a large-scale evaluation 
over 500 quantum programs confirms 
that MCMCQ effectively improves per-
formance while preserving correctness.

This article makes the following 
contributions:

1. the first quality-driven sys-
tematic optimizer for quantum 
programs

2. a novel correctness-checking 
and performance-assessment 
technique based on the quan-
tum programming model

3. a full implementation of 
MCMCQ on top of Qiskit

4. a thorough evaluation of 
MCMCQ.

STOCHASTIC OPTIMIZATION 
OF QUANTUM PROGRAMS
In this section, we illustrate in detail 
how MCMCQ works. We first present 
a summary of the MCMC theoretical 
framework and then explain how we 
have applied MCMC to optimize quan-
tum programs. Under the hood, this 

optimization requires correctness 
checking and performance modeling; 
both techniques must be specific to the 
quantum programming model. In par-
ticular, by leveraging the unique charac-
teristic of quantum computing, we show 
that correctness can be verified effi-
ciently by checking the outputs for only 
a finite set of inputs.

Theoretical stochastic 
optimization framework
In general, the MCMC algorithm con-
structs a Markov chain, in which each 
state represents an item in the search 
space. Each state x is also associated with 
a score vx  that indicates how good state x 
is. We explain how the score is assigned 
in the “Applying MCMC to Optimize 
Quantum Programs” section. For now, 
let us assume the score is known.

The goal of MCMC is to ensure 
that the constructed Markov chain 
exhibits the stationary distribution 
expressed in (1), which can be summa-
rized as follows: The probability π(x) of 
visiting state x is exponentially propor-
tional to the score vx associated with x. 

Intuitively, states with a higher score are 
more likely to be visited:

π α= β∗x e  ( ) ,vx  (1)

where ,α  0.β >
MCMC achieves the stationary dis-

tribution by controlling the transition 
probability. Theorem 1 lays the theo-
retical foundation.11

Theorem 1. The stationary dis-
tribution π  over all states satisfies 

P,=π π  where P is the transition prob-
ability matrix. A Markov chain has a 
stationary distribution if the follow-
ing conditions are met:

 › Existence: A sufficient but not 
necessary condition is the 
detailed balance condition: 

x P x x x P x x( ) ( | ) ( ) ( | ),π π′ = ′ ′  where 
P x x( | )′  denotes the probability 
of the transition from state x to 
state x′.

 › Uniqueness: The uniqueness is 
guaranteed by the ergodicity: 
every state is aperiodic and posi-
tive recurrent.
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FIGURE 1. (a) The original amplification component used in Grover’s search algorithm. (b) The optimized amplification.
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A simple yet common way11 to sat-
isfy the conditions in Theorem 1 is to 
define P x x( | )′  as

}{′ = β∗ −
′P x x e( | ) min 1, .v v( )x x  (2)

Intuitively, MCMC always allows the 
transition from a state x to another state 
x′ if it leads to an increase in the score, 
i.e., − >′v v 0.x x  If the transition leads 
to a decrease in the score, e.g., v 1x =′

 
and v 5,x =  MCMC accepts the transi-
tion in the probability =β β∗ − −e e .(1 5) 4

It is important to specify the param-
eter β  properly. We adopt the pop-
ular annealing strategy to achieve a 
good tradeoff between exploration and 
ex ploita tion. Initially, we adopt a very 
low β value (0.05 in our experiments) to 
encourage the acceptance of a mutant, 
even if it leads to a decrease in the score. 
Favoring exploration helps avoid getting 
stuck at the local optimum. Next, we 
gradually increase β  (by 0.02 every 200 
iterations) to restrict acceptance in favor 
of exploitation.

Applying MCMC to optimize 
quantum programs
Algorithm 1 shows our MCMC-based 
optimization strategy. The algorithm 
maintains the current mutant f, which 
corresponds to the state that is currently 
visited in the Markov chain. The value f 
is initialized as the original program fo 
(line 1). In each iteration of the loop (lines 
3–11), the algorithm creates a mutant f ′  
from the current mutant f (line 3), follow-
ing the mutation strategy in the “Quan-
tum Program Mutation” section, and 
computes the difference of the scores 
(line 4), which determines the accep-
tance probability paccept of f ′  (line 5).

With the help of the uniform distri-
bution, the check at line 6 ensures line 7 
is executed with probability p ,accept  i.e., 
the mutant f ′ is accepted with p .accept  

If f ′ is accepted, we update the current 
mutant f as f ′. Additionally, if f ′ has a 
higher score than f and is correct with 
respect to the original program f ,o  then f ′ 
is a target mutant and we save it to disk.

