
Stark: Optimizing In-Memory Computing For

Dynamic Dataset Collections

Shen Li† Md Tanvir Amin* Raghu Ganti† Mudhakar Srivatsa† Shaohan Hu† Yiran Zhao* Tarek Abdelzaher*

†IBM Research *University of Illinois at Urbana-Champaign

{shenli, rganti, msrivats, shaohan.hu}@us.ibm.com, {maamin2, zhao97, zaher}@illinois.edu

Abstract— Emerging distributed in-memory computing frame-
works, such as Apache Spark, can process a huge amount of
cached data within seconds. This remarkably high efficiency
requires the system to well balance data across tasks and
ensure data locality. However, it is challenging to satisfy these
requirements for applications that operate on a collection of
dynamically loaded and evicted datasets. The dynamics may
lead to time-varying data volume and distribution, which would
frequently invoke expensive data re-partition and transfer oper-
ations, resulting in high overhead and large delay. To address
this problem, we present Stark, a system specifically designed
for optimizing in-memory computing on dynamic dataset collec-
tions. Stark enforces data locality for transformations spanning
multiple datasets (e.g., join and cogroup) to avoid unnecessary
data replications and shuffles. Moreover, to accommodate fluctu-
ating data volume and skewed data distribution, Stark delivers
elasticity into partitions to balance task execution time and
reduce job makespan. Finally, Stark achieves bounded failure
recovery latency by optimizing the data checkpointing strategy.
Evaluations on a 50-server cluster show that Stark reduces the
job makespan by 4X and improves system throughput by 6X
compared to Spark.

I. INTRODUCTION

In the past few years, in-memory computing frame-

works [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

have made big-data analytics fast, supercharging a rapidly

increasing number of applications in the fields of social

networks, e-commerce, finance, and telecommunications [12],

[13], [14], [15]. Spark [1], as the state-of-the-art in-memory

computing system, attracts a tremendous amount of attention

from both academia and industry. Many Spark applications

operate on dynamic collections of datasets. For example, an

advertising optimization system [16] may store user browsing

histories into a dataset every hour, and execute algorithms

using data of the past few hours. An IT administrator may

dynamically load and evict various system log datasets for

diagnosis [17], [18], and run interactive queries on subsets

of those datasets. Another example is Spark Streaming [2],

which divides stream data into timesteps, and relies on the

batch-process Spark core to operate on multiple timesteps

within a time window. These applications require Spark core

not only process a single dataset efficiently, but also excel at

computations across a dynamic collection of datasets.

Spark delivers high efficiency when all task inputs are

available in local RAM. Violating this data locality condition

would force Spark to access disk and network to construct and

load data into memory, leading to deteriorated delay. Default

Spark relies on the delay scheduling policy [19] to preserve

data locality, which allows a task at the front of the queue to

wait for a small amount of time if its data-local servers are all

busy. Although this policy improves data locality probability

for applications dealing with a single dataset, data co-locality
may still be a far less likely contingency when applications

work on a collection of datasets. Data co-locality refers to

the property that multiple input datasets are partitioned using

the same scheme and cached in the same set of servers

correspondingly. Without proper management, a data-local

execution slot may not even exist, as multiple input data

partitions of the same task can fall into different servers,

leaving no chance for the scheduling policy to pursue the

co-locality property. Moreover, even if the system preserves

data co-locality, time-varying data volume and distribution

may result in excessive data re-partitions and transfers, which

would inevitably slow down job executions.

In this paper, we present Stark, a system specifically

designed for optimizing in-memory computing on dynamic

dataset collections. Stark achieves data co-locality by judi-

ciously managing partitioning strategies and data placement

policies. There are three major contributions. First, Stark al-

lows applications to preserve data partitioning strategy across

a collection of datasets, and arranges corresponding partitions

into the same set of physical servers (i.e., co-locality), avoid-

ing huge data shuffling overheads when processing multiple

datasets. Second, Stark handles time-varying data volume

and distribution by delivering elasticity into partitions, such

that partitions may split or merge without re-partitioning the

entire dataset collection. Third, Stark achieves bounded failure

recovery delay with minimum checkpointing overhead. Stark

is implemented based on Spark-1.3.1 by adding 2.9K lines

of Scala code. Experiments on a 50-server cluster show that

Stark reduces the delay by 4X and improves the throughput

by 6X compared to Spark.

The remainder of the paper is organized as follows. Sec-

tion II describes the background and motivations. System de-

sign and implementation details are elaborated in Section III.

Section IV discusses evaluation results. We survey related

work in Section V. Finally, Section VI concludes the paper.

II. MOTIVATION

This section first provides a high-level Spark background

and then discusses observations of inefficient Spark use cases

that motivate this work.

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.143

107

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.143

103

� � �

�

���	
�	��
�����

����		������

���	
��� �����	

��
�	

���

�����	
���

�
���	

����������	��

��	��
C D D−

0

5

10

15

20

D
el

ay
 (

s)

(a) (b)

Fig. 1: Data Locality Benefits: (a) shows the lineage graph. In (b),
bar C represents the delay of the first C.count action, and D the
delay of D.count when data locality is preserved. D- refers to the
case where data locality is violated.

A. Spark Background

Spark [1], [2], [4] is a renowned open-source in-memory

computing system that offers both streaming and batch pro-

cessing capabilities. This section explains two of its major

components, Spark Core [1] and Spark Streaming [2].

A Spark job involves a driver program, a cluster manager,

and a set of worker nodes. The driver program takes care of

the task scheduling of the job. The cluster manager monitors

and manages worker nodes that host executors to run tasks

and cache data partitions.

Spark Core is the cornerstone of the entire project. Its

fundamental programming abstraction is Resilient Distributed

Datasets (RDD), an immutable logical collection of data parti-

tioned across machines. RDDs can be created from importing

external data or applying transformations on existing RDDs.

Transformations indicate dependency relationships between

RDDs, connecting RDDs into a Directed Acyclic Graph

(DAG) which is called the lineage graph. The immutability

allows RDDs to be recomputed when corrupted or lost using

only the lineage information and data of any cut on the DAG.

Spark Core materializes RDDs in a lazy fashion when some

action requires the RDD. Spark supports two types of transfor-

mation dependencies, narrow and wide, judged by whether the

transformation shuffles data to alter the partitioning strategy.

A chain of narrowly dependent transformations is packed into

a single stage. Barriers between the map and the reduce phases

in wide transformations become stage boundaries. For the sake

of accelerating failure recovery, shuffle maps always commit

outputs into persistent storage (e.g., HDFS).

Spark Streaming, stacked on top of Spark Core, works

as a micro-batching stream processing framework. It batches

incoming stream data of each timestep into in-memory data

blocks and creates an RDD per timestep. Such series of RDDs

are named as a DStream. Spark Streaming relies on Spark

Core to handle Further transformations and actions on those

RDDs.

B. Observations

In Spark, the lineage graph represents RDDs and trans-

formations that connect RDDs. Spark divides the lineage

graph into sub-graphs (stages) using shuffle transformations.

