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Abstract—This paper develops new schedulability bounds
for a simplified MapReduce workflow model. MapReduce is
a distributed computing paradigm, deployed in industry for
over a decade. Different from conventional multiprocessor
platforms, MapReduce deployments usually span thousands of
machines, and a MapReduce job may contain as many as tens
of thousands of parallel segments. State-of-the-art MapReduce
workflow schedulers operate in a best-effort fashion, but the
need for real-time operation has grown with the emergence
of real-time analytic applications. MapReduce workflow details
can be captured by the generalized parallel task model from
recent real-time literature. Under this model, the best-known
result guarantees schedulability if the task set utilization stays
below 50% of total capacity, and the deadline to critical path
length ratio, which we call the stretch ϕ, surpasses 2. This paper
improves this bound further by introducing a hierarchical
scheduling scheme based on the novel notion of a Packing
Server, inspired by servers for aperiodic tasks. The Packing
Server consists of multiple periodically replenished budgets that
can execute in parallel and that appear as independent tasks
to the underlying scheduler. Hence, the original problem of
scheduling MapReduce workflows reduces to that of scheduling
independent tasks. We prove that the utilization bound for
schedulability of MapReduce workflows is UB · ϕ−β

ϕ
, where

UB is the utilization bound of the underlying independent task
scheduling policy, and β is a tunable parameter that controls
the maximum individual budget utilization. By leveraging past
schedulability results for independent tasks on multiprocessors,
we improve schedulable utilization of DAG workflows above
50% of total capacity, when the number of processors is
large and the largest server budget is (sufficiently) smaller
than its deadline. This surpasses the best known bounds for
the generalized parallel task model. Our evaluation using a
Yahoo! MapReduce trace as well as a physical cluster of 46
machines confirms the validity of the new utilization bound for
MapReduce workflows.

I. INTRODUCTION

The past decade has seen MapReduce [1–5] become the

dominant distributed computing paradigm in industry. The

importance of meeting deadlines of MapReduce workflows

has grown in recent years as well, driven by the advent of

real-time analytics [6–16]. The success of the MapReduce

community in addressing real-time constraints, however,

remains limited due to the inherent difficulty of the workflow

scheduling problem on parallel resources. On the other

hand, in real-time scheduling literature, recent results on

schedulability of generalized parallel tasks do not offer high

platform utilization. The prospect of improving schedulabil-

ity bounds of generalized parallel tasks on multiprocessors

in the subcases relevant to MapReduce workflows motivates

the work reported in this paper.

The MapReduce distributed computing paradigm splits

source data into independent chunks and processes them

using two phases: the map phase applies the map function

onto each chunk, generating intermediate key-value pairs,

while the reduce phase aggregates and summarizes those

key-value pairs based on their keys. The reduce phase cannot

start until the map phase finishes, and both phases can be

parallelized to run on a large number of slots, where a

slot is a resource unit in MapReduce clusters. MapReduce

deployments usually span thousands of machines, connected

by a high-speed and high-bandwidth intranet. Assuming

a bounded network delay (that we can subtract from the

end-to-end deadline), the platform acts as a very large

multiprocessor. One MapReduce job may contain tens of

thousands of parallel segments [17, 18]. Due to input/output

dependencies that are often required to carry out complex

algorithms, MapReduce jobs usually form Directed Acyclic

Graphs (DAG), called MapReduce workflows.

Many data processing algorithms used in the context of

MapReduce workflows are bulk algorithms (as opposed to

incremental-update algorithms). They require a bulk of data

to be present at once. This leads to a periodic invocation

model, where a volume of data is first collected within the

current time-slice, and then the MapReduce workflow is

invoked. Being able to meet workflow deadlines is often

of crucial importance to businesses, because applications

supported by production MapReduce workflows, such as

advertisement placement optimizations, user graph storage

partitions, and personalized content recommendations, usu-

ally directly affect site performance and company revenue.

The state-of-the-art MapReduce workflow schedulers,

such as Oozie [19] and WOHA [18], operate in a best-effort

fashion, offering little guarantees on workflow completion

times. With the surge of interest in real-time workflow

execution, recent work addressed scheduling extensions that

offer resource partitioning [20, 21], reduce preemption cost

to support prioritization [22], or take deadlines as input to

the scheduler [11, 12]. However, these attempts fall short

of offering timing guarantees. Administrators cannot tell,

quantitatively, what maximum utilization their MapReduce

clusters can bear before jobs start lagging too far behind.

This calls for an analytically well-motivated scheduling and

admission control policy, which is the topic of this paper.

This paper makes two contributions. From the perspective

of MapReduce applications, we offer an analytic result and a

run-time mechanism to guarantee schedulability of MapRe-

duce workflows as long as a schedulability bound is met.
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From the perspective of real-time foundations, we improve

the best known bound for schedulability of the generalized

parallel task model in a special subcase of relevance to

MapReduce applications.

The contributions rest on the novel idea of the Packing
Server. It constitutes a run-time mechanism that makes con-

current precedence-constrained workflows look like indepen-

dent periodic tasks to the underlying MapReduce scheduler.

We then derive a conversion factor that expresses a bound

for schedulability of MapReduce workflows as a function

of the underlying utilization bound for schedulability of

independent periodic tasks.

Details of a MapReduce workflow can be captured by a

generalized parallel task model [23]. Among the metrics used

in existing work, utilization bounds and capacity augmenta-

tion bounds give rise to efficient admission control policies,

as they only require simple information about the task set

and the platform. The best-known result for schedulability

of workflow tasks, that is amenable to a simple admission

control policy, is a capacity augmentation bound of 2 for

implicit-deadline task models using a federated scheduling

strategy [24]. In order to guarantee schedulability, this bound

requires the task set utilization to be less than 50% of total

capacity, and the deadline to critical path length ratio, which

we call the stretch (ϕ), to be larger than 2. This constraint

(only 50% of capacity) may be too restrictive for some

systems.

