
58 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 9 © 2 0 1 9 I E E E

COVER FEATURE QUANTUM REALISM

Peng Liu, Shaohan Hu, Marco Pistoia, Chun-Fu (Richard) Chen, and Jay M. Gambetta,
IBM T.J. Watson Research Center

We introduce Markov chain Monte Carlo quantum
(MCMCQ), a novel compiler-level optimization of quantum
programs that accounts for the emerging quantum
programming mode. MCMCQ is the first systematic
approach for stochastic quantum-program optimization,
targeting program performance, correctness, and
noise tolerance. An evaluation of MCMCQ over 500
quantum programs confirms its effectiveness.

Tech giants1–4 are investing heavily in quan-
tum computing. To interact with the quantum
hardware, users write quantum programs in a
high-level language. Such programs are trans-

lated to a sequence of hardware instructions. Quantum
programming has a unique programming model under-
pinned by the quantum hardware: Unlike a classical bit,
which exclusively represents either 0 or 1, a qubit may

probabilistically represent both 0 and 1 simultaneously.
A quantum instruction modifies the probability informa-
tion carried by the qubit.

THE PROBLEM
In this article, we propose a compiler technique applicable
to quantum programs that improves performance through
program simplification while guaranteeing correctness.
More importantly, the near-term quantum hardware
suffers from noise and has a very short decoherence time,
thereby leading to unreliable results if the execution of a

Stochastic Optimization
of Quantum Programs

Digital Object Identifier 10.1109/MC.2019.2909711
Date of publication: 4 June 2019

 J U N E 2 0 1 9 59

circuit takes too long. The technique
we propose mitigates this problem by
reducing the number of gates and short-
ening the execution time.

Existing work in quantum-
program optimization
We classify existing work for quan-
tum-program optimization into two
categories.

1. Rule-based techniques rely on
heuristics-based specifications,
or rules, defined by human
experts. Numerous existing
approaches,5–8 including recent
ones,9 are rule based. Although
these techniques can be quite
effective, they demand great
manual efforts. Furthermore,
human experts may miss
optimization opportunities.
More importantly, these tech-
niques are required to preserve
correctness at every step. As
such, they are forced to exclude
aggressive optimization
sequences,10–12 which ensure
correctness at the final step
but also allow correctness to be
temporarily sacrificed at inter-
mediate steps. For this reason,
important opportunities for
optimization may be missed.

2. Systematic techniques leverage
systematic algorithms, such as
genetic algorithms and discrete/
continuous optimization, to
achieve circuit optimization
without getting human experts
involved.13,14 Systematic solu-
tions complement the rule-
based ones because they may
find optimization opportunities
missed by the experts. While
inspiring, systematic search
procedures are not guided by the

quality of the circuits, where by
quality we mean performance,
correctness, and noise tolerance.
For instance, the genetic algo-
rithm in Williams and Gray13
is directed toward maximizing
population diversity, as opposed
to quality. For this reason, the
existing systematic approaches
are not very effective at quan-
tum-circuit optimization.

Novel contributions of this work
In this article, we propose MCMCQ, the
first quality-driven systematic opti-
mizer of quantum programs. It is built
upon stochastic optimization,10,11 which
has achieved success in classical optimi-
zation. An important contribution of
MCMCQ is that it makes stochastic opti-
mization applicable to quantum programs
by accounting for the unique quantum
programming model. For example, in
contrast to classical computing, a quan-
tum program state represents a proba-
bility distribution. Therefore, the exe-
cution semantics of quantum programs
are drastically distinct from the seman-
tics of classical programs. Consequently,
compiler analysis must account for
such differences.

Stochastic optimization10,11 is a
search-based technique that, from the
original program, randomly generates
a mutant and stochastically accepts
or rejects that mutant with probabil-
ity determined by the Markov chain
Monte Carlo (MCMC) theory (see the
“Theoretical Stochastic Optimization
Framework ” section). If a mutant is
accepted, the search continues from it
instead of the original program. This
process is iteratively applied. MCMC
guarantees that a mutant is visited with
probability exponentially proportional
to its quality—a mutant with higher

quality is visited with higher probability
(see the “Applying MCMC to Optimize
Quantum Programs” section).