Score and cost. The score is an over-
all assessment of the correctness and 
performance of a mutant quantum pro-
gram. Given a mutant f, the score is 
defined as follows:

f f
f f f

score( ) cost( )
cost( ) ratio * cost ( ) cost ( ).correct perf

= −
= +

Intuitively, the correctness cost 
costcorrect measures how much the 
mutant behaves differently from the 
original program, whereas the perfor-
mance cost costperf  measures the per-
formance slowdown compared to the 
original program. We explain these 
concepts in subsequent sections.

Algorithm 1 uses the score to gen-
erally guide the search without distin-
guishing correct and incorrect mutants. 
This is because the incorrect mutants 
are often necessary intermediate states 

during the transition from one correct 
mutant to another correct mutant. How-
ever, the algorithm saves the correct 
mutants only (lines 8 and 9).

Proving correctness. As per line 8, a 
mutant is reported only if it is proven 
correct. Existing stochastic optimiza-
tion techniques for classical programs 
check for correctness by verifying that 
the mutant produces the same outputs as 
the original program for a set of inputs. 
However, in quantum computing, the 
outputs observed during measurement 
are nondeterministic and cannot be used 
for correctness verification. We observe 
that a correct mutant should produce the 
same final system state as the original 
quantum program for all possible inputs. 
Accordingly, we customized our design 
to check for correctness by comparing 
the final system state of a mutant with 
that of the original program.

Another challenge is that it is infea-
sible to check for all possible input 
states because the input-state space 
is infinite. Fortunately, a unique char-
acteristic of quantum states allows us 
to reduce the checking for all input 
states to the checking for a finite set 
of basis input states without loss of 
generality. Specifically, given that an 
arbitrary superposition input state is a 
linear combination of the basis states, 
the correctness checking for a super-
position input state can be reduced to 
the checking for the basis input states. 
Theorem 2 formalizes this insight.

Theorem 2. Let M and M′ be the matri-
ces representing the original  program 
(or subprogram) and its optimized 
version, respectively. Let , , N-10b b…  be 
basis states, so that any superposition 
input state q can be uniquely written as 
a linear combination of them, as fol-
lows: ci N i i0q b= ∑ ≤ < . Then M Mq q= ′ ⇔
M M ,i ib b= ′  ∀ = … −i N0, , 1.

ALGORITHM 1. Program 
Optimization.

    Input : original program fo
    Input : number of iterations N
 1  f = fo;
 2 for i in range(N) do
 3     f ΄=mutate(f );
 4     d = score (f ΄) - score(f );
 5     paccept = min(1, expβ*d);
 6     if random.uniform(0,1) ≤ paccept then
 7      f = f ΄;
 8      if d > 0 and correct (f ,́ fo) then
 9      save(f ΄);
10      end
11      end
12 end
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Computing the correctness cost. 
Similarly, we compute the correctness 
cost by focusing on the final system 
states derived for the basis input states

∑=

≤ <

b b

f

N
fss f fss f

cost ( )
1 diff( ( , ), ( , )).i o i

i N

correct

0

Specifically, we first compute the dif-
ference of the final system states between 
the optimized version f and the original 
version fo for each basis input state. We 
then average the difference over all the 
basis input states.

Let 1o  and 2o  stand for the final sys-
tem states fss f( , )ib  and fss f( , )o ib  prior 
to the measurement. Note that 1o  and 

2o  are in amplitude-vector form. They 
may differ if they 1) contain distinct 
entry values or 2) place the same set of 
entry values in different orders. The 
difference function diff combines both 
types of differences. To account for the 
first type of difference, we ignore the 
orders of the entry values. We try to 
match each entry value in a vector to 
an entry with the same value in the 
other vector. Under the constraint that 
each value can be matched at most 

once, we count how many entry values 
remain unmatched. The second type 
of difference occurs if the two vectors 
arrange the same set of entry values 
in different orders. For this, we simply 
impose a constant penalty cost if two 
vectors are not equal to each other.

Computing the performance cost. Per-
formance is a complex issue that depends 
on many factors, including both pro-
gram features (such as the size of the pro-
gram) and hardware conditions. How-
ever, because ours is a software-based 
approach, we aim at abstracting away 
any complexity caused by the hardware. 
Therefore, we adopt a simplified perfor-
mance modeling based on the program 
features only.

One way of measuring the perfor-
mance cost is to simply count the num-
ber of gates used under the assumption 
that every type of gate operation takes 
the same amount of time. In practice, 
multiple gates may be applied in par-
allel at the same step following the 
schedule algorithm.15,16 Therefore, in 
this article, we use the number of steps 
to approximate the execution time 
more realistically. Accordingly, we 
simply leverage the quantum circuit 

scheduler16 to compute the number of 
steps. In future work, we plan to apply 
different weights to different types of 
gates when the corresponding opera-
tions take different amounts of time.