Fortunately, more advances have been made on schedu-

lability of independent task sets, achieving much higher

utilization bounds, especially when the number of processors

is large and the individual units of work are small. For

example, López et al. [25] proved that first-fit partitioned

EDF (EDF-FF) can schedule any system of independent

periodic tasks on m processors, given that the total capacity

stays below UB = mβ+1
β+1 , where β is inverse of the maxi-

mum individual task utilization (i.e., β = 1
umax

). As another

example, the global EDF scheduling [26] guarantees to meet

all deadlines if the total task set utilization is less than

UB = m
(
1− 1

β

)
+ 1

β . Note that, for β = 1
umax

≥ 1, the total

schedulable utilization is larger than m/2 (i.e., larger than

50% of total capacity). In fact, the bound approaches 100%

of capacity as β increases. These observations suggest that

task set abstractions or transformations that make workflows

look like independent tasks may improve schedulability.

The Packing Server mechanism, presented in this paper,

is inspired by the above observation. Each Packing server

consists of a number of budgets dedicated to a given MapRe-

duce workflow. The MapReduce system schedules these

budgets as independent tasks. When invoked, the budget

runs MapReduce segments in a manner that respects work-

flow precedence constraints. Hence, the original problem

of analyzing schedulability of MapReduce workflows on

multiprocessors is translated into the well-known problem of

analyzing schedulability of independent tasks. The utilization

bounds for the latter are well known both for EDF and

fixed priority scheduling, as well as both for partitioned and

global schedulers. We prove a conversion factor between

the utilization bound for schedulability of MapReduce work-

flows achieved by our scheme, and the utilization bound of

the underlying scheduler for independent tasks. Namely, the

MapReduce workflow is schedulable if utilization is below

UB · ϕ−β
ϕ . In the following, we shall use the convention of

expressing utilization as percentage of total cluster capacity.

Hence, for example, for a cluster of m machines, we shall

say 50% when we mean m/2, and will refer to it as the

cluster utilization.

Since the deadlines for MapReduce workflows are typ-

ically large (e.g., hours) and the clusters are big, it is

common that MapReduce workflows enjoy a large stretch,

ϕ, leading to a high utilization bound. Hence, we improve

the best known results for scheduling MapReduce DAGs

on multiprocessors. The paper describes how to size Pack-

ing servers, derives the schedulability bounds attained, and

presents the policies used inside a server in handling MapRe-

duce workflows. Evaluation results confirm the improved

schedulability.

The remainder of this paper is organized as follows.

Section II briefly introduces the MapReduce job model. Sec-

tion III and IV develop the conversion factor for individual

MapReduce jobs and workflows, respectively. We describe

the application-level scheduling algorithm for packing work

inside servers in Section V. Section VI presents evaluation

results. We survey the related work in Section VII. Section

VIII concludes the paper.

II. MAP-REDUCE WORKFLOW MODEL

We refer by workflow task sets to those task sets that

contain inter-dependent sequential jobs. This is in contrast

to independent task sets in which no job dependencies are

present. The high-level idea of our technique is to transform

a MapReduce workflow task set τ into an independent

task set τ , implemented as Packing server budgets, such

that the schedulability of τ is a sufficient condition for

the schedulability of τ . The transformation is done at the

cost of introducing increased (virtual) computation times in

τ , leaving τ at a higher utilization than τ . We show that

the utilization of τ is at most β
ϕ−β times larger than τ ,

where β is a tunable parameter that controls the maximum

individual server budget size. Hence, if an independent

task set scheduler A offers a utilization bound UB , the

MapReduce workflow set τ can meet all deadlines provided

that its utilization stays below UB · ϕ−β
ϕ .

The MapReduce literature uses terminology differently

from the real-time literature, leading to a potential confusion

over what is meant by such terms as jobs and tasks. In

this paper, we follow the definitions common in real-time

literature as much as possible. We say that a MapReduce job
consists of a map phase and/or a reduce phase. It may be
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that a MapReduce job contains only a single map or reduce

phase, although commonly it contains both. Each phase

contains multiple segments that may execute in parallel. We

call a segment a mapper or a reducer depending on whether

it belongs to a map phase or a reduce phase. The execution of

a mapper or a reducer occupies a resource slot (or just slot),
which could, for example, be a core in a multi-core platform.

Within one job, no reducer may start before all mappers

finish. A MapReduce pipeline chains multiple MapReduce

jobs together, resulting in a sequence of phases. In a general

MapReduce workflow, MapReduce jobs collectively form a

Directed Acyclic Graph (DAG), where each node represents

a MapReduce phase and each edge points from node a to

node b represents the dependency that phase b cannot start

before phase a finishes.

A MapReduce workflow task τi is a periodic task that

generates a MapReduce workflow every Ti time units with

relative deadline Di. We denote the number of segments

(mappers or reducers) at the jth phase of the workflow of

task τi by mj
i , and the worst-case computation time of an

individual segment by cji . A MapReduce workflow task set

τ contains multiple MapReduce workflow tasks. Usually, the

input of a MapReduce workflow task invocation depends on

the output of the previous workflow invocation from the same

task, resulting in an implicit-deadline task model (Di = Ti).

We define the stretch of workflow task τi, denoted by

ϕi, as the ratio of relative deadline Di over critical path

length, denoted by Li. Let ϕ denote the minimum stretch

of all workflow tasks, ϕ = min{ϕi|∀i}. Note that, if the

workflow contains a single path, path (i.e., it is a pipeline),

Li =
∑

j∈path c
j
i summed over the path. The critical path in

a DAG workflow is the longest execution path in the DAG.

Hence, Li = maxpathk∈DAG

∑
j∈pathk

cji
Please note that the workflow model enjoys the same

expressiveness as the generalized parallel task model [23],

as any instance of the latter model can be transformed

into a workflow model by constructing a single-mapper

MapReduce job for each node in the generalized parallel

task model. Hence, the above terminology is introduced

merely for semantic convenience of mapping results to the

MapReduce application world. Different from the typical

multiprocessor scenario, the MapReduce platform usually

spans thousands of machines [27], and a single phase may

contain as many as 30 thousand segments [17, 18]. This

encourages us to pay special attention to cases where m is

large. Moreover, since deadlines and parallelism are large,

we are interested in scenarios of large stretch, ϕ.