More specifically, a shuffle transformation contains a map

phase and a reduce phase, and creates a ShuffledRDDs. Spark

breaks the lineage graph at the barriers between the map

and the reduce phases, leaving each connected component

as a stage. Each stage contains a set of tasks that runs the

same code on different partitions. The task can be either a

ShuffleMapTask or a ResultTask, depending on whether the

stage ends at the map phase or the last RDD. The ShuffleMap-

Task commits map output data into persistent storage, from

where the reducers retrieve data to continue the computation.

Therefore, as reducers read map outputs from multiple servers

through the network, the reducing phases of ShuffledRDDs

gain little performance improvements from enforcing data

locality. However, data locality can significantly reduce the

execution time of transformations with narrow dependencies.

For example, the code below generates two jobs, C.count and

D.count. The lineage graph is shown in Figure 1 (a).

val A = sc.textFile(...).map(_ => (getTime(_), _))
val B = A.partitionBy(new HashPartitioner(2))
val C = B.filter(_ => _.startsWith("ERROR"))
val D = C.filter(_ => _.length > 30)
C.cache.count; D.count

After Spark executes C.count, RDD C is cached in memory.

RDD D relies on C as its input. Figure 1 (b) shows how much

execution time could be saved by preserving data locality

when sc.textFile loads a 700MB text file. The bars with

letters C and D represent the execution times of C.count

and D.count as the code shows. The job C.count creates

two sequential stages. The first stage loads the text file, and

commits all mapper outputs of RDD B into disk. The second

stage starts from the reducers of RDD B, creates RDD C, and

computes the count. When C is cached, D.count starts from the

cached data, and the response time stays below 200ms. The D-

bar represents the execution time of D.count after removing

.cache from the last line of the code. The job D-.count creates

a single stage that skips the partitionBy transformation,

which helps to save 8s execution time compared to C.count.

But, without data locality, D- has to start from the reducing

phase of B, leading to an execution time increase from 0.2s to

9s.

Data locality reduces the job execution time by allowing

stages to start from cached RDDs. When Spark fails to

preserve data locality, instead of fetching from the execu-

tors where the RDD partitions are cached, it recomputes all

transformations from the very beginning of the stage—reading

data from the map outputs of ShuffledRDDs through the

network. Although this design decision considerably reduces

the complexity and overhead of keeping track of all cached

and evicted data across the entire cluster, it, on the other hand,

amplifies the penalty of scheduling a task onto a remote node.

In the example shown in Figure 1 (a), forgoing data locality

for action D.count forces Spark to start computing the stage

from the reducing phase of RDD B, recompute RDD C, and

finally create RDD D.

The example above demonstrates benefits of running Spark

tasks with parent RDD partitions available in the local cache,

and penalties otherwise. Working on a collection of dataset

exacerbates both the benefits and the penalties, as instead of a

single RDD, each job deals with a collection that may contain

a large number of RDDs. If a collection partition is scattered

in different places, no single executor could preserve data

108104

���������	�
��

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
��
�

�
��
�

��������� ��������� ����������

Fig. 2: CoGroup Two RDDs in Spark

�
�
�

���������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

���

	
�������

�������
��
������
����

���������
��
������
����

��
��
�

��
��

����
���!	
��������!�� ��������� ����������

Fig. 3: CoGroup Two RDDs in Stark

locality for the task. Therefore, a job may trigger a massive

amount of network and computation overhead. Figure 2 shows

an example.

Compared to Figure 1, Figure 2 presents a more detailed

view by emphasizing partitions of RDDs. Rectangles with

round corners represent RDDs, and squares represent parti-

tions in each RDD. The number in each partition shows the ID

of the executor where the partition is cached. For simplicity,

the figure only shows cogrouping two RDDs, whereas the

number of involved RDDs in a real application might be much

larger. On the right side lies the last cogrouped RDD. The red

bold lines indicate which transformations on which partitions

need to be re-computed. As can be seen in Figure 2 and

Figure 3, when co-locality is violated, a single job may trigger

many partitions to be recomputed, even if those partitions have

already been computed and cached somewhere else.

III. SYSTEM DESIGN AND IMPLEMENTATION

This section first presents the overall design of Stark. Then,

we elaborate details of LocalityManager, GroupManager, and

CheckpointOptimizer.

	��
���

�����������

������������������

����������� � �����

!�����"�������

������������

#�$���������

���%%�����#�$� 	�$���#�$�

� �$����

���������$

���������
�"

�����

�������
�"

�����

�
��&��

� �����$

Fig. 4: Stark Architecture

A. Architecture

Although, by orchestrating various components of Spark,

a large set of applications have significantly boosted their

efficiency [20], applications that operate on dynamic dataset

collections can still be improved in the following three aspects.

First, to maintain the co-locality property, applications need

to organize the in-memory data layout across the cluster

deliberately. However, Spark randomly scatters partitions of

independent RDDs into servers, exposing no control over

partition placements. Second, as applications dynamically

load and evict datasets, the data volume and computational

demand received by the collection may vary over time. This

requires those immutable RDDs in the collection to react

to size and popularity dynamics, retaining load balancing.

Third, dynamic collections of interdependent datasets may

foster an ever-growing lineage graph. The system needs to

minimize the overhead to achieve data persistence, and at the

same time preserve failure recovery delay bounds. Therefore,

we design Stark to handle these three problems accordingly.

Figure 4 illustrates the high-level architecture of Stark. Besides

enhancing multiple important building pieces of Spark, Stark

introduces three novel components:

• LocalityManager enforces the same partitioner across mul-

tiple user-specified RDDs, and allocates corresponding par-

titions into same worker nodes in a best-effort manner. This

helps to achieve data co-locality that could significantly

benefit operations working on multiple RDDs (e.g., cogroup

and join).

• GroupManager introduces an extendable hashing policy to

achieve partition elasticity, which allows immutable RDDs

to shrink or expand partitions without repartitioning.

• CheckpointOptimizer employs a variant of network flow

algorithm to optimally select the minimum amount of data

to checkpoint, and at the same time fulfill a user-defined

failure recovery delay bound.

B. Locality Manager

Partition is the unit for computation and storage manage-

ment in Spark. Co-partition and co-locality are two important

features that closely relate to system performance. The former

partitions multiple RDDs using the same partitioning strategy,

which helps to avoid shuffling overhead when applying join

or co-group transforms on those RDDs. Let us use the notion

collection partition to denote the corresponding partitions

across co-partitioned RDDs. For example, collection partition

1 of two RDDs refers to the first partitions in both RDDs.

The latter (co-locality) places an entire collection partition into

109105

� ������
�		�
��������� � � � � �

�� � � � � � �		�
��������

Fig. 5: Example of Violating Co-Locality

the same executor, avoiding the cost of aggregating the data.

Users may easily achieve co-partition by passing the same

deterministic partitioner when constructing RDDs, while co-

locality is more difficult to preserve. Spark randomly places

partitions in the cluster, which means it is unlikely that data

in the same collection partition would reside in the same

server. Figure 5 demonstrates an example that violates data co-

locality. The dataset collection contains two RDDs with each

divided into three partitions. The number inside each partition

represents its ID. In this example, a join or cogroup operation

will create three tasks to process the three collection partitions

respectively. Regardless of how Spark schedules those tasks,

every task will encounter at least one remote RDD partition,

as no collection partition locates in the same server.