We observe that prior work10 con-
firms the correctness of a mutant by
checking whether it produces the same
outputs as the original program for a
set of inputs. However, the notion of
output in quantum computing is dras-
tically different from its classical coun-
terpart and cannot be used for checking
correctness. In particular, the program
state of a quantum program represents
a probability distribution of all possi-
ble outcomes, and the observed out-
put is a sample from the distribution,
which varies from run to run nondeter-
ministically and hence cannot be used
for correctness checking. To address
these challenges, we designed MCMCQ
fully accounting for all the aspects of
the emerging quantum programming
model and execution semantics and
carefully examining the full stack,
ranging from the hardware abstrac-
tions consisting of qubits, gates, and
circuits, to the high-level notions of
correctness, performance, and noise
tolerance. Thus, our approach is not
affected by the discrepancy caused by
the probabilistic nature of a quantum
program’s output. Theorem 2 formally
proves that MCMCQ guarantees cor-
rectness for any input as long as cor-
rectness can be established for a finite
number of specific inputs.

We applied the technique to optimize
an implementation of Grover’s search
algorithm thoroughly engineered by
experts, for which MCMCQ found 1,989
optimized versions. In one of them, as
shown in Figure 1(b), MCMCQ was able
to optimize the original program by
reducing it by five gates and three steps,
evidence that the approach can discover
implementations more efficient than
those provided manually by experts.

60 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

QUANTUM REALISM

Furthermore, a large-scale evaluation
over 500 quantum programs confirms
that MCMCQ effectively improves per-
formance while preserving correctness.

This article makes the following
contributions:

1. the first quality-driven sys-
tematic optimizer for quantum
programs

2. a novel correctness-checking
and performance-assessment
technique based on the quan-
tum programming model

3. a full implementation of
MCMCQ on top of Qiskit

4. a thorough evaluation of
MCMCQ.

STOCHASTIC OPTIMIZATION
OF QUANTUM PROGRAMS
In this section, we illustrate in detail
how MCMCQ works. We first present
a summary of the MCMC theoretical
framework and then explain how we
have applied MCMC to optimize quan-
tum programs. Under the hood, this

optimization requires correctness
checking and performance modeling;
both techniques must be specific to the
quantum programming model. In par-
ticular, by leveraging the unique charac-
teristic of quantum computing, we show
that correctness can be verified effi-
ciently by checking the outputs for only
a finite set of inputs.

Theoretical stochastic
optimization framework
In general, the MCMC algorithm con-
structs a Markov chain, in which each
state represents an item in the search
space. Each state x is also associated with
a score vx that indicates how good state x
is. We explain how the score is assigned
in the “Applying MCMC to Optimize
Quantum Programs” section. For now,
let us assume the score is known.

The goal of MCMC is to ensure
that the constructed Markov chain
exhibits the stationary distribution
expressed in (1), which can be summa-
rized as follows: The probability π(x) of
visiting state x is exponentially propor-
tional to the score vx associated with x.

Intuitively, states with a higher score are
more likely to be visited:

π α= β∗x e () ,vx (1)

where ,α 0.β >
MCMC achieves the stationary dis-

tribution by controlling the transition
probability. Theorem 1 lays the theo-
retical foundation.11

Theorem 1. The stationary dis-
tribution π over all states satisfies

P,=π π where P is the transition prob-
ability matrix. A Markov chain has a
stationary distribution if the follow-
ing conditions are met:

 › Existence: A sufficient but not
necessary condition is the
detailed balance condition:

x P x x x P x x() (|) () (|),π π′ = ′ ′ where
P x x(|)′ denotes the probability
of the transition from state x to
state x′.

 › Uniqueness: The uniqueness is
guaranteed by the ergodicity:
every state is aperiodic and posi-
tive recurrent.