III. THE PACKING SERVER UTILIZATION BOUND

In this section, we restrict each workflow to contain

a single MapReduce job. The analysis is generalized to

pipelines and DAGs in Section IV.
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Figure 1: Packing Server Architecture

A. The Packing Server

For each task τi in the MapReduce task set τ , we propose

to create a Packing server, τi, given by several parallel

budgets, where the size of each budget of server τi is

denoted ci and the number of budgets mi (also called,

server concurrency). The name, Packing server, was chosen

because the server “packs” segments of the original workflow

task into a smaller set of budgets. The set of Packing servers

is collectively called set τ .

As we show later in this paper, a property of how

segments are packed into budgets is that these budgets

can be scheduled by the underlying scheduler as if they

were independent tasks. They can be migrated among cores,

preempted, and prioritized as the underlying scheduling

policy requires, without impacting the ability of the Packing

server to respect workflow synchronization (i.e., segment

precedence) constraints. Clearly, the budgets have to be sized

such that: (i) collectively, they fit all workflow segments and

(ii) individually, they fit the critical path of the workflow.

Below, we describe how budget size is chosen, then prove a

conversion factor bound that expresses the utilization bound

for schedulability of workflows in terms of the utilization

bound of the underlying scheduler.

Figure 1 shows the high-level architecture of how Packing

servers work. Note that, all budgets in the same Packing

server have the same budget size. A Packing server is valid

if its budget size is smaller than the relative deadline of the

original MapReduce job (ci ≤ Di).

B. The Case of a Single Job

We first consider the special case where the workflow task,

τi, is composed of a single path represented by a succession

of one map phase and one reduce phase. We give a smaller

index to the phase with the larger number of segments.

Hence, m1
i ≥ m2

i . Without loss of generality, we assume

that m1
i is a map phase. (The discussion applies equally if

m1
i was a reduce phase.)

In choosing server concurrency, mi, we note that some

independent task scheduling algorithms on multiprocessors
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Figure 2: Improved Packing Server Construction Scheme

are sensitive to the maximum individual task utilization

umax [25, 26]. The smaller the maximum individual task

utilization, the better the schedulability bound. Hence, we

introduce a tunable parameter, β, to curb umax of converted

independent server budgets. Intuitively, the Packing server

treats D′
i =

Di

β as the worst-case allowable budget size, guar-

anteeing individual budget utilization to be upper bounded

by 1
β (i.e., umax ≤ D′

i

Di
= 1

β ). In order to pack a MapReduce

job into an interval of D′
i time units, we derive two lower-

bounds on Packing server concurrency, mi, that stem from

the following conditions:

• The total WCET condition: In order to fit all original

computation of the workflow task into mi budgets of

length no longer than D′
i, we should satisfy:

mi ≥
⌈
m1

i c
1
i +m2

i c
2
i

D′
i

⌉
(1)

• The critical path condition: In order to allow the

MapReduce job to finish in D′
i time units, the phase

with more segments (phase 1 according to our indexing)

has to finish in D′
i − c2i time units. Therefore:

mi ≥
⌈

m1
i c

1
i

D′
i − c2i

⌉
(2)

Please note, that these two lower bounds do not dominate

each other. For example, in Figure 2 (a), the MapReduce job

contains m1
i = 7 mappers of WCET c1i = 3, and m2

i = 5
reducers of WCET c2i = 2. Deadline Di was 10, and β is set

to 1 (i.e., D′
i = Di). In this example, the first lower bound

wins, as it results in mi =
⌈
m1

i c
1
i+m2

i c
2
i

D′
i

⌉
= 4, whereas

the second lower bound leads to mi =
⌈

m1
i c

1
i

D′
i−c2i

⌉
= 3.

Figure 2 (c) depicts another example, where the original

MapReduce job consists of m1
i = 6 mappers of WCET

c1i = 3, and m2
i = 1 reducers of WCET c2i = 2. Under

this configuration, the first lower bound results in mi = 2
budgets, whereas the second is mi = 3 budgets. Hence, we

have the following two cases:

Case 1: When
⌈

m1
i c

1
i

D′
i−c2i

⌉
<

⌈
m1

i c
1
i+m2

i c
2
i

D′
i

⌉
, the MapReduce

job concentrates to
⌈
m1

i c
1
i+m2

i c
2
i

D′
i

⌉
budgets of budget size

Ci

�Ci/D′
i� , where Ci = m1

i c
1
i + m2

i c
2
i . Figures 2 (a)-(b)

depict an example. As this construction strategy introduces

no extra computation, the result Packing server τi shares

the same utilization with its original MapReduce task τi
(ui = ui).

Case 2: When
⌈

m1
i c

1
i

D′
i−c2i

⌉
≥

⌈
m1

i c
1
i+m2

i c
2
i

D′
i

⌉
, the reduce

phase originally has less segments than
⌈

m1
i c

1
i

D′
i−c2i

⌉
. There-

fore, we add
⌈

m1
i c

1
i

D′
i−c2i

⌉
− m2

i virtual reducers, as shown

in Figures 2 (c)-(d). Together with virtual reducers, the

original MapReduce job converts to mi =
⌈

m1
i c

1
i

D′
i−c2i

⌉
bud-

gets. In each budget, the map phase and the reduce phase

(with virtual reducers) contribute
m1

i c
1
i

�m1
i c

1
i /(D′

i−c2i )� and c2i
execution time respectively, resulting in the budget size of

ci =
m1

i c
1
i

�m1
i c

1
i /(D′

i−c2i )� + c2i .

C. Conversion Penalty

It is crucial that we bound the utilization penalty intro-

duced during Packing server construction, which directly

affects the conversion factor when bridging schedulability

utilization bound from independent tasks to MapReduce

tasks.