LocalityManager helps to allocate RDD partitions in the

same collection partition onto the same executor. Later in

Section III-C, we discuss techniques for solving potential side-

effects of a collection partition growing too large to fit into

a single executor. The LocalityManager internally remembers

the mapping from collection partitions to executors. Users may

create such mappings by calling the localityPartitionBy

API on an RDD or a DStream. During task scheduling, the

DAGScheduler first consults the LocalityManager to get the

preferred executor ID, and then follows the default delay

scheduling algorithm. A collection partition maps to a set of

executors instead of a single one. Because whenever a task for

a collection partition runs on a remote executor, the partition

data is computed and cached in that executor, immediately

making the partition data locally available for subsequent

tasks on that same executor. This may happen when some

collection partition takes too long to process or becomes too

popular, overloading local executors. Therefore, the default

delay scheduling policy tends to create more replications for

those hotspot collection partitions.

Preserving co-locality significantly reduces job makespan.

Based on the same example demonstrated in Figure 2, Fig-

ure 3 shows how partitions are allocated onto executors when

LocalityManager is enabled. The three collection partitions

consistently map to executors 5, 6, and 7 respectively, prevent-

ing jobs from having to read data from shuffled map outputs,

and at the same time saving computational overhead of two

transformations.

Enforcing collection partition co-locality also alters the

behavior of memory allocation and task scheduling, both

fundamentally affecting the system performance. Stark needs

to make sure that all negative consequences are taken care of.

As one obvious side-effect, a collection partition may grow

too large or become too popular that overwhelms memory

and/or computation resources of its corresponding executor

set. Section III-C discusses this problem in detail and presents

solutions. Besides that, another important core function is

failure recovery. Spark recovers by recomputing unavailable

(a) (b) (c)
Fig. 6: Time-varying distribution of NYC taxi pick-up/drop-off
events in 2013: (a) July 1st morning, (b) July 1st evening, (c) July
4th evening.

10
0

10
1

10
2

10
3

10
4

10
5

0

10

20

Number of Partitions

D
el

ay
 (

s)

Fig. 7: Partition Number Trade-Off

RDD partitions from checkpoints and/or ShuffledRDDs. It

speeds up this process by employing multiple executors to

recover RDDs in parallel. At the first glance, collection

partition co-locality would slow down the recovery process,

as a collection partition could be destroyed by even a single

executor failure. Although this observation is true, we claim

that the failure recovery with collection partition co-locality

is at least as efficient as default Spark from the perspective

of job makespan. Because the default Spark scheduler creates

one task per result cogrouped RDD partition, which has to

construct the entire collection partition in a single executor.

Hence, even if a collection partition could be recovered

using multiple executors, it has to aggregate into the same

server before performing any further operations. Therefore,

co-locality introduces no penalty for failure recovery.

C. Group Manager

In this section, we first consider trade-offs between different

partitioning schemes in Section III-C1. Then, Section III-C2

presents the idea of extendable partition group that helps

to achieve elasticity. Finally, Section III-C3 describes how

Stark schedules partition groups when it fails to preserve data

locality.

1) Partitioning Trade-Offs: A dataset collection may be

subject to time-varying volume and distribution as datasets

are dynamically inserted and evicted from the collection. For

example, Figure 6 illustrates taxi pick-up/drop-off events [21],

[22] heatmap of three different 4-hour time slots in the

Manhattan area. Suppose an application creates a dataset every

ten minutes, and uses the dataset collection of the past hour

to calculate taxi trajectories and optimize the advertisements

displayed in each taxi’s monitor. The three figures correspond

to July 1st morning, July 1st evening, and July 4th evening

of 2013 respectively. The white grid helps to emphasize the

locations of event hotpots. They clearly show that data distri-

110106

����

�

� �

� �� �

��� � " ��

����

�

� �

� �� �

�� � � ��

��

�

� �

� �

��� � " ��

��

�

� �

� �� �

�� � �

���������

	

�� �

�

���� �

����� ������������ ���������

� �

���

��� ���

Fig. 8: Extendable Partition Groups for NYC Taxi Data

bution drastically changes over time, and there are much larger

hotspot areas in (c) compared to (a) and (b). Therefore, no

static partitioning algorithm could always preserve collection

partition size under a reasonable threshold over time.

One straightforward solution to this problem would be to

further divide data into finer granularity, which reduces the

absolute size of partitions. However, this solution creates

too many partitions that would overload the scheduler, and

amplify system scheduling and monitoring overheads. Figure 7

depicts how the number of partitions affects the execution

time of a Spark job. The experiment runs the same code

as shown in Figure 1, and records the execution time of

C.count. We manipulate the number of partitions by tuning

the argument of HashPartitioner. The result shows that using

more partitions initially does help reduce job execution time.

However, as the number of partitions increases, the overheads

gradually dwarf, and eventually completely overshadow the

benefit of using higher parallelism. Another solution would be

to repartition the RDDs when partitions are severely skewed,

which unfortunately leads to significant shuffling overhead as

it may break all partition boundaries.

To solve this dilemma, Stark first divides data into small

partitions and then organizes partitions into non-overlapping

groups. Partitions in the same group are packed into the

same task to reduce scheduling overhead. As each group

contains multiple partitions, it may split into smaller groups

without violating partition boundaries, avoiding the shuffle

phase. More specifically, Stark handles the time-varying data

and computation distributions by employing two mechanisms:

• Extendable Partition Group mitigates time-varying data

distribution in a collection by splitting excessively large par-

titions to make use of memory and computation resources

on multiple machines, and merging tiny partitions to reduce

the scheduling and control overhead.

• Contention Aware Replication scheme materializes mul-

tiple copies of collection partitions based on their demand,

minimizing potential cache eviction penalties caused by

excessive replications.

2) Achieving Partition Elasticity: In Spark, partitioners

share the same getPartition API to map a data key onto

a partition ID. Achieving elasticity using the getPartition

API would alter the key-to-partition mapping, resulting in

exorbitant data shuffling cost when resizing partitions. To

avoid this shuffling overhead, Stark attains elasticity from

a higher level, which respects the mapping by keeping the

getPartition API intact. Extendable partitioning enhances

existing partitioners by introducing the concept of partition
group. A partition group is a set of consecutive partitions,

which can split into sub-groups or merge with other partition

groups when necessary. Initially, the extendable partitioner

creates g partition groups, with each group containing e
partitions. Both parameters are configurable. The ith group

contains partitions e · i to e · (i + 1) − 1. To simplify the

presentation, we require the configurable parameters g and e
both to be powers of 2. This requirement can be easily relaxed

by using the smallest complete binary tree that contains

exactly g leaves.
Stark initially constructs a full binary tree where each leaf

node in the tree corresponds to a partition group. We call

this binary tree the Group Tree. Figure 8 elucidates example

group trees constructed based on the data distribution as shown

in Figure 6, assuming coordinates map to ordered-partitioned

one-dimensional keys using Z encoding algorithm [23]. The

four active groups in the initial status correspond to the

four geographic regions as highlighted by the white grid.