Quantum program mutation
The mutate function in Algorithm 1 
randomly picks a mutation strategy 
and applies it. Figure 2 shows six basic 
mutation strategies (with changes 
highlighted in red) for generating a 
mutant from an existing program.

1. Insert, at a random program 
point, an operation synthesized 
by randomly choosing gate and 
qubits.

2. Remove a randomly chosen 
operation.

3. Swap two randomly chosen 
operations.

4. Randomly choose an existing 
operation and replace the gate 
with a different one.

5. Randomly choose an exist-
ing operation and replace the 
qubits with other qubits.

6. Randomly choose an existing 
operation and replace it with an 
operation randomly synthesized.

EVALUATION
In this section, we evaluate MCMCQ 
via a set of experiments. In particular, 
we focus on MCMCQ’s effectiveness 
and performance as well as the cor-
rectness of the optimized programs.

Benchmarks, methodology, 
and environment
We built MCMCQ upon the open-
sourced Qiskit framework. We mea-
sured MCMCQ’s effectiveness and per-
formance by conducting experiments 
using 500 quantum programs randomly 

Insert an operation.

Swap two operations.

Replace the gate in an operation.

Replace qubits in an operation. Replace an operation.

Remove an operation.

h q [1];

h q [2];

h q [1];

h q [2];

h q [1];

x q [1];

h q [2];

h q [2];

x q [1];

h q [1];

h q [1];

cx q [0] q [1]; cx q [3 ] q [1];

x q [1];

h q [2];

h q [1];

x q [1];

h q [2];

⇒

⇒

⇒ cx q [0] q [1]; h q [1];⇒

⇒

h q [1]; x q [1];⇒

FIGURE 2. The six basic mutation strategies (with changes highlighted in red) for gener-
ating a mutant from an existing program. 
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sampled from the 3-SAT benchmark 
suite accompanying Qiskit.17 On aver-
age, each program has 100 lines of code 
(100 operations). We did not choose the 
RevLib benchmark suite because the 
code could not be compiled by Qiskit.

Also, as an in-depth case study, we 
focused on a popular 2-qubit Grover 
algorithm implementation well engi-
neered by experts. Any improvement 
induced by MCMCQ is, therefore, highly 
promising as it indicates MCMCQ’s abil-
ity to discover correct variants more opti-
mal than what experts could provide. 
All experiments were carried out on 25 
machines in parallel, each equipped 
with four Intel Xeon E5-2683 CPUs and  
16 GB of random-access memory.

Effectiveness
To demonstrate MCMCQ’s effectiveness, 
we show 1) the dynamics of the cost 

throughout the optimization process and 
2) the distribution of the cost at spe-
cific iteration timestamps. As explained 
in the “Applying MCMC to Optimize 
Quantum Programs," section, the cost 

combines costs for performance and cor-
rectness, which are not distinguished 
during optimization. The absolute value 
of the cost is not very important here. 

We are more concerned about the trend 
of the value change.

Overall cost dynamics. The graphs 
in Figure 3 summarize the experiments 

on the 500 programs. Programs in the 
same group have similar curves. We 
were able to categorize the major-
ity (90%) of the programs into eight 
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FIGURE 3. Eight representative graphs showing change in cost as the number of iterations increases. The cost is on the y-axis and the 
MCMC iterations on the x-axis. (a) Group 1. (b) Group 2. (c) Group 3. (d) Group 4. (e) Group 5. (f) Group 6. (g) Group 7. (h) Group 8. 

TO DEMONSTRATE MCMCQ’S 
EFFECTIVENESS, WE SHOW 1) THE 

DYNAMICS OF THE COST THROUGHOUT 
THE OPTIMIZATION PROCESS AND 2) THE 
DISTRIBUTION OF THE COST AT SPECIFIC 

ITERATION TIMESTAMPS.
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groups. A representative graph is 
selected from each group. Each graph 
shows the dynamics of the cost (y-axis, 
ranging from −50 to 80) with respect to 
the MCMC iterations (x-axis, capped at 
50,000 iterations).

Despite the differences in the curve 
shapes, we observe a common trend: 
cost decreases as the number of itera-
tions increases, indicating that MCMCQ 
is effective in lowering the overall cost. 
Furthermore, the cost converges quickly, 
typically after only 5,000 iterations.

We also see that early iterations 
display a much higher cost variance 
than later ones. This is due to hav-
ing applied simulated annealing to 
parameter ,β  as mentioned in the sec-
tion “Applying MCMC to Optimize 
Quantum Programs.” In particular, an 
initially small β  makes MCMC more 

tolerant to the mutants with higher 
cost, thereby favoring exploration. In 
contrast, a larger β  later on shifts the 
focus from exploration to exploitation.