Lemma 1. The utilization (ui) of the Packing server τi is
at most ϕiui

ϕi−β , and the maximum individual independent task
utilization is at most 1

β , where ϕi is the stretch of MapReduce
task τi, and β ∈ [1, ϕ] is a tunable parameter.

Proof . We prove the lemma holds for the two construction

cases separately:

Case 1:
⌈

m1
i c

1
i

D′
i−c2i

⌉
<

⌈
m1

i c
1
i+m2

i c
2
i

D′
i

⌉
.

As the Packing server construction procedure introduces

no utilization penalty in this case, the utilization of the

Packing server τi equals the utilization of its original

MapReduce task τi (i.e., ui = ui < ϕiui

ϕi−β ). Therefore, the

lemma holds for case 1.

Case 2:
⌈

m1
i c

1
i

D′
i−c2i

⌉
≥

⌈
m1

i c
1
i+m2

i c
2
i

D′
i

⌉
.

The concurrency is
⌈

m1
i c

1
i

D′
i−c2i

⌉
. Hence, the number of virtual
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reduce segments is
(⌈

m1
i c

1
i

D′
i−c2i

⌉
−m2

i

)
, each of length c2i .

Define ηi to be
c1i
c2i

. Then, we have:

ui − ui

ui
=

(⌈
m1

i c
1
i

D′
i−c2i

⌉
−m2

i

)
c2i

m1
i c

1
i +m2

i c
2
i

≤
(⌈

m1
i c

1
i

D′
i−c2i

⌉
− 1

)
c2i

m1
i c

1
i + c2i

as m2
i ≥ 1

≤
(

m1
i c

1
i

D′
i−c2i

)
c2i

m1
i c

1
i + c2i

=
m1

i ηi

(m1
i ηi + 1)

(
D′

i

c2i
− 1

)

=
m1

i ηi

(m1
i ηi + 1)

(
Di

βc2i
− 1

) as D′
i =

Di

β

=
m1

i ηi

(m1
i ηi + 1)

(
ϕiηi

β + ϕi

β − 1
) as ϕi =

Di

c1i + c2i

=
m1

i ηi
m1

i ηi + 1
· β

ϕiηi + (ϕi − β)

≤ β

ϕi − β
(3)

Reorganizing the result from Inequality 3, we have:

ui ≤ ϕiui

ϕi − β
. (4)

Hence, Lemma 1 holds for both Packing server construc-

tion cases. �
Lemma 1 directly leads to a conversion factor bound of

ϕ−β
ϕ , where ϕ = min{ϕi|∀i}.

IV. MAPREDUCE WORKFLOW BOUNDS

Real world MapReduce applications usually call for multi-

ple MapReduce jobs that form a pipeline or a DAG to accom-

plish complex missions. In the pipeline model, MapReduce

jobs are chained together one after another, resulting in a

sequence of phases. The DAG model is more generalized

such that the dependencies among MapReduce jobs may

form a directed acyclic graph.

In this section, we first discuss how to generalize the uti-

lization penalty bound in Lemma 1 to MapReduce Pipelines.

Then we show that any MapReduce DAGs can be trans-

formed into a pipeline with the same critical path length Li

and utilization ui, implying that the utilization penalty bound

for MapReduce pipelines also applies to MapReduce DAGs.

A. MapReduce Pipelines

MapReduce pipeline i connects ni MapReduce jobs one

after another, resulting in no more than 2ni map/reduce

phases. Given a number x, if mj
i > x, phase j is called

a x-large phase. Otherwise, it is a x-small phase. Using

the similar strategy described in Section III-A, the Packing

server concentrates the total WCET of each x-large phase

into x identical segments, and adds
(
x−mj

i

)
virtual seg-

ments to each x-small phase j. After that, the Packing server

concatenates each (virtual) segment with another (virtual)

segment in the next phase, resulting in x budgets. Binary

search can be used to find the minimum x = mi such that

the budget size ci does not exceed D′
i =

Di

β . That is to say,

using only x = mi − 1 budgets would violate the deadline

D′
i. Then, we have:

∑
{j|mj

i≥mi−1}
mj

i c
j
i

mi − 1
+

∑
{j|mj

i<mi−1}
cji ≥ D′

i. (5)

The definitions of the deadline Di and the stretch ϕi

further lead to the following inequality:

D′
i =

Di

β
≥ ϕi

β

∑
j

cji . (6)

Combining Inequalities (5) and (6), we have:

∑
{j|mj

i≥mi−1}
mj

i c
j
i

mi − 1
+

∑
{j|mj

i<mi−1}
cji ≥

ϕi

β

∑
j

cji . (7)

Subtracting
∑

{j|mj
i<mi−1}

cji from both sides, we obtain:

∑
{j|mj

i≥mi−1}
mj

i c
j
i

mi − 1
≥ ϕi

β

∑
j

cji −
∑

{j|mj
i<mi−1}

cji

≥ ϕi

β

∑
j

cji −
∑
j

cji

=

(
ϕi

β
− 1

)∑
j

cji (8)

Based on Inequality (8), the total amount of computation

requirement can be bounded from below:

∑
j

mj
i c

j
i ≥

∑
{j|mj

i≥mi−1}
cjim

j
i

≥ (mi − 1)

(
ϕi

β
− 1

)∑
j

cji (9)

According to Inequality (8) and (9), we have:
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ui − ui

ui
=

∑
{j|mj

i<mi}

(
mi −mj

i

)
cji

∑
j

mj
i c

j
i

≤

(mi − 1)
∑

{j|mj
i<x}

cji

∑
j

mj
i c

j
i

(as mj
i ≥ 1)

≤

(mi − 1)
∑

{j|mj
i<mi}

cji

(mi − 1)

(
ϕi

β
− 1

)∑
j

cji

(Equation 9)

≤ β

ϕi − β
(10)

Therefore, the same utilization penalty bound β
ϕ−β holds

for MapReduce pipelines.