In Figure 6 (a), workloads overload the left two regions,

which correspond to group 3 and 5 according to Z encoding

algorithm. Hence, the Group Tree splits group 3 and 5 as

shown in Figure 8 (a). Examples (b) and (c) work in the same

fashion. A Group Tree supports two basic operations, split and

merge. Split can be applied to any leaf node with more than

one partition, dividing those partitions into two smaller groups.

The merge operation can only be applied to two leaf node

groups under the same parent node, concatenating partitions

from the two groups into a larger group. At the invocation

time, splitting and merging groups only change the mapping

from partitions to groups. Therefore, the computational com-

plexity is linear to the number of leaves involved. The real

data materialization is delayed till the next Spark action.
The split and merge operations are triggered by the total

size of partitions in each group. Multiple RDDs may share

the same Group Tree by using extendable partitioner under

the same namespace, collectively affecting group sizes. The

user may configure how many of the most recent RDDs are

accounted when calculating the group size, as well as the

upper and lower bounds of group sizes that trigger the split

and merge operations.
A partition group is the minimum task schedul-

ing unit in Stark. We introduce GroupResultTask and

GroupShuffleMapTask as enhancements for ResultTask and

ShuffleMapTask to allow multiple partitions in the same group

to be packed into the same task. As we have discussed in

Section III-C1, this feature helps to reduce scheduling and

monitoring overhead by using a smaller number of tasks.

Moreover, splitting (merging) a partition group also splits

(merges) the corresponding local executors. This helps to

minimize data movement during group dynamics by skipping

cached partitions.

111107

3) Contention Aware Replication: Extendable Partition

Group solves the load balancing problem caused by data

volume and distribution dynamics. As discussed in Sec-

tion III-C1, there is another dimension of load balancing prob-

lem induced by time-varying and non-uniformly distributed

computational demand on different partitions. To illustrate the

problem, let us consider the same taxi advertising example

mentioned in Section III-C1. Besides the spatial-temporal

dynamics of taxi trajectories, the intensity of advertisement

campaigns in certain areas may also change overtime. For

example, theaters and shopping centers near the Time Square

may want to deliver much more commercial messages to

potential customers nearby in weekend evening compared

to weekday morning. To address their demand, the system

needs to first filter qualified trajectories using the location

information, and then conduct subsequent optimization algo-

rithms to match sponsor messages to taxi monitors. In this

case, partitions that cover the Time Square receive higher

computational workloads than others in weekend evening.

Therefore, the amount of workload hitting the same partition

changes over time, while such workload dynamics of different

partitions may not follow the same pattern. To tackle this

load balancing problem, Stark delivers computational resource

elasticity to the partition level by independently replicating

each partition on demand while preserving data co-locality in

the best effort manner.
To achieve the computational resource elasticity, Stark

needs to capture the right signal to trigger replicate and de-

replicate operations. Failing to preserve data locality for a

certain task on partition α conveys a relevant signal. This

signal indicates either partition α has become a hotspot

receiving higher computational demand, or the corresponding

worker nodes where partition α resides has been assigned to

too many different partitions. The latter situation forces every

partition to replicate on an unnecessarily larger number of

worker nodes, competing for limited computational resources.

Although this could help to improve the CPU utilization,

sharing worker nodes among many partitions catalyzes cache

eviction, and makes data locality more difficult to achieve.
The delay scheduling policy improves data locality by

allowing tasks to delay for a bounded amount of time to

wait for local executors. When they fail to achieve data

locality, all remote workers are treated equally. This design

is reasonable and helpful when it was initially proposed for

Hadoop MapReduce workloads. However, when imported into

the realm of in-memory computation, scheduling a task on a

remote node materializes all its narrowly-depended parents on

that node, converting the node from REMOTE to NODE_LOCAL

for subsequent tasks requiring the same input data. At the

same time, this node’s locality level may also revert back from

NODE_LOCAL to REMOTE for some other partitions due to cache

evictions. Therefore, schedulers for in-memory computation

need to make more careful decisions when assigning tasks

into remote worker nodes.
Figure 9 (a) and (b) illustrate two extremes: each worker

node is dedicated to a single collection partition, or partitions

can be assigned to any worker nodes in the cluster. In case (a),

��������	

�
������	

��������	

�
������	

��������	

�
������	

��������	

�
������	

��������	

�
������	

��������	

�
������	

��������	

�
������	

��������	

�
������	

��������	

�
������	

��������	

�
������	

��������	

�
������	

�

���

��
��

�
��

��
���
�

��
� �����������	

�
��������

�
��������

�
��������

��������

��
���

��

Fig. 9: Task Scheduling Algorithms

every partition exclusively consumes all RAM resources on its

worker nodes, allowing it to fit more RDDs of the collection

into the cache. Consequently, less tasks have to load data from

disk. However, as we can clearly see in the example, many

CPU cores stay idle under this scheme, as a price paid to

guarantee the exclusiveness. In case (b), the scheduler blindly

assigns tasks to remote resources, where any task may end

up executing on any remote worker node. This scheduling

policy optimally utilizes computational resources in the cluster

at the cost of restricting every collection to use a small share

of RAM on worker nodes, which may even cause cascading

cache eviction that results in higher cache miss rate.

Algorithm 1: Minimum Contention First Scheduling

Input: task set of a stage T, offers R
Output: tasks to launch L

1 if max locality level is not REMOTE then
2 use default delay scheduling

3 else
4 L← ∅
5 use quicksort to ascendingly order R based on the number of

unique collection partitions cached.
6 for i← 1 ∼ |R| do
7 t← pick one task from T
8 T← T \ {t}; L← L ∩ (t, R[i])

9 return L

We propose the Minimum Contention First (MCF) Delay

Scheduling algorithm. MCF algorithm works exactly the same

as the default delay scheduler before the locality level rises to

REMOTE. When MCF algorithm is enabled, each executor keeps

track of unique collection partitions cached in RAM. The

scheduler assigns higher priority to executors with a smaller

number of unique collection partitions. Algorithm 1 shows the

pseudo code. The most computationally expensive operation is

sorting R on line 5. Therefore, the computational complexity

is O(|R| log |R|).
D. Checkpoint Optimizer

Data co-locality and partition elasticity both help to avoid

expensive data shuffling operations by preserving the same

partitioning strategies across RDDs. Shuffling commits map-

per outputs into persistent storage, which naturally breaks

112108

�

�

�

�

�

� �

	

3, 2 4, 1 2, 5

5, 1 2, 3

5, 22, 6

6, 93, 10

RDDs on
Violating Paths

Triggering
RDD

Fig. 10: Checkpoint Example: the two numbers near each RDD
represent delay (left) and cost (right).

dependency chains to accelerate failure recovery. Hence,

avoiding Shuffle transformations may lengthen failure recov-

ery delay. Therefore, the system needs to proactively and

judiciously checkpoint RDDs to bound the failure recovery

delay. In a simple case where RDDs are all independent from

each other, the system has no choice but checkpointing all

RDDs. However, many real-world applications form itera-

tive structures, such as the runningReduce concept (i.e., the

updateStateByKey API) introduced in Spark Streaming [2].