⏐00 >

⏐01 >

⏐10 >

⏐11 >

q[0]
q[1]

q[0]
q[1]

q[0]
q[1]

q[0]
q[1]

⏐00 >

⏐01 >

⏐10 >

⏐11 >

q[0]
q[1]

q[0]
q[1]

q[0]
q[1]

q[0]
q[1]

H

H H H S

S

S

S

S

S

S

S

H

H

H H H

H

H

H

H

H

H

H

H

H

H H

H H

H H

H

H

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XH

H

H H

H

H H

H

H H

H

H H H

H H

HS S

S′

S′

S′

S′

S′

S′

S′

S′

S

S

S

S S

S

H

H H

H

H H

H

H H H

H H

H H

H

H

H

H

H

H H

X

X

X

X

(a) (b)

FIGURE 1. (a) The original amplification component used in Grover’s search algorithm. (b) The optimized amplification.

 J U N E 2 0 1 9 61

A simple yet common way11 to sat-
isfy the conditions in Theorem 1 is to
define P x x(|)′ as

}{′ = β∗ −
′P x x e(|) min 1, .v v()x x (2)

Intuitively, MCMC always allows the
transition from a state x to another state
x′ if it leads to an increase in the score,
i.e., − >′v v 0.x x If the transition leads
to a decrease in the score, e.g., v 1x =′

and v 5,x = MCMC accepts the transi-
tion in the probability =β β∗ − −e e .(1 5) 4

It is important to specify the param-
eter β properly. We adopt the pop-
ular annealing strategy to achieve a
good tradeoff between exploration and
ex ploita tion. Initially, we adopt a very
low β value (0.05 in our experiments) to
encourage the acceptance of a mutant,
even if it leads to a decrease in the score.
Favoring exploration helps avoid getting
stuck at the local optimum. Next, we
gradually increase β (by 0.02 every 200
iterations) to restrict acceptance in favor
of exploitation.

Applying MCMC to optimize
quantum programs
Algorithm 1 shows our MCMC-based
optimization strategy. The algorithm
maintains the current mutant f, which
corresponds to the state that is currently
visited in the Markov chain. The value f
is initialized as the original program fo
(line 1). In each iteration of the loop (lines
3–11), the algorithm creates a mutant f ′
from the current mutant f (line 3), follow-
ing the mutation strategy in the “Quan-
tum Program Mutation” section, and
computes the difference of the scores
(line 4), which determines the accep-
tance probability paccept of f ′ (line 5).

With the help of the uniform distri-
bution, the check at line 6 ensures line 7
is executed with probability p ,accept i.e.,
the mutant f ′ is accepted with p .accept

If f ′ is accepted, we update the current
mutant f as f ′. Additionally, if f ′ has a
higher score than f and is correct with
respect to the original program f ,o then f ′
is a target mutant and we save it to disk.

Score and cost. The score is an over-
all assessment of the correctness and
performance of a mutant quantum pro-
gram. Given a mutant f, the score is
defined as follows:

f f
f f f

score() cost()
cost() ratio * cost () cost ().correct perf

= −
= +

Intuitively, the correctness cost
costcorrect measures how much the
mutant behaves differently from the
original program, whereas the perfor-
mance cost costperf measures the per-
formance slowdown compared to the
original program. We explain these
concepts in subsequent sections.

Algorithm 1 uses the score to gen-
erally guide the search without distin-
guishing correct and incorrect mutants.
This is because the incorrect mutants
are often necessary intermediate states

during the transition from one correct
mutant to another correct mutant. How-
ever, the algorithm saves the correct
mutants only (lines 8 and 9).

Proving correctness. As per line 8, a
mutant is reported only if it is proven
correct. Existing stochastic optimiza-
tion techniques for classical programs
check for correctness by verifying that
the mutant produces the same outputs as
the original program for a set of inputs.
However, in quantum computing, the
outputs observed during measurement
are nondeterministic and cannot be used
for correctness verification. We observe
that a correct mutant should produce the
same final system state as the original
quantum program for all possible inputs.
Accordingly, we customized our design
to check for correctness by comparing
the final system state of a mutant with
that of the original program.

Another challenge is that it is infea-
sible to check for all possible input
states because the input-state space
is infinite. Fortunately, a unique char-
acteristic of quantum states allows us
to reduce the checking for all input
states to the checking for a finite set
of basis input states without loss of
generality. Specifically, given that an
arbitrary superposition input state is a
linear combination of the basis states,
the correctness checking for a super-
position input state can be reduced to
the checking for the basis input states.
Theorem 2 formalizes this insight.