Finally, we observe that the cost 
does not always converge to a nega-
tive value, as shown, for example, in  
Figure 3(c). This demonstrates a lim-
itation of MCMC: getting stuck at local 
optima. Using a small β  at the begin-
ning mitigates this problem but does 
not eliminate it completely.

Cost dynamics: Correct mutants only. 
We now focus on the correct mutants 
only, whose correctness cost is zero, 
which implies that the overall cost is 
equal to the performance cost.

Figure 4 shows the cost dynamics of 
the correct mutants for the same pro-
grams shown in Figure 3. In Figure 4, 

parts (c), (e), and (g) are blank because no 
correct mutants are found throughout 
the 50,000 iterations. Overall, MCMCQ 
failed to find correct mutants in 35% of 
the programs.

Interestingly, almost every part in 
Figure 4 [except (g)] has a curve shaped 
similarly to its counterpart in Figure 3. 
This suggests that correct mutants 
are scattered, rather than clustered 
together. In other words, there are inter-
mediate incorrect mutants during the 
transition between two correct mutants.

Performance and scalability
In our experiments, the number of 
qubits ranges from six to nine. The 
average running time taken by each 
iteration increases with the number 
of qubits, as can be seen in Figure 5(a). 
Overall, each iteration takes fewer 
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FIGURE 4. The change in the cost of correct mutants when the number of iterations increases for the same eight programs shown in 
Figure 3. The cost is on the y-axis and the MCMC iterations on the x-axis. (a) Group 1. (b) Group 2. (c) Group 3. (d) Group 4. (e) Group 5. 
(f) Group 6. (g) Group 7. (h) Group 8. 
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than 3 s. Figure 5(b) shows the time 
elapsed after every 5,000 iterations 
during the optimization of a 6-qubit 
program. The figure suggests that the 
running time is linearly proportional 
to the number of iterations. Also, the 
optimization of each program takes 
roughly 13 h. Therefore, optimizing 
all 500 programs takes 260 h (around 
11 days) on the 25 machines.

MCMCQ does not scale well when 
the number of qubits involved in the 
quantum system increases. Accord-
ing to our experiments, when the sys-
tem has more than 13 qubits, MCMCQ 
incurs out-of-memory errors within 1 h.  

This limited scalability is due to the 
size of the system state growing expo-
nentially with the number of qubits. 
Despite this scalability issue, we believe 
MCMCQ is still very useful, provided 
that quantum programmers can select 
a subcircuit from the quantum cir-
cuit and apply MCMCQ to the subcir-
cuit. Note that the selected subcircuit 
should not be entangled with the rest 
of the circuit, i.e., no CNOT gate should 
connect it to the rest of the circuit.

In our experiments, the programs have 
100 operations on average. As shown in the 
previous section, we achieved good explo-
ration of the mutant space with merely 
5,000 iterations. In practice, programs are 
much longer, thereby demanding more 
iterations. Similar to what we observed 
above, we believe MCMCQ is still very use-
ful, given that programmers can select a 
subcircuit from the quantum circuit and 
apply MCMCQ to optimize the subcircuit.

Correctness verification
In this section, we verify whether 
the optimized programs are strictly 
equivalent to the original versions. We 
adopt the 2-qubit Grover algorithm for 
brevity and clarity. In Figure 1(a), we 
show four Grover implementations for 
searching for | 00 , | 01 , | 10〉 〉 〉 and | 11 ,〉  
respectively. As seen, all four imple-
mentations share the same amplifica-
tion structure, which has seven steps 
and 11 gates in total.

By applying MCMCQ to optimize 
the amplification component, we saved 
1,989 target mutants to disk through-
out the entire optimization process. We 
show one of them in Figure 1(b), where 
the optimized amplification component 
is highlighted. Note that it uses the S 
dagger gate S′  and the controlled-Y gate. 
In our work, the domain of the gates con-
sists of a set of standard gates.

We verified that the optimized ver-
sion can be used as a drop-in replace-
ment for the original amplification 
component. In particular, the opti-
mized amplification structure leads to 
the same final system state as the orig-
inal amplification structure in all four 
cases, thereby correctly amplifying the 
marked states. Importantly, the opti-
mized amplification component has 
only four steps and six gates, three steps 
and five gates fewer than the original.

Furthermore, we applied MCMCQ to 
other quantum-circuit components and 
achieved similar success. In particular, 
we adapted a circuit from Nam et al.9 
and applied MCMCQ to it. The original 
and optimized versions of the circuit are 
shown in Figure 6(a) and (b), respectively.

In this article, we presented MCMCQ, 
a stochastic compiler optimization 
technique applicable to quantum pro-

grams. A large-scale evaluation con-
firms the effectiveness of MCMCQ. 
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applied.
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Furthermore, an in-depth analysis shows 
that, in general, MCMCQ can provide 
more-optimal implementations than 
what human experts can provide. 
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