In this case, the system has to select RDDs to checkpoint

in the ever-growing application data. Otherwise, the failure

recovery has to reconstruct RDDs from the very beginning.

The existing solution [5] checkpoints the entire level of

recently generated RDDs in the DAG, which is called the Edge

algorithm. It guarantees bounded recovery delay, but may lead

to excessive checkpointing overhead. This section optimizes

the checkpointing algorithm to minimize the amount of data

written into persistent storage, and at the same time bounds

failure recovery delay.

1) Measuring Parameters: From the perspective of failure

recovery, each RDD associates with two important proper-

ties, the data size and the computation time. The system

can estimate the data size by looking at the amount of

RAM consumed by each cached RDD. Default Spark logs

computation time at stage level, where a stage may contain

multiple consecutive narrowly-dependent transformations, and

thus span multiple RDDs. Hence, Stark needs to acquire the

computation time from the transformation level. The delay of

the same transformation can be different across tasks due to

imperfectly balanced data distribution. Stark logs the delay of

every transformation in every task, and takes the maximum

across tasks as the estimation of the transformation delay.

Data size represents the cost (c) of checkpointing an RDD,

while computation time denotes the delay (d) of recovering

the RDD. With these two notations, we design the optimal

checkpointing algorithm for failure recovery.

2) Optimized Checkpointing Algorithm: In the RDD DAG,

each node associates with a cost c and a delay d. Let an

uncheckpointed path denote the path that contains no check-

pointed RDD or ShuffledRDD. The path length is the sum of

all RDDs’ delay d along the path. Stark keeps track of all

uncheckpointed RDDs, and triggers the checkpoint algorithm

whenever the length of any path grows beyond the user defined

failure recovery delay upper bound r. We call those paths

violating paths.

The algorithm breaks all violating paths by checkpointing

a set of RDDs with minimum total cost. Figure 10 illustrates

an example with r = 10. The two numbers near each RDD

represent the delay d and the cost c from left to right. Node

i triggers the checkpointing algorithm due to three violating

paths of length 16, 16, and 15 respectively. As the goal is to

find a minimum cut to isolate node i from RDDs a and b, we

apply a variant of maximum network flow algorithm to solve

this problem. The algorithm splits each RDD node into an in
node and an out node. It then connects the out node of i to

a virtual sink node t, and connects a virtual source node s
to the in nodes of a and b. The dependency relationships are

preserved by linking predecessor’s out node to successor’s in

node. The algorithm assigns the cost c to edge between the in
node and the out node of the same RDD as its edge capacity.

The costs of all other edges are set to infinity. Finally, stark

uses a standard maximum network flow algorithm to find the

minimum cut, representing the set of RDDs with minimum

total cost to checkpoint.

Stark determines the set of RDDs to checkpoint by tracing

back from virtual sink t to the first set of saturated cutting

edges. However, searching for an exact cut may force the

system to checkpoint RDDs that are too far away from

latest RDDs, leaving a relatively long uncheckpointed path,

which would inevitably trigger another checkpoint action

soon. Hence, we relax this condition to allow Stark to stop

at edges whose residual capacity is within f times of the

amount of network flow over it. This is the same as relaxing

the checkpointing cost by f times compared to the optimal

solution.

E. Implementation

We implement co-locality by introducing the Locality-

Manager, the localityPartitionBy transformation, and the

LocalityShuffledRDD. They can be enabled by setting

the spark.scheduler.localityEnabled property to true

in the configuration file. Users may call the API on

PairedRDDFunctions (i.e., RDDs that store key-value pairs)

to construct a LocalityShuffledRDD as below:

localityPartitionBy(p: Partitioner, ns: String)

LocalityManager creates a namespace if it has not seen ns

before, or checks whether the partitioner p agrees with the

existing partitioner registered with namespace ns. All RDDs

under the same namespace must use the same partitioner.

A namespace starts from a LocalityShuffledRDD and au-

tomatically carries on to all following narrowly-dependent

RDDs. During scheduling, the DAGScheduler consults the

LocalityManager for the preferred locations if there is a

namespace associated with the RDD. In this way, the system

preserves the co-locality in the best effort manner.

The GroupManager manages a bidirectional mapping be-

tween partitions and groups. Users may get access to the

GroupManager from SparkEnv, and report an RDD by

calling the reportRDD(rdd:RDD) API. This API will trig-

ger GroupManager to calculate the collection partition size

across all currently cached RDDs. Users can define lower

and upper bounds on the collection partition size (i.e.,
spark.locality.max(min)GroupMemSize). When a collection

113109

1 2 3 4 5 6
0

20
40
60
80

100

CoGroup RDD Number

D
el

ay
 (

s)

Spark−H
Stark−H

Fig. 11: Co-locality Job Delay

1 2 3 4 5 6 7 8
0

20

40

60

80

100

(a) Stark Tasks Sorted By Delay

D
el

ay
 (

s)

CoGroup 2 RDD
CoGroup 4 RDD
CoGroup 6 RDD

GC Overhead

1 2 3 4 5 6 7 8
0

20

40

60

80

100

D
el

ay
 (

s)

(b) Spark Tasks Sorted By Delay

Fig. 12: Co-locality Task Delay

partition grows beyond those thresholds, the GroupManager

splits or merges groups accordingly.

To reduce the scheduling overhead, we also introduce

GroupResultTask and GroupShuffleMapTask that may oper-

ate on multiple partitions as a single task. Stark automatically

creates group tasks if the target RDD associates with a

namespace.

In Spark, users have to specify whether an RDD

needs to be checkpointed before materializing it. How-

ever, this design prevents CheckpointOptimizer from apply-

ing the optimization algorithm. To break this constraint,

we implement the RDD.forceCheckpoint API that creates

an RDDCheckpointData object and calls the doCheckpoint

method. This revision allows Stark to checkpoint an RDD

after it has been materialized.

IV. EVALUATION

This evaluation section first describes datasets and cluster

configurations in the Section IV-A. Then, we evaluate im-

provements individually contributed by techniques proposed

in Section III-B (co-locality), Section III-C (extendability),

and Section III-D (failure recovery) respectively. Finally, Sec-

tion IV-E measures the overall system throughput and response

time.

A. Experiments Setup

Our experiments run on a 50-server cluster [24] that consists

of 40 Dell PowerEdge R620 servers and 10 Dell PowerEdge

R610 servers. The Spark/Stark cluster runs on 40 R620

servers, each equipped with 16GB RAM. The remaining 10

R610 servers generate workloads and log delay. Evaluations

employ a Wikipedia trace [25], an NYC taxi trace [21], [22],

and a Twitter dataset crawled using Twitter REST APIs [26].

The Wikipedia dataset contains the timestamp and URL of

requests seen in January 2008. The NYC taxi dataset logs a

comprehensive set of data fields, from which we extract the

timestamp and location of pickup and drop-off events. Due to

the space limit, this paper skips the statistics of these datasets.

Dataset use-cases will be explained close to the corresponding

experiments. Please refer to [27], [23], and [10] for detailed

analyses on these three dataset respectively.

In the evaluation experiments, we compare five different

configurations. The prefix indicates whether a configuration

uses on Spark or Stark.