Theorem 2. Let M and M′ be the matri-
ces representing the original program
(or subprogram) and its optimized
version, respectively. Let , , N-10b b… be
basis states, so that any superposition
input state q can be uniquely written as
a linear combination of them, as fol-
lows: ci N i i0q b= ∑ ≤ < . Then M Mq q= ′ ⇔
M M ,i ib b= ′ ∀ = … −i N0, , 1.

ALGORITHM 1. Program
Optimization.

    Input : original program fo
    Input : number of iterations N
 1  f = fo;
 2 for i in range(N) do
 3     f ΄=mutate(f);
 4     d = score (f ΄) - score(f);
 5     paccept = min(1, expβ*d);
 6     if random.uniform(0,1) ≤ paccept then
 7      f = f ΄;
 8      if d > 0 and correct (f ,́ fo) then
 9      save(f ΄);
10      end
11      end
12 end

62 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

QUANTUM REALISM

Computing the correctness cost.
Similarly, we compute the correctness
cost by focusing on the final system
states derived for the basis input states

∑=

≤ <

b b

f

N
fss f fss f

cost ()
1 diff((,), (,)).i o i

i N

correct

0

Specifically, we first compute the dif-
ference of the final system states between
the optimized version f and the original
version fo for each basis input state. We
then average the difference over all the
basis input states.

Let 1o and 2o stand for the final sys-
tem states fss f(,)ib and fss f(,)o ib prior
to the measurement. Note that 1o and

2o are in amplitude-vector form. They
may differ if they 1) contain distinct
entry values or 2) place the same set of
entry values in different orders. The
difference function diff combines both
types of differences. To account for the
first type of difference, we ignore the
orders of the entry values. We try to
match each entry value in a vector to
an entry with the same value in the
other vector. Under the constraint that
each value can be matched at most

once, we count how many entry values
remain unmatched. The second type
of difference occurs if the two vectors
arrange the same set of entry values
in different orders. For this, we simply
impose a constant penalty cost if two
vectors are not equal to each other.

Computing the performance cost. Per-
formance is a complex issue that depends
on many factors, including both pro-
gram features (such as the size of the pro-
gram) and hardware conditions. How-
ever, because ours is a software-based
approach, we aim at abstracting away
any complexity caused by the hardware.
Therefore, we adopt a simplified perfor-
mance modeling based on the program
features only.

One way of measuring the perfor-
mance cost is to simply count the num-
ber of gates used under the assumption
that every type of gate operation takes
the same amount of time. In practice,
multiple gates may be applied in par-
allel at the same step following the
schedule algorithm.15,16 Therefore, in
this article, we use the number of steps
to approximate the execution time
more realistically. Accordingly, we
simply leverage the quantum circuit

scheduler16 to compute the number of
steps. In future work, we plan to apply
different weights to different types of
gates when the corresponding opera-
tions take different amounts of time.

Quantum program mutation
The mutate function in Algorithm 1
randomly picks a mutation strategy
and applies it. Figure 2 shows six basic
mutation strategies (with changes
highlighted in red) for generating a
mutant from an existing program.

1. Insert, at a random program
point, an operation synthesized
by randomly choosing gate and
qubits.

2. Remove a randomly chosen
operation.

3. Swap two randomly chosen
operations.

4. Randomly choose an existing
operation and replace the gate
with a different one.

5. Randomly choose an exist-
ing operation and replace the
qubits with other qubits.

6. Randomly choose an existing
operation and replace it with an
operation randomly synthesized.

EVALUATION
In this section, we evaluate MCMCQ
via a set of experiments. In particular,
we focus on MCMCQ’s effectiveness
and performance as well as the cor-
rectness of the optimized programs.

Benchmarks, methodology,
and environment
We built MCMCQ upon the open-
sourced Qiskit framework. We mea-
sured MCMCQ’s effectiveness and per-
formance by conducting experiments
using 500 quantum programs randomly

Insert an operation.

Swap two operations.

Replace the gate in an operation.

Replace qubits in an operation. Replace an operation.