B. Transforming DAGs into Pipelines

This section further generalizes the same utilization

penalty bound β
ϕ−β to MapReduce DAGs by transforming

a MapReduce DAG into a MapReduce pipeline. There are

many different ways to transform a MapReduce DAG into

a MapReduce Pipeline. One naive solution would perform

a topology sort on the DAG, and execute phases one after

another according to the sorted order. However, this solution

enlarges the critical path length Li, leading to a smaller ϕ
after conversion, and hence a larger utilization penalty bound
β

ϕ−β .

Our goal is to develop a strategy that leads to the lowest

utilization penalty bound. As shown above, the utilization

penalty bound for a MapReduce pipeline is β
ϕ−β , which

decreases with the increase of ϕ = Di

Li
. This inspires us to

design an algorithm that minimizes the pipeline critical path

length Li during Packing server constructions. The resulting

pipeline length is bounded from below by the critical path

length Li of its original MapReduce DAG, where the uti-

lization penalty introduced by Packing servers is minimized.

This can be achieved by allowing each node in the DAG to

start execution as soon as all its prerequisite nodes finish.

To keep the result as a valid pipeline, a synchronization

point is inserted when each DAG node finishes. Fig. 3 shows

an example, where the original DAG job is depicted in (a)

and the resulting pipeline is shown in (b). As phases are

of different lengths, a node in the original DAG may break

into multiple phases in the pipeline. For example, node 2

and node 5 both follow phase 1. Hence, these two nodes

may start at the same time. However, as node 5 finishes

sooner than node 2, its ending synchronization point breaks

workflow of node 2 into two pipeline phases. The pseudo

code is described in Algorithm 1.

Algorithm 1 Transform MapReduce Workflows to MapRe-

duce Pipelines

Input: MapReduce DAG task set τ
Output: MapReduce pipeline task set τ ′
1: procedure TRANS-D(τ )
2: τ ′ ← ∅
3: for τi ∈ τ do
4: Sync ← {0}
5: for node j in τi do
6: lji ← the earliest possible time that the node j could start

7: Lay out all segments in node j in time interval [lji , lji + cji ]

8: Sync ← Sync ∪{lji + cji}
9: end for

10: sort Sync following increasing order
11: τ ′i ← ∅
12: for j ← 2 ∼ |Sync| do
13: Pj

i ← create a phase encapsulates all segments (portions)
fall in time interval [Sync[j-1], Sync[j])

14: τ ′i ← τ ′i ∪ {Pj
i }

15: end for
16: τ ′ ← τ ′ ∪ τ ′i
17: end for
18: schedule τ ′ using the MapReduce pipeline scheduling algorithm.
19: end procedure

Algorithm 1 loops over all workflow tasks on lines 2-17.

For each task τi, the algorithm first computes its synchro-

nization points on lines 4-10. As shown on lines 6-8, each

node j in task τi associates with a synchronization point

lji + cji , where lji is its longest preceding WCET path. Lines

12-15 divide the workflow into a pipeline of phases using

synchronization time points in set Sync. The result can be

viewed as a single pipeline task set, τ ′.
Note that, Algorithm 1 transforms a workflow task set

into a pipeline task set without increasing its utilization.

Therefore, the same utilization bound UB · ϕ−β
ϕ applies to

MapReduce workflows, where ϕ = min{ϕi|∀τi ∈ τ}.

V. SCHEDULING MAPREDUCE WORKFLOWS

Previous sections introduce the strategy to convert a set

of MapReduce workflow tasks into budgets that belong

to a set of Packing servers, one per task. Those budgets

can then be scheduled as independent sequential jobs by

the underlying scheduler. Each budget is used to execute

workflow segments. We now describe how the execution

order of segments is determined.

Before proceeding with our description, it is good to un-

derstand the differences between traditional operating system

scheduling and MapReduce scheduling, which in our system

is based on Hadoop [2, 3]; an open-source MapReduce

implementation. These differences are important to the un-

derstanding of our workflow scheduler implementation.

In an operating systems context, which has been the

traditional scheduling context in real-time systems literature,

servers typically refer to application tasks. The underlying
scheduler typically refers to an OS kernel scheduler [28].

This OS kernel scheduler has the power to allocate physical

resources to tasks. When it invokes a server, a second-
level scheduler (implemented in user space) inside the server
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Figure 3: Transform a DAG into a pipeline: (a) shows the original DAG, and (b) shows the resulting pipeline. The pipeline

consists of 6 phases containing 2, 9, 3, 4, 3, 2 segments and of lengths 5, 5, 2, 3, 3, 2 respectively.

decides on the order in which server budget is allocated to

different computations.

In a MapReduce context, the picture is slightly different.

First, all scheduling is done in user space, since Hadoop is

an application-level implementation. Hence, the underlying
scheduler refers to a user-level resource manager that per-

forms coarse-grained resource assignments. In Hadoop v2

(YARN) [3], the resource manager assigns resources to the so

called application masters. In this case, an application master

acts as a Packing server. The system can be configured to

have a single master per workflow task. The application

master implements the second-level scheduler that decides

on the order of execution of MapReduce segments of the

corresponding workflow task within the server’s budgets.

In an important departure from OS scheduling, in Hadoop,

the application masters are assumed to be cooperative.

Hence, the scheduling policy used by the Hadoop resource

manager (i.e., the underlying scheduler) is expressed to the

application masters as an exact timeline showing when the

corresponding workflow task is allowed to run and on which

resources. Application masters are therefore “clairvoyant”

about their exact future schedules. It is this clairvoyance

that allows us to implement the abstraction of independent

budgets, such that the underlying scheduler (the resource

manager) does not need to know anything about workflow

topologies and precedence constraints.

More specifically, once the resource manager informs

application masters of their budget schedules, since each

application master (i.e., Packing server) of a workflow task

knows when its budgets are scheduled, it can determine a

sequence of synchronization time points within its budgets,

Sync= {t0, t1, ..., tn} such that t0 = 0, and the total size

of scheduled budgets falling in [tj−1, tj) equals the total

WCET of the jth phase including potential virtual segments

(cji ·max{mj
i ,mi}). The time instance tj thus becomes the

time when phase j − 1 should end and phase j begin.