• Spark-R creates a new RangePartitioner per RDD.

• Spark-H shares the same HashPartitioner among all RDDs.

• Stark-H applies the same HashPartitioner across RDDs with

only co-locality enabled.

• Stark-S applies the same StaticRangePartitioner across

RDDs with only co-locality enabled.

• Stark-E enables Extendability in addition to Spark-S.

B. Data Co-Locality

In this section, we use Wikipedia trace data [25] and typical

log mining jobs to measure the performance gain achieved by

enabling data co-locality. We pick the log files that contain

about 800MB data each, invoke the testFile(...) API to

read the files from local file system to create an RDD for every

file, and use the default hash partitioner with eight partitions

(i.e., this experiment only uses eight servers). Then, each job

cogroups a range of trace RDDs, and counts the number of

trace items that contain a randomly picked keyword. Figure 11

shows the results of the average delay of 10 queries. The

x-axis is the number of RDDs that each job cogroups, and

the y-axis the delay. The delay gap between Spark-H and

Stark-H grows as the number of RDDs increases from 1 to 5,

because cogrouping more RDDs in Spark-H requires moving

more data into the same executor through the network. When

cogrouping 5 RDDs, Stark reduces the delay from 46s to 9s

by enforcing data co-locality.

The interesting behavior is that, when cogrouping 6 RDDs,

the improvement ratio decreases to 3X. To understand the

reason behind this phenomenon, let us take a closer look at

the delay at the task level for specific jobs. Figure 12 (a) and

(b) illustrate task delays when using Stark-H and Spark-H
respectively. In each bar, the white portion denotes the garbage

collection (GC) delay, and the remaining denotes the sum of

all other delays. We can clearly see that the performance

gain drops due to the garbage collection overhead. It is

because cogrouping six RDDs consumes an excessive amount

of RAM, which leads to more frequent and expensive garbage

collections.

C. Extendable Partitioning

In this section, we measure how Stark adapts to data

distribution dynamics using consecutive Wikipedia hourly log

files. As analyzed in [27], a peak hour log file may contain

as much as twice the amount of data compared to that of

nadir hours. In the experiments, we compare Spark-R, Stark-
S, and Stark-E. Figure 13 shows how these three strategies

partition data into groups or partitions, which immediately

determines the input data size of different tasks. Each row

represents a collection of three RDDs with RDD ID marked

on the y-axis. Each cell corresponds to a collection partition

(or groups). Darker colors refer to larger partition sizes. In

the ideal case, all tasks should have an equal amount of input

data, such that no overloaded task would delay the entire job.

Stark-S clearly suffers from skewed data distribution as some

collection partitions are much darker than others. Spark-R

114110

1−3
4−6
7−9

Stark−S Groups

D
at

as
et

1−3
4−6
7−9

Stark−E Groups

D
at

as
et

1−3
4−6
7−9

Spark−R Partitions

D
at

as
et

Fig. 13: Task Input Data Size: Each row represents a collection of three RDDs. Each cell represents a collection partition (group) that a task
processes. Darker color refers to larger size.

1st 2nd 1st 2nd 1st 2nd
0

3

6

9

12

 Stark−E Stark−S Spark−R

D
el

ay
 (

s)

RDD 1−3
RDD 4−6
RDD 7−9

Fig. 14: Job Delay under Skewed Distribution

1−3 7−9 1−3 7−9 1−3 7−9
0

3

6

9

12

 Stark−E Stark−S Spark−R

D
el

ay
 (

s)

min
mid
max

Shuffle Overhead

Fig. 15: Task Delay under Skewed Distribution

evenly distributes data across collection partitions, as different

RDDs use different range partitioners specifically tailored for

their own data distributions. In the Stark-E case, partition

group boundaries (i.e., sizes of cells in Figure 13) change

across RDDs to cater skewed data distribution, resulting in a

relatively balanced partition group size distribution.

Figure 14 shows job delays under three configurations.

We distinguish the delay of the first job (1st) after group

merges/splits from following jobs (2nd). Although Spark-R
distributes data evenly, jobs take more than 10 seconds to

process, regardless of if they are the first or subsequent jobs.

This is because RangePartitioners use different boundaries to

balance data across partitions, such that a cogroup operation

inevitably triggers expensive data shuffling operations. Stark-S
finishes jobs within 4s. As the partitioning strategy is static and

data locality stays unchanged across RDDs, the performance

of Stark-S ignores whether they are the first or subsequent

jobs. However, it takes considerably longer delay to process

data with skewed distributions (RDDs 4-6 and 7-9) compared

to those with uniform data distributions (RDDs 1-3). Spark-
E experiences large delay on the first job on RDD 4-6 and

7-9. As it alters the partition-to-executor mapping to regain

load balancing, the first job has to reconstruct partition data

in newly assigned executors, which contributes to the longer

delay. These experiments convey that, if the data is only used

once, then there is no need to enable extendable groups, as

co-locality alone already achieves the shortest delay. How-

ever, many interactive and iterative applications [28] require

running a series of jobs on the same set of data, which would

considerably benefit from extendable groups.

Figure 15 illustrates task level delay when cogrouping

RDDs 4-6. In each bar, the white portion refers to the shuffling

delay. It confirms that the shuffling overhead contributes a

huge part to Spark-R job delay. We can also see that the

skewed data distribution causes imbalanced task completion

rb
k

cogrp filter

cogrp cogrp

jo
in

jo
in

map

raw

kv

cnt

ctt

decdec

cctt

ccnt acnt

jall res

res

pt
tB

y

Current timestep
RDD

Last
timestep RDD

RDD pass to
next timestep

Fig. 16: Application Lineage Graph

times when using Stark-S, leading to a longer job delay.

D. Failure Recovery

Failure recovery is evaluated by using an example appli-

cation as shown in Figure 16. The application tracks popular

keys and corresponding contents in a similar way as Twitter

trends. Blue nodes without border represent RDDs generated

and consumed by the current step. The previous step produces

black RDDs which will be consumed by the current step as

input. Then, the current step generates RDDs with bold red

rims which will be consumed by the next step. In this way,

steps are chained together into an ever-growing lineage graph.

The application receives a raw RDD that contains key-value

data in every step. The raw RDD partitions to the kv RDD

by applying the partitionBy (pttBy) transformation. Then,

the application aggregates the count (cnt) and content (ctt)

by calling reduceByKey (rbk) API respectively. The cnt RDD

cogroups (cogrp) with the decayed count RDD (dec) from the

last step, and sums by key to create the ccnt RDD. Then, it

only keeps the popular keys (acnt) by applying the filter API.

The ctt RDD cogroups with the result RDD res from last step

to generate the cctt RDD. Finally, cctt joins with popular keys

(acnt) to create popular key-value pairs (jall) across steps, and

cleans the data to arrive the final result (res) of the current

step. Please notice that we are not arguing this is the optimal

way to implement the application logic. How the application

is implemented falls out of the scope of this paper.