Remove an operation.

h q [1];

h q [2];

h q [1];

h q [2];

h q [1];

x q [1];

h q [2];

h q [2];

x q [1];

h q [1];

h q [1];

cx q [0] q [1]; cx q [3] q [1];

x q [1];

h q [2];

h q [1];

x q [1];

h q [2];

⇒

⇒

⇒ cx q [0] q [1]; h q [1];⇒

⇒

h q [1]; x q [1];⇒

FIGURE 2. The six basic mutation strategies (with changes highlighted in red) for gener-
ating a mutant from an existing program.

 J U N E 2 0 1 9 63

sampled from the 3-SAT benchmark
suite accompanying Qiskit.17 On aver-
age, each program has 100 lines of code
(100 operations). We did not choose the
RevLib benchmark suite because the
code could not be compiled by Qiskit.

Also, as an in-depth case study, we
focused on a popular 2-qubit Grover
algorithm implementation well engi-
neered by experts. Any improvement
induced by MCMCQ is, therefore, highly
promising as it indicates MCMCQ’s abil-
ity to discover correct variants more opti-
mal than what experts could provide.
All experiments were carried out on 25
machines in parallel, each equipped
with four Intel Xeon E5-2683 CPUs and
16 GB of random-access memory.

Effectiveness
To demonstrate MCMCQ’s effectiveness,
we show 1) the dynamics of the cost

throughout the optimization process and
2) the distribution of the cost at spe-
cific iteration timestamps. As explained
in the “Applying MCMC to Optimize
Quantum Programs," section, the cost

combines costs for performance and cor-
rectness, which are not distinguished
during optimization. The absolute value
of the cost is not very important here.

We are more concerned about the trend
of the value change.

Overall cost dynamics. The graphs
in Figure 3 summarize the experiments

on the 500 programs. Programs in the
same group have similar curves. We
were able to categorize the major-
ity (90%) of the programs into eight

80
60
40
20

–20
–40

0

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

80
60
40
20

–20
–40

0

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

80
60
40
20

–20
–40

0

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

80
60
40
20

–20
–40

0

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

80
60
40
20

–20
–40

0

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

80
60
40
20

–20
–40

0

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

80
60
40
20

–20
–40

0

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

80
60
40
20

–20
–40

0

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 3. Eight representative graphs showing change in cost as the number of iterations increases. The cost is on the y-axis and the
MCMC iterations on the x-axis. (a) Group 1. (b) Group 2. (c) Group 3. (d) Group 4. (e) Group 5. (f) Group 6. (g) Group 7. (h) Group 8.

TO DEMONSTRATE MCMCQ’S
EFFECTIVENESS, WE SHOW 1) THE

DYNAMICS OF THE COST THROUGHOUT
THE OPTIMIZATION PROCESS AND 2) THE
DISTRIBUTION OF THE COST AT SPECIFIC

ITERATION TIMESTAMPS.

64 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

QUANTUM REALISM

groups. A representative graph is
selected from each group. Each graph
shows the dynamics of the cost (y-axis,
ranging from −50 to 80) with respect to
the MCMC iterations (x-axis, capped at
50,000 iterations).

Despite the differences in the curve
shapes, we observe a common trend:
cost decreases as the number of itera-
tions increases, indicating that MCMCQ
is effective in lowering the overall cost.
Furthermore, the cost converges quickly,
typically after only 5,000 iterations.

We also see that early iterations
display a much higher cost variance
than later ones. This is due to hav-
ing applied simulated annealing to
parameter ,β as mentioned in the sec-
tion “Applying MCMC to Optimize
Quantum Programs.” In particular, an
initially small β makes MCMC more

tolerant to the mutants with higher
cost, thereby favoring exploration. In
contrast, a larger β later on shifts the
focus from exploration to exploitation.

Finally, we observe that the cost
does not always converge to a nega-
tive value, as shown, for example, in
Figure 3(c). This demonstrates a lim-
itation of MCMC: getting stuck at local
optima. Using a small β at the begin-
ning mitigates this problem but does
not eliminate it completely.

Cost dynamics: Correct mutants only.
We now focus on the correct mutants
only, whose correctness cost is zero,
which implies that the overall cost is
equal to the performance cost.