The application master (i.e., Packing server) then packs

segments of phase j into budget portions falling in [tj−1, tj).
The result of such packing is shown in Figure 4 for an

example server composed of four budgets. Packing is done

in a best fit manner (i.e., smallest budget portion is filled

first). Note that, segments within the same phase have no

precedence constraints and hence can be packed in any order.

Furthermore, since the execution of a segment is arbitrarily

divisible, it turns out that it is always possible to pack

segments such that all budgets running at time tj finish

the execution of segments of phase j simultaneously at that

time. The only constraint to consider is that portions of the

same segment cannot run in parallel on multiple processors at

the same time. Hence, when scheduling a segment, the best

fit policy skips time intervals where potions of the same

segment have already been scheduled. The exact pseudo-

code for the best fit segment packing algorithm and the

proof that it always succeeds at finding a valid schedule

between successive synchronization points are delegated to

the appendix.

tj-1 tj 

Phase j 

Budget schedule computed 
by Resource Manager (the 
“underlying scheduler”) 

Segments of Phase j, mapped by 
Application Master (Packing 
Server) to budget slots while 
respecting synchronization points 

Figure 4: An example of segment packing.

A. Limitations

The above discussion has been a simplified treatment of

MapReduce applications. MapReduce is a complex system.

A faithful analytic treatment goes beyond the scope of a sin-

gle paper. It is therefore useful to outline the approximations

and simplifications we made in this work.

First and foremost, we do not explicitly address data

allocation. Segments of task workflows operate on data. Such

data must be available on the local machine. If not, the

computation time of the segment will increase. In principle,
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it is possible to plan ahead of time, such that data are

distributed to machines as segments are allocated, such that

each segment finds its data locally. Challenges arise in the

presence of preemption and migration, when a segment

might find itself resumed on a different machine. In general,

moving data around is a bad idea. Hence, in practice, the

underlying scheduler should consider migration and data

movement costs. For example, partitioned scheduling would

be highly preferable to global scheduling. The underlying

scheduling policy is an orthogonal issue to our contribution

and hence is not addressed in this paper.

Second, the cost of preemption in MapReduce systems

is higher than that in a multi-core platform. The NatJam

system [22] enables MapReduce preemption by inserting

checkpoints between two key-value pairs, and writing those

checkpoints into the shared distributed file system, which

introduces a few milliseconds to a few seconds of delay. In

real-world scenarios, this is not a big problem as MapReduce

segments also take much longer time to finish compared to

multi-core tasks, leading to a small relative preemption cost.

For example, Figure 5 plots the distribution of mapper and

reducer WCET in Yahoo! Hadoop cluster [17]. WCETs of

most segments are larger than 10 seconds, and more than

50% segments take more than 1 minute to finish.

Finally, there is a data movement phase following each

computational phase in a MapReduce workflow, where out-

puts of one set of segments are sent to the next set of seg-

ments. This movement takes place over a high-speed network

interconnect. If network bandwidth is not sufficient, data

movement may introduce delays that need to be explicitly

accounted for. One possibility is simply to subtract those

delays from end-to-end deadlines, such that the deadlines

used reflect the time available for the computational part

only. Better solutions will be explored in subsequent work.

VI. EVALUATION

In this section, we compare our solution to two base-

lines. The first one is the state-of-the-art generalized parallel

tasks scheduling algorithm [24], called federated schedul-
ing. Among past results, federated scheduling achieves the

highest-known utilization bound of 50% for generalized

parallel tasks, if the stretch ϕ surpasses 2. The second

baseline for the parallel task model is the GEDF scheduling

algorithm, with a best-known utilization bound of 2
3+

√
5
≈

38.2% [26].

A. Computing the Optimal Budget Size

We begin by computing the optimal Packing server budget

size (or equivalently, the optimal value of β). Packing servers

may use any implicit-deadline independent task scheduling

policy A as the underlying scheduler to schedule their

budgets, while achieving a utilization bound UB · ϕ−β
ϕ

for schedulability of MapReduce workflows. In following

experiments, we set A to EDF-FF [25] and (independent

task) GEDF [26], respectively, as they lead to high utilization

bounds when stretch, ϕ, is large. We compute the optimal β
as follows:

• EDF-FF: When EDF-FF is used as the underlying

policy, A, the utilization bound guaranteed by Packing

servers for MapReduce workflows becomes:

UB · ϕ− β

ϕ
=

(mβ + 1)(ϕ− β)

mϕ(β + 1)
. (11)

By taking the derivative with respect to β, and setting

the derivative to 0, the highest utilization bound is

achieved when:

β =

√
(ϕ+ 1)(m− 1)

m
− 1. (12)

• GEDF: When the underlying scheduling policy, A, is

set to GEDF, the schedulability bound becomes:

UB · ϕ− β

ϕ
=

(ϕ− β)(mβ −m+ 1)

mϕβ
. (13)

Similarly, by equating the derivative to zero, the optimal

β, that achieves the highest bound, is:

β =

√
ϕ(m− 1)

m
. (14)

The following experiments use these two optimal β formulas

to configure Packing servers when they run above EDF-FF

and GEDF schedulers.

B. Schedulable Utilization

The first question we answer in the evaluation section is to

empirically determine the average schedulable utilization of

a MapReduce cluster, due to tasks that meet deadlines, under

different scheduling policies. Four policies are compared: (i)

Packing servers on top of EDF-FF, (ii) Packing servers on

top of GEDF, (iii) the federated scheduling policy [24] (with

no Packing servers), and (iv) GEDF. In industry, outputs of

MapReduce workflows power a variety of services, where

tardiness are usually allowed, but at the cost of diminishing

monetary benefits. In our experiments, we inherit the same

configuration, allowing tasks to continue execution after their

deadlines, which may adversely affect the schedulability of

subsequent jobs. We do not use admission control. Rather,

we vary the total input workload utilization (as percentage

of total platform capacity) on the x-axis and count on the

y-axis only the utilization of tasks whose deadlines were

58



0.2 0.4 0.6 0.8 1 1.2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packing & EDF−FF

Packing & GEDF

GEDF

Federated

Submitted Utilization

A
cc

ep
te

d 
U

til
iz

at
io

n

Packing & EDF−FF
Packing & GEDF
GEDF
Federated

Figure 6: Schedulable Utilization, ϕ = 20
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Figure 7: Schedulable Utilization, ϕ = 30
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met. While we do not explicitly plot deadline misses, note

that the difference between each curve and the diagonal x=y

is the utilization attributed to tasks that missed deadlines.