We run the application for ten steps with different input

data sizes. We feed the Wikipedia trace as the input data, and

use a fixed-length prefix of the requested URL as the key. We

first evaluate how accurate we could estimate checkpoint sizes

using cached RDD sizes. As shown in Figure 17, where the

white bars represent the cached RDD size and the gray bar

the checkpoint size, there is a constant relationship between

the cache and checkpoint sizes. Although this constant may

change when we use different serialization algorithms, it does

not affect the checkpoint algorithm, as the algorithm finds the

relatively optimal set of RDDs to persist.

Then, we measure the amount of checkpointed data over

steps. Figure 18 compares three schemes: 1) Stark enforces

exact optimality (Stark-1); 2) Stark relaxes the optimality

by using f = 3 (Stark-3); 3) A variant of Tachyon [5]

115111

kv cnt ctt ccnt acnt cctt jall dec res
10

0

10
4

10
8

10
12

B
yt

es

RDD Size Checkpoint Size

Fig. 17: Estimate Checkpoint Size

1 2 3 4 5 6 7 8 9 10
0

20

40

60

Steps

T
ot

al
 C

P
(G

B
)

Stark−1
Stark−3
Tachyon

Fig. 18: Total Checkpoint Size

Edge checkpointing algorithm that checkpoints all leaf RDDs

when invoked. Edge algorithm assumes there is a backend

thread checkpointing data whenever the thread is idle, which

differs from our assumptions that checkpointing algorithm is

proactively triggered to enforce recovery delay bound. So, we

revise the Edge algorithm to allow checkpoint operations to

be conducted whenever the length of any uncheckpointed path

violates the delay threshold. From Figure 18, we can see that

Stark writes much fewer data compared to Tachyon, which

immediately translates to savings on cluster resource con-

sumption. Because checkpointing all leaves does not guarantee

optimality. For example, after calculating cctt, the system

realizes its recovery chain is too long due to the dependencies

among cctt, res, and jall. Hence, Tachyon would checkpoint

the current leaf RDDs dec and cctt. However, after generating

jall, its recovery chain violates the recovery bound again due

to the ccnt, acnt, and dec dependencies. Tachyon would then

checkpoint the leaf jall. However, as shown in Figure 17, the

size of jall is much larger than the size of acnt. Therefore,

Stark would choose to checkpoint acnt instead to reduce the

overhead.

Stark-1 beats Stark-3 in the first 4 steps as it enforces

exact optimality. However, when the lineage grows larger,

Stark-3 outperforms Stark-1, as Stark-1 tends to leave longer

uncheckpointed paths after each action, forcing checkpointing

actions to be invoked more frequently.

E. Throughput and Delay

We measure the delay and the throughput using NYC taxi

traces and Twitter dataset. The experiment employs a 40-

node Stark/Spark cluster, and a 10-node workload generator

cluster. As only a small fraction of tweets are tagged with

location information, we merge the NYC taxi trace and Twitter

dataset together by appending a tweet after every taxi pick-

up/drop-off event log, such that every tweet is associated with

a geographic coordinate and a new timestamp. We then replay

the result dataset as a TCP stream source. Stark uses the

streaming component to process incoming data, creating one

RDD for every 5-minute data. Spark streaming relies on a

single node to create micro-batch RDDs, and then repartitions

the RDD to distribute data onto multiple servers. The spatial

coordinates are encoded into a one-dimensional space using

0 60 120 180 240
0

400

800

Number of Jobs per Second

D
el

ay
 (

m
s)

Spark−R
Spark−H
Stark−E
Stark−H

Fig. 19: System Delay

0 4 8 12 16 20 24
100
200
400
800

2000

Time (h)

D
el

ay
 (

m
s)

Spark−H
Stark−H
Stark−E

Fig. 20: Job Delay Over Time

the Z encoding algorithm [23]. Each job is based on the data

within a random time range and a random geographic region,

which triggers cogroup operations on multiple RDDs.

As the trace emits data at varying speed over time, the

throughput may also change accordingly. In order to conclude

a steady number, we first measure the system throughput by

revising the trace timestamps and forcing the stream source

to release an equal number of tweets per second. To calculate

the throughput, we measure the number of jobs per second the

system could handle when keeping the delay below 800ms.

Figure 19 plots the result. The curve with purple triangles

on the upper-left corner represents the Spark-R baseline. As it

requires expensive data shuffling operation, jobs take 630ms to

finish on average and handle only 9 queries per second. When

using the same hash partitioner (Spark-H) across all RDDs, the

response time drops to 405ms, and the throughput improves

to 56 queries per second. After further enforcing data co-

locality, response time immediately decreases to 109ms, and

the system handles up to 220 queries per second. In this set

of experiments, as both data generating speed and distribution

stay unchanged, partition elasticity helps little. As shown by

the Spark-E curve, the extra overhead introduced by grouping

tasks slightly hurts the system response time and throughput.

In Figure 20, we measure the system response time by

replaying the trace at the real speed according to the NYC

taxi trace timestamp. The timestep size is set to 5 minutes.

Queries analyze a random range of timesteps in the past three

hours. Due to the unacceptably high response time and low

throughput as shown in Figure 19, the experiment excludes the

Spark-R baseline. To compare the response time, the amount

of workload has to stay within the capability of all baselines.

Hence, workload emulators generate 20 jobs per second. As

shown by the red curve with diamonds, the response time of

Spark-H surpasses 800ms when the amount of data generated

per second increases. Stark-H keeps the response time below

200ms. Stark-E shows the benefits of extendable partitions. As

the amount of data per timestep increases, each job spans to a

larger set of executors with each executor processing a smaller

amount of data. We conclude from the results that, although

Stark-E subjects to longer delays compared to Spark-H when

facing static and light workloads, it outperforms Spark-H by

elastically scaling out as the amount of workload grows.

116112

V. RELATED WORK

In-memory computation [1], [2], [6], [8], [10], [29], [30],

[31], [32], [33], [34], [35] has recently attracted immense

attentions from both academia and industry. Multiple efforts

have been expended on investigating various aspects of the

problem and pushing forward this direction. For example,

Spark [1], as a generalized in-memory computation system,

has already greatly boosted data processing solutions for many

application needs throughout the industry [20], gaining rapid

growth in user population. Spark improves on Hadoop [36]

by storing the results of the intermediate stages in memory

instead of disk, and thereby eliminating the bottlenecks caused

by slow disk accesses. Its streaming components [2] sits

on top of Spark core, and enables stream processing using

micro-batching strategies. Naiad [8] unifies stream and batch

processing systems, offer comparable functionalities as Spark.

These systems offer limited optimizations for applications

working on collections of datasets.

Spark has a rich ecosystem to handle specialized use cases.

Spark SQL [6], [29] supports SQL-like queries on structured

data in spark applications. It translates SQL queries into Spark

jobs, and optimizes runtime code generation. MLlib [30],

as another example, is a scalable machine learning library

implemented on Spark. SocialTrove [10] applies Spark and

in-memory caching to implement a content-agnostic summa-

rization infrastructure for social data streams. GraphX [31]

is a graph processing framework to provide vertex parallel

abstractions using the concept of RDD. Several of the above

applications also work on dataset collections. For example, the

slice transformation in Spark Streaming allows jobs to operate

on multiple timestep RDDs within a given time interval.