Figure 4 shows the cost dynamics of
the correct mutants for the same pro-
grams shown in Figure 3. In Figure 4,

parts (c), (e), and (g) are blank because no
correct mutants are found throughout
the 50,000 iterations. Overall, MCMCQ
failed to find correct mutants in 35% of
the programs.

Interestingly, almost every part in
Figure 4 [except (g)] has a curve shaped
similarly to its counterpart in Figure 3.
This suggests that correct mutants
are scattered, rather than clustered
together. In other words, there are inter-
mediate incorrect mutants during the
transition between two correct mutants.

Performance and scalability
In our experiments, the number of
qubits ranges from six to nine. The
average running time taken by each
iteration increases with the number
of qubits, as can be seen in Figure 5(a).
Overall, each iteration takes fewer

80
60
40
20

–20
–40

0

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

80
60
40
20

–20
–40

0

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

80
60
40
20

–20
–40

0

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

80
60
40
20

–20
–40

0

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

80
60
40
20

–20
–40

0

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

80
60
40
20

–20
–40

0

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

80
60
40
20

–20
–40

0

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

80
60
40
20

–20
–40

0

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 4. The change in the cost of correct mutants when the number of iterations increases for the same eight programs shown in
Figure 3. The cost is on the y-axis and the MCMC iterations on the x-axis. (a) Group 1. (b) Group 2. (c) Group 3. (d) Group 4. (e) Group 5.
(f) Group 6. (g) Group 7. (h) Group 8.

 J U N E 2 0 1 9 65

than 3 s. Figure 5(b) shows the time
elapsed after every 5,000 iterations
during the optimization of a 6-qubit
program. The figure suggests that the
running time is linearly proportional
to the number of iterations. Also, the
optimization of each program takes
roughly 13 h. Therefore, optimizing
all 500 programs takes 260 h (around
11 days) on the 25 machines.

MCMCQ does not scale well when
the number of qubits involved in the
quantum system increases. Accord-
ing to our experiments, when the sys-
tem has more than 13 qubits, MCMCQ
incurs out-of-memory errors within 1 h.

This limited scalability is due to the
size of the system state growing expo-
nentially with the number of qubits.
Despite this scalability issue, we believe
MCMCQ is still very useful, provided
that quantum programmers can select
a subcircuit from the quantum cir-
cuit and apply MCMCQ to the subcir-
cuit. Note that the selected subcircuit
should not be entangled with the rest
of the circuit, i.e., no CNOT gate should
connect it to the rest of the circuit.

In our experiments, the programs have
100 operations on average. As shown in the
previous section, we achieved good explo-
ration of the mutant space with merely
5,000 iterations. In practice, programs are
much longer, thereby demanding more
iterations. Similar to what we observed
above, we believe MCMCQ is still very use-
ful, given that programmers can select a
subcircuit from the quantum circuit and
apply MCMCQ to optimize the subcircuit.

Correctness verification
In this section, we verify whether
the optimized programs are strictly
equivalent to the original versions. We
adopt the 2-qubit Grover algorithm for
brevity and clarity. In Figure 1(a), we
show four Grover implementations for
searching for | 00 , | 01 , | 10〉 〉 〉 and | 11 ,〉
respectively. As seen, all four imple-
mentations share the same amplifica-
tion structure, which has seven steps
and 11 gates in total.

By applying MCMCQ to optimize
the amplification component, we saved
1,989 target mutants to disk through-
out the entire optimization process. We
show one of them in Figure 1(b), where
the optimized amplification component
is highlighted. Note that it uses the S
dagger gate S′ and the controlled-Y gate.
In our work, the domain of the gates con-
sists of a set of standard gates.

We verified that the optimized ver-
sion can be used as a drop-in replace-
ment for the original amplification
component. In particular, the opti-
mized amplification structure leads to
the same final system state as the orig-
inal amplification structure in all four
cases, thereby correctly amplifying the
marked states. Importantly, the opti-
mized amplification component has
only four steps and six gates, three steps
and five gates fewer than the original.

Furthermore, we applied MCMCQ to
other quantum-circuit components and
achieved similar success. In particular,
we adapted a circuit from Nam et al.9
and applied MCMCQ to it. The original
and optimized versions of the circuit are
shown in Figure 6(a) and (b), respectively.