In these experiments, workflows are generated based on

Yahoo! MapReduce cluster trace data [17, 18]. The Yahoo!

dataset does not specify the deadline of jobs or workflows.

We therefore calculate the critical path length of workflows,

and set their deadlines to control the value of ϕ. More

specifically, the number of slots m is set to 500, and the

parameter ϕ is tuned to 20 (and 30) during our simulations,

resulting in β = 3.58 (and β = 4.56) for the EDF-FF

scheduler, and β = 4.47 (and β = 5.47) for the GEDF

scheduler.

Figures 6-7 depict the experiment results. The horizontal

lines in these figures indicate the theoretical utilization

bounds for the schedulability of each of the four schemes

compared. When GEDF acts as the underlying scheduler,

the theoretical schedulability bounds of Packing servers are

60.3% for ϕ = 20, and 66.9% for ϕ = 30. Packing servers

on top of EDF-FF have a 64% and 70% utilization bound,

which are the highest under the ϕ = 20 and ϕ = 30
configurations.

We also plot the empirically determined, schedulable

utilization curves for each of the four policies. Empirically,

when GEDF is the underlying scheduling policy, both GEDF

(alone) and Packing servers on GEDF meet deadlines of

almost all tasks when the task set utilization is below 90%.

However, the GEDF-based algorithms fail seriously, when

the task set utilization surpasses 95%, exhibiting a “domino

effect”.

Federated scheduling leads to a theoretical utilization

bound of 50%, which is the highest-known bound in previous

work. Under MapReduce workloads, it is empirically shown

to be able to schedule tasks without deadline misses up to

about 70% utilization. Above that utilization deadlines are

missed, although the domino effect seen by GEDF is not

experienced.

Packing servers on an EDF-FF scheduler appear to be the

most successful policy. The policy offers a high theoretical

schedulability utilization bound, and performs very well

above the bound, rising up to almost a 90% utilization with-

out deadline misses, when serving MapReduce workloads.

No domino effect is experienced above 90%. Hence, we

implement this scheduler on a 46-server Hadoop cluster to

verify its feasibility and validity.

C. Meeting Deadlines in a Real Hadoop Cluster

Next, we test the efficacy of admission control schemes

based on our new bounds at eliminating all deadline

misses. We implement a prototype of Packing servers on

WOHA [18], a workflow-enabled variant of Hadoop v1.

The experiment runs on a cluster of 40 Dell PowerEdge

R620 servers and 6 Dell PowerEdge R610 servers. The 40

R620 servers form a Hadoop cluster, providing 160 reduce

slots. The 6 R610 servers execute 1 resource planner, and 5

client nodes that submit workflow invocations to the Hadoop

cluster. The parameter ϕ is set to 20. It corresponds to a

utilization bound of 64.3%, which we set as the threshold

for admission control. Hence, we prepare a set of workflows

with a total utilization above 100%. An admission controller

is used that denies a workflow if it brings the cluster

utilization above 64.3%. All segments are computationally-

intensive. Figure 8 shows the resulting probability density

distribution of response time-to-deadline ratio of workflow

invocations during a 4-hour experiment. All ratios are below

1, suggesting the validity of the utilization bound.

VII. RELATED WORK

Workflow scheduling attracts increasing attention from

both real-time and MapReduce researchers. The widespread

MapReduce deployments stimulate the MapReduce commu-

nity to design and improve scheduling policies for MapRe-

duce implementations, such as Hadoop. The default sched-

uler executes jobs in a FIFO order, leading to poor fairness

under multi-tenant scenarios. Yahoo! developed a Capacity
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Scheduler [20] to offer each Hadoop cluster tenant a guar-

anteed resource share. Facebook’s Fair Scheduler [21] orga-

nizes Hadoop jobs into pools, and fairly divides resources

among these pools. Verma et al. [11] evaluates an EDF-

based scheduling algorithm on MapReduce. Their simula-

tion results confirm that simple deadline-based scheduling

heuristics allow more jobs to meet their deadlines. All of the

above solutions target job scheduling rather than workflow

scheduling. Yahoo! later developed Oozie [19, 29] as a

generic Hadoop workflow management tool, that submits

each workflow job at the right time. WOHA [18] introduces

deadline-aware scheduling of Hadoop workflows. However,

these schedulers make no guarantees on whether workflow

deadlines are met or not.

In real-time literature, workflow scheduling (called gener-

alized parallel tasks scheduling) has been recently studied on

multiprocessor platforms. Baruah et al. [30] prove that EDF

can achieve a 2X speedup bound for a single recurrent work-

flow. Saifullah et al. [31] propose to arrange a workflow into

stages, and then the workflow’s deadline is split and assigned

to each stage. If some optimal algorithm can successfully

schedule the original workflow, their solution is guaranteed

to satisfy the same deadline with a 4X (speedup bound) speed

processors. When the workflow is restricted to a fork-join

model [32, 33], Lakshmanan et al. [34] improve the speedup

bound to 3.42. Li et al. [35] develop a capacity augmentation

bound of 4 − 2
m for workflows, which immediately leads

to a simple and effective schedulability test. More recently,

Li et al. [24] improve the capacity augmentation bound to

2 using the federated scheduling algorithm. Nevertheless,

a utilization below 50% may be pessimistic for industry

MapReduce clusters.

Independent tasks on multiprocessors have been studied

more extensively during the past decades. Some algorithms

push the schedulability bound to be much higher than 50%.