Graphx relies on distributed joins to bring together edge and

node data. Therefore, optimizations for dataset collection will

benefit these applications as well.

VI. CONCLUSION

This paper presents the design, implementation, and evalua-

tion of Stark, an optimized in-memory computing system for

dynamic dataset collections. Stark enforces data co-locality

on dataset collections to avoid unnecessary partition re-

computations and data movements. Moreover, Stark delivers

elasticity to data partitions (groups), which allows the system

to accommodate workload dynamics with low overhead. Fi-

nally, it bounds the failure recovery delay using the minimum

amount of checkpoint data. Compared to the state-of-the-art

solutions, Stark reduces job makespans by 4X, and boosts

system throughput by 6X.

ACKNOWLEDGMENTS

Research was sponsored by the Army Research Laboratory

and was accomplished under Cooperative Agreement Number

W911NF-09-2-0053 (the ARL Network Science CTA) and

NSF CNS 13-20209. The views and conclusions contained

in this document are those of the authors and should not

be interpreted as representing the official policies, either

expressed or implied, of the Army Research Laboratory or

the U.S. Government. The U.S. Government is authorized

to reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation here on.

REFERENCES

[1] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A

fault-tolerant abstraction for in-memory cluster computing,” in USENIX
NSDI, 2012.

[2] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,

“Discretized streams: Fault-tolerant streaming computation at scale,” in

ACM SOSP, 2013.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: Cluster computing with working sets,” in USENIX HotCloud,

2010.

[4] “Spark: Lightning-Fast Cluster Computing,” http://spark.apache.org/,

September 2015.

[5] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon:

Reliable, memory speed storage for cluster computing frameworks,” in

ACM SoCC, 2014.

[6] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica,

“Shark: Sql and rich analytics at scale,” in ACM SIGMOD, 2013.

[7] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on

a memory cloud,” in ACM SIGMOD, 2013.

[8] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and

M. Abadi, “Naiad: A timely dataflow system,” in ACM SOSP, 2013.

[9] “Apache Flink: an open source platform for distributed stream and batch

data processing,” https://flink.apache.org/, September 2015.

[10] M. T. Amin, S. Li, M. R. Rahman, P. Seetharamu, S. Wang, T. Abdelza-

her, I. Gupta, M. Srivatsa, R. Ganti, R. Ahmed, and H. Le, “Socialtrove:

A self-summarizing storage service for social sensing,” in USENIX
ICAC, 2015.

[11] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, “Fast in-memory

transaction processing using rdma and htm,” in Proceedings of the 25th
Symposium on Operating Systems Principles, 2015.

[12] M. Zaharia, “How spark usage is evolving in 2015,” in Spark Summit
Europe, 2015.

[13] F. Abuzaid, J. K. Bradley, F. T. Liang, A. Feng, L. Yang, M. Zaharia,

and A. S. Talwalkar, “Yggdrasil: An optimized system for training deep

decision trees at scale,” in Advances In Neural Information Processing
Systems, 2016.

[14] R. Bosagh Zadeh, X. Meng, A. Ulanov, B. Yavuz, L. Pu, S. Venkatara-

man, E. Sparks, A. Staple, and M. Zaharia, “Matrix computations

and optimization in apache spark,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2016.

[15] S. Chang, Y. Zhang, J. Tang, D. Yin, Y. Chang, M. A. Hasegawa-

Johnson, and T. S. Huang, “Positive-unlabeled learning in streaming

networks,” in ACM KDD, 2016.

[16] W. Chen, “Spark and Shark Bridges the Gap Between Business Intel-

ligence and Machine Learning at Yahoo! Taiwan,” in Spark Summit,
2014.

[17] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mccauley,

M. Franklin, S. Shenker, and I. Stoica, “Fast and interactive analytics

over hadoop data with spark,” USENIX, vol. 37, no. 4, pp. 45–51, 2012.

[18] R. Ding, H. Zhou, J.-G. Lou, H. Zhang, Q. Lin, Q. Fu, D. Zhang,

and T. Xie, “Log2: A cost-aware logging mechanism for performance

diagnosis,” in USENIX ATC, 2015.

[19] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and

I. Stoica, “Delay scheduling: A simple technique for achieving locality

and fairness in cluster scheduling,” in EuroSys, 2010.

[20] “Databricks: Make Big Data Simple,” https://databricks.com/customers,

September 2015.

117113

[21] B. Donovan and D. B. Work, “Using coarse gps data to quantify city-

scale transportation system resilience to extreme events,” Transportation
Research Board 94th Annual Meeting, 2014.

[22] New York City Taxi & Limousine Commission (NYCT&L), “Nyc

taxi dataset 2010-2013,” https://publish.illinois.edu/dbwork/open-data/,

2015.

[23] S. Li, S. Hu, R. Ganti, M. Srivatsa, and T. Abdelzaher, “Pyro: A spatial-

temporal big-data storage system,” in USENIX ATC, 2015.

[24] CyPhy Research Group, “UIUC Green Data Center,”

http://greendatacenters.web.engr.illinois.edu/index.html, 2015.

[25] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis

for decentralized hosting,” Elsevier Computer Networks, vol. 53, no. 11,

pp. 1830–1845, July 2009.

[26] “Twitter Developers,” https://dev.twitter.com/, September 2015.

[27] S. Li, S. Wang, F. Yang, S. Hu, F. Saremi, and T. F. Abdelzaher,

“Proteus: Power proportional memory cache cluster in data centers,”

in IEEE ICDCS, 2013.

[28] R. Shiveley, “Changing the Way Businesses Comput and Compete: In-

Memory Computing and Real-Time Business Intelligence,” 2014.

[29] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,

X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql:

Relational data processing in spark,” in ACM SIGMOD, 2015.

[30] “MLlib: Apache Spark’s scalable machine learning library,” http://spark.

apache.org/mllib/, September 2015.

[31] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,

and I. Stoica, “Graphx: Graph processing in a distributed dataflow

framework,” in USENIX OSDI, 2014.

[32] A. Koliousis, M. Weidlich, R. C. Fernandez, P. Costa, A. L. Wolf,

and P. Pietzuch, “Saber: Window-based hybrid stream processing for

heterogeneous architectures,” in ACM SIGMOD, 2016.

[33] J. S. Jeong, W.-Y. Lee, Y. Lee, Y. Yang, B. Cho, and B.-G. Chun,

“Elastic memory: Bring elasticity back to in-memory big data analytics,”

in USENIX HotOS, 2015.

[34] L. Hu, K. Schwan, H. Amur, and X. Chen, “ELF: Efficient Lightweight

Fast Stream Processing at Scale,” in USENIX ATC, 2014.

[35] A. Bar, A. Finamore, P. Casas, L. Golab, and M. Mellia, “Large-scale

network traffic monitoring with dbstream, a system for rolling big data

analysis,” in IEEE BigData, 2014.

[36] S. Li, S. Hu, S. Wang, L. Su, T. Abdelzaher, I. Gupta, and R. Pace,

“Woha: Deadline-aware map-reduce workflow scheduling framework

over hadoop clusters,” in IEEE ICDCS, 2014.

118114