In this article, we presented MCMCQ,
a stochastic compiler optimization
technique applicable to quantum pro-

grams. A large-scale evaluation con-
firms the effectiveness of MCMCQ.

2.4
2.2

2
1.8
1.6
1.4
1.2

1
0.8

6 7 8 9

5,
00

0

10
,0

00

15
,0

00

20
,0

00

25
,0

00

30
,0

00

35
,0

00

40
,0

00

45
,0

00

50
,0

00

60,000

50,000

40,000

30,000

20,000

10,000

0

(a)

(b)

FIGURE 5. (a) Time taken by each iteration
with different numbers of qubits. Time (s)
is on the y-axis, and the number of qubits
is on the x-axis. (b) Time taken by different
numbers of iterations with 6 qubits. Time
(s) is on the y-axis; MCMC iterations are on
the x-axis.

H

H

H

H

H

HZ Z Z

Z Z

(a) (b)

FIGURE 6. The (a) original and (b) optimized versions of a circuit to which MCMCQ was
applied.

66 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

QUANTUM REALISM

Furthermore, an in-depth analysis shows
that, in general, MCMCQ can provide
more-optimal implementations than
what human experts can provide.

REFERENCES
1. Microsoft, “Quantum.” Accessed on:

Nov. 2017. [Online]. Available: https://
www.microsoft.com/en-us/quantum

2. Google, “Quantum A.I.” Accessed
on: Nov. 2017. [Online]. Available:
https://research.google.com/pubs
/QuantumAI.html

3. IBM, “IBM Q.” Accessed on: Nov. 2017.
[Online]. Available: https://www
.research.ibm.com/ibm-q/

4. Intel, “Quantum computing.”
Accessed on: Nov. 2017.
[Online]. Available: https://
newsroom.intel.com/press-kits
/quantum-computing/

5. M. Curry, “Symbolic quantum cir-
cuit simplification in SymPy,” 2011.
Accessed on: Mar. 16, 2019. [Online].
Available: https://digitalcommons
.calpoly.edu/cgi/viewcontent
.cgi?article=1039&context=physsp

6. D. Maslov, G. W. Dueck, D. M. Miller,
and C. Negrevergne, “Quantum cir-
cuit simplification and level compac-
tion,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 27, no. 3,
pp. 436–444, 2008. doi: 10.1109
/TCAD.2007.911334.

7. D. Maslov, C. Young, D. M. Miller, and
G. W. Dueck, “Quantum circuit sim-
plification using templates,” in Proc.
Design, Automation and Test in Europe
Conf., 2005, vol. 2, pp. 1208–1213.

8. B. P. Lanyon et al., “Simplifying
quantum logic using higher-dimen-
sional Hilbert spaces,” Nature Phys-
ics, vol. 5, no. 2, pp. 134–140, 2008.

9. Y. Nam, N. J. Ross, Y. Su, A. M. Childs,
and D. Maslov, “Automated optimi-
zation of large quantum circuits with
continuous parameters,” npj Quan-
tum Inform., vol. 4, no. 1, p. 23, 2018.

10. E. Schkufza, R. Sharma, and A.
Aiken, “Stochastic superoptimiza-
tion,” in Proc. 18th Int. Conf. Archi-
tectural Support for Programming
Languages and Operating Systems
(ASPLOS ’13), 2013, pp. 305–316.

11. V. Le, C. Sun, and Z. Su, “Finding
deep compiler bugs via guided

ABOUT THE AUTHORS
PENG LIU is a research staff member at the IBM T.J. Watson Research Center,
Yorktown Heights, New York. He has published extensively in several areas of
computer science, including compiler theory, artificial intelligence, static and
dynamic program analysis, security, and quantum computing. Liu received a
Ph.D. in computer science from the Hong Kong University of Science and Tech-
nology. Contact him at liup@us.ibm.com.

SHAOHAN HU is a research staff member at the IBM T.J. Watson Research
Center, Yorktown Heights, New York. His research interests include quantum
computing, cyberphysical systems, mobile ubiquitous computing, crowd and
social sensing, big data analytics, and cloud computing. Hu received a Ph.D.
in computer science from the University of Illinois at Urbana–Champaign. He
is a Member of the IEEE. Contact him at shaohan.hu@ibm.com.