The EDF-FF (first fit) algorithm is able to schedule all tasks

if their total utilization stays below UB = mβ+1
β+1 , where β is

the inverse of the maximum individual task utilization (i.e.,
β = 1

umax
). The global EDF guarantees schedulability if the

total utilization is less than UB = m
(
1− 1

β

)
+ 1

β . Both

algorithms approach a 100% utilization bound when β and

m are large, which is common on MapReduce platforms.

These observations motivate us to develop the Packing server

technique to be able to apply those higher bounds from

independent task scheduling to MapReduce workflows.

VIII. CONCLUSION

This paper introduces the technique of Packing server

to convert independent task set schedulability bounds to

MapReduce workflows schedulability bounds. If an inde-

pendent task set scheduler A guarantees schedulability up

to total utilization UB , the Packing servers can achieve

schedulability bound of UB · ϕ−β
ϕ using A as the underlying

scheduler, where ϕ is the minimum deadline to critical path

ratio, and β ∈ [1, ϕ] is a tunable parameter that curbs the

maximum converted individual independent task utilization

(umax ≤ 1
β ). MapReduce workflows usually yield large ϕ,

allowing the new bound to achieve a much higher value than

the best known bound of 50%. Our evaluations using Yahoo!

data on a 46-server Hadoop cluster confirm the validity of the

new bound and the feasibility of the Packing server system

design.
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APPENDIX

A. Scheduling Segments on Budgets

As Algorithm 1 converts MapReduce workflows into

MapReduce pipelines without introducing any utilization

penalty, we discuss the scheduling algorithm in the context

of a MapReduce pipeline for sake of simplicity. In order

to further simplify the notation, we focus on a single

MapReduce pipeline invocation from MapReduce task τi,
saving subscripts for task ID and pipeline ID. The algorithm

schedules each phase into its budget portions in a First-Fit
manner. Starting from the first phase, let π = {π1, π2, ..., πz}

denote the set of budget portions for the first phase, where

z ≤ mi. Please note, some budget may completely fall in

time interval [t1,+∞), leaving z to be smaller than mi.

A budget portion πi is a set of reserved non-overlapping

time intervals on some resource slots. Hence, each budget

portion associates with two affinities, time and slot. Let

N (π) represent the number of budget portions in π (i.e.,
N (π) = z), and L(π) the total size of budget portions in π
(i.e., L(π) = ∑

i L(πi)). Without loss of generality, assume

the set π is ordered such that L(πi) ≤ L(πi+1). As two

budgets cannot execute on the same slot at the same time, we

have L(πu\πv) = L(πu) and L (πu ∪ πv) = L(πu)+L(πv),
for u �= v. Algorithm 2 schedules x segments of WCET y
on the budget portion set π.

Algorithm 2 Schedule a phase on its budget portions

Input: π the set of budget portions, x the number of segments, y the length
of each segment

Output: S the schedule of input segments using in input budget portions
1: procedure SCHEDSEG(π, x, y)
2: S ← ∅
3: for j ← 1 ∼ x do
4: l ← y
5: for i ← 1 ∼ N (π) do
6: Schedule the length-l segment on πi following the increasing

order of time, skipping all conflicting time instances.

7: Store the scheduled part in πj
i

8: l ← l − L
(
πj
i

)

9: S ← S ∪ {πj
i }

10: end for
11: if l > 0 then
12: return null
13: end if
14: end for
15: return S
16: end procedure

The algorithm schedules all segments one by one (Lines

3-14). For each segment, it always tries to use smaller budget

portions first (Lines 5-10). A segment fills budget portion πj
i

following the increasing order of time. Remaining parts in

πj
i will be filled by following segments. In order to prevent

segment-level parallelism, the algorithm skips all conflicting

time intervals when scheduling segments.

As Algorithm 2 only requires a budget portion set and

segments’ properties, it also applies to the subsequent phase

j in the pipeline, by setting x to max{mj
i ,mi}, y the WCET

cji , and π the budget portions in time interval [tj−1, tj).

B. Algorithm Correctness

We now prove that Algorithm 2 guarantees to successfully

schedule a phase on corresponding budget portions. Again,

in order to simplify the notation, we focus on one single

MapReduce pipeline from MapReduce task τi, and use the

first phase as the proof subject, saving the notations for task

ID, and phase ID.

The proof can be divided into two cases depending on

whether the size of the smallest budget portion L(π1) is

larger than segment WCET y.
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Case 1: L(π1) > y.
Algorithm 2 always tries to fill up budget portion πi

before it starts to use πi+1, unless segment-level parallelism

conflicts prevent it from achieving that. In the case of

L(π1) > y, a segment α can either completely fit into the

current budget portion πi, or exhaust the remaining parts

of the πi and start to use πi+1. As πi+1 ≥ π1 > y, the

unscheduled parts of α can always fit into πi+1 avoiding

parallelism conflicts from πi. Therefore, budget portions are

filled up one-by-one following their index order, leaving no

gap in the middle. Due to L(π) ≥ xy, all segments can be

scheduled in π.
Case 2:L(π1) ≤ y.
We apply induction on z.
Basis: When z = 1, all segments are scheduled sequen-

tially into a single budget portion. The induction hypothesis

trivially holds.

Inductive Step: Assume the lemma holds for z ≤ k − 1,

we now prove it also holds for z = k. There are two cases:

As Algorithm 2 is deterministic, it is easy to figure out

which parts of π are assigned to the first segment. Remove

those parts from π, and denote the resulting budget portion

set as π′ . Now, in order to prove the lemma, we only need

to show that Algorithm 2 is able to fit the remaining x −
1 length-y segments into schedule π′. Given N (π) ≤ x,

L(π1) ≤ y, and L(π) ≥ xy, we have N (π′) ≤ x − 1 and

L (π′) = L (π) − y ≥ (x − 1)y. Therefore, according to

the induction hypothesis, Algorithm 2 can fit x− 1 length-y
segments into π′, implying that the lemma also holds for

z = k. �
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