MARCO PISTOIA is a distinguished research staff member and senior manager
at the IBM T.J. Watson Research Center in Yorktown Heights, New York. His
research interests include linear algebra, invariant theory, and quantum com-
puting. Pistoia received a Ph.D. in mathematics from New York University. He
has authored or coauthored 10 books and more than 50 scholarly papers. For
his publications, he has received four ACM distinguished paper awards and one
IEEE honorable mention. Contact him at pistoia@us.ibm.com.

CHUN-FU (RICHARD) CHEN is a senior software engineer at the IBM T.J. Wat-
son Research Center, New York. His research interests include quantum com-
puting for chemistry, machine learning, and optimization as well as computer
vision and graph computing. Chen received a M.S. from the Department of
Electrical Engineering of the National Cheng Kung University, Taiwan. He is a
Member of the IEEE and ACM. Contact him at chenrich@us.ibm.com.

JAY M. GAMBETTA is an IBM Fellow and the IBM global lead of quantum the-
ory, applications, theory, and software at the IBM T.J. Watson Research Center,
Cambridge, Massachusetts. Gambetta received a Ph.D. in physics from Griffith
University, Brisbane, Australia. He has authored or coauthored more than 100
peer-reviewed articles in the field of quantum computing. Gambetta is a Senior
Member of the IEEE and was a fellow of the American Physical Society. Contact
him at jay.gambetta@us.ibm.com.

 J U N E 2 0 1 9 67

stochastic program mutation,” in
Proc. 2015 ACM SIGPLAN Int. Conf.
Object-Oriented Programming, Sys-
tems, Languages, and Applications
(OOPSLA 2015), pp. 386–399. doi:
10.1145/2814270.2814319.

12. Y. Chen, T. Su, C. Sun, Z. Su, and J.
Zhao, “Coverage-directed differential
testing of JVM implementations,” in
Proc. 37th ACM SIGPLAN Conf. Pro-
gramming Language Design and Imple-
mentation (PLDI ’16), 2016, pp. 85–99.

13. C. P. Williams and A. G. Gray, “Auto-
mated design of quantum circuits,”
in Quantum Computing and Quantum

Communications, C. P. Williams, Ed. Ber-
lin: Springer-Verlag, 1999, pp. 113–125.

14. S. Khatri, R. LaRose, A. Poremba,
L. Cincio, A. T. Sornborger, and P. J.
Coles, Quantum-assisted quantum
compiling. 2018. [Online]. Available:
https://arxiv.org/abs/1807.00800

15. J. Heckey et al., “Compiler man-
agement of communication and
parallelism for quantum computa-
tion,” in Proc. 20th Int. Conf. Archi-
tectural Support for Programming
Languages and Operating Systems
(ASPLOS ’15), 2015, pp. 445–456.
doi: 10.1145/2694344.2694357.

16. G. Aleksandrowicz et al., “Qiskit: An
open-source framework for quantum
computing,” 2019. doi: 10.5281
/zenodo.2562110.

17. IBMQ, “Benchmarks,” Accessed on:
Nov. 2017. [Online]. Available: https://
sites.google.com/site/qbenchmarks/

Access all your IEEE Computer Society
subscriptions at

computer.org
/mysubscriptions

CALL FOR ARTICLES
IT Professional seeks original submissions on technology
solutions for the enterprise. Topics include

z� emerging technologies,
z� cloud computing,
z� Web 2.0 and services,
z� cybersecurity,
z� mobile computing,
z� green IT,
z� RFID,

z� social software,
z� data management and mining,
z� systems integration,
z� communication networks,
z� datacenter operations,
z� IT asset management, and
z� health information technology.

We welcome articles accompanied by web-based demos.
For more information, see our author guidelines at
www.computer.org/itpro/author.htm.

WWW.COMPUTER.ORG/ITPRO

Digital Object Identifier 10.1109/MC.2019.2915435

	C1
	C2
	1
	3
	4
	6
	9
	11
	12
	13
	18
	27
	38
	47
	58
	68
	73
	77
	78
	82
	87
	88
	93
	94
	C3
	C4

