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Abstract—In this paper, we present WOHA, an efficient
scheduling framework for deadline-aware Map-Reduce work-
flows. In data centers, complex backend data analysis often
utilizes a workflow that contains tens or even hundreds of
interdependent Map-Reduce jobs. Meeting deadlines of these
workflows is usually of crucial importance to businesses (for ex-
ample, workflows tightly linked to time-sensitive advertisement
placement optimizations can directly affect revenue). Popular
Map-Reduce implementations, such as Hadoop, deal with in-
dependent Map-Reduce jobs rather than workflows of jobs. In
order to simplify the process of submitting workflows, solutions
like Oozie emerge, which take a workflow configuration file as
input and automatically submit its Hadoop jobs at the right
time. The information separation that Hadoop only handles
resource allocation and Oozie workflow topology, although
preventing the Hadoop master node from getting involved
with complex workflow analysis, may unnecessarily lengthen
the workflow spans and thus cause more deadline misses. To
address this problem and at the same time honor the efficiency
of Hadoop master node, WOHA allows client nodes to locally
generate scheduling plans which are later used as resource
allocation hints by the master node. Under this framework
design, we propose a novel scheduling algorithm that improves
deadline satisfaction ratio by dynamically assigning priorities
among workflows based on their progresses. We implement
WOHA by extending Hadoop-1.2.1. Our experiments over an
80-server cluster show that WOHA manages to increase the
deadline satisfaction ratio by 10% compared to state-of-the-art
solutions, and scales up to tens of thousands of concurrently
running workflows.

Index Terms—MapReduce; Hadoop; Workflow; Scheduling;
Deadline

I. INTRODUCTION

This paper presents WOHA (WOrkflow over HAdoop),

a holistic solution for deadline-aware workflow scheduling

over Hadoop clusters. Hadoop [1] is a popular open source

implementation of the Map-Reduce [2] framework that has

attracted a great amount of interest from both industry and

academia for the past few years. Researchers have already

studied various Hadoop performance objectives including

fairness [3, 4], throughput [5], fault tolerance [6], and energy

efficiency [7, 8]. There have been studies on designing

schedulers to meet the deadlines for Hadoop jobs [9, 10], but

little effort has been spent on satisfying deadlines attached to

Hadoop workflows. To the best of our knowledge, WOHA is

the first system that addresses the problem of deadline-aware

workflow scheduling over a Hadoop cluster.

Meeting deadlines of Hadoop workflows is an impor-

tant problem in industry Hadoop clusters. Back-end big

data analysis often involves complex workflows of multiple

Hadoop jobs [11]. One example is generating statistics

of user log information which will be later used for ad-

vertisement placement optimizations, personalized content

recommendations, or user graph storage partitions. The site

performance and the revenue for the company are directly

affected by whether or not workflows can finish within a

given amount of time.
Existing solutions for Hadoop workflow scheduling [12–

14] rely on a standalone software (e.g. Oozie [12]) that

resolves the workflow topology and submits each job to

the Hadoop cluster when its input data is ready and its

recurrence frequency is met. There is a clean separation

between Oozie and Hadoop, in that Oozie only manages

workflows and submits jobs to Hadoop, whereas Hadoop

only manages resource allocation between jobs and executes

them. This functionality decomposition makes life easier for

programmers at development time, but could also create

potential inefficiency that affects system performance at

run time: The fact that only Oozie has workflow topology

information and only Hadoop controls resource allocation

makes it difficult for either side to employ any optimization

for meeting workflow deadlines.
Our objective is to improve workflow deadline satis-

faction ratios over Hadoop clusters. Deadline-aware work-

flow scheduling itself is an NP-hard problem [15]. Besides

the difficulties in approaching the scheduling problem, the

Hadoop architecture introduces two more challenges:

• The master node (scheduler) only bears simple schedul-

ing algorithms. In Hadoop, single master node monitors

the entire cluster, and is responsible for scheduling all

tasks. Since it is the only node with the global view,

the master node is naturally the best place to analyze

and schedule workflows. However, as the single point of

control, the master node receives lots of task assignment

requests per second [16]. Each request needs to be

answered within a very small amount of time, otherwise

the master node will become a bottleneck for the

Hadoop cluster. With these constraints, the master node

is not able to carry out any complex runtime workflow

analysis.
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• The master node leaves little storage space for workflow

related profiles. Monitoring and scheduling respon-

sibilities already consume a considerable amount of

memory on the master node. Consequently, one cannot

compute comprehensive scheduling guidelines ahead of

time and store it on the master node.

In order to tackle the above challenges, this paper in-

troduces WOHA, a scalable framework with the emphasis

on meeting workflow deadlines. WOHA offloads complex

workflow analysis to clients1 during workflow submissions,

and shifts costly job processing to slave nodes upon job

initialization. More specifically, with the workflow config-

uration file in hand, a client node queries for minimal

cluster status information from the master node. Then, the

client generates a scheduling plan locally, which the master

node can use to prioritize jobs among multiple concurrent

workflows. WOHA is implemented by adding 9,292 lines

of code into Hadoop-1.2.1. Evaluation results confirm that

WOHA outperforms the state-of-the-art solutions, and adds

negligible overhead to the master node.

The remainder of this paper is organized as follows.

Section II briefly introduces the workflow model we con-

sider. Then we show WOHA design details in Section III.

Section IV presents the progress based scheduling solution

under WOHA framework. Implementation and evaluation

are presented in Section V and Section VI, respectively.

We survey the related work in Section VII. Section VIII

concludes the paper.

II. WORKFLOW MODEL

We consider a shared Hadoop cluster serving multi-

ple user-defined Map-Reduce workflows. Workflows W =
{W1,W2, ...,Wl} compete for slots on the Hadoop cluster.

A workflow Wi is submitted at time Si with deadline Di,

both are not known to the scheduler ahead of time. Wi

contains a set of ni jobs Ji = {J1i , J2i , ..., Jni
i }, which we

call wjobs. Job Jj
i contains mj

i mappers and rji reducers.

Each job Jj
i has a prerequisite wjob set Pj

i ⊂ Ji. If

Jk
i ∈ Pj

i , Jj
i cannot start before Jk

i finishes, and Jk
i is called

a predecessor of Jj
i . Define Pi as set {P1

i ,P2
i , ...,Pni

i }.

With the above formulation, each workflow is characterized

as Wi = {Ji,Pi, Si, Di}.

Existing Hadoop cluster usually consists of at least three

components: client nodes, the master node, and worker

nodes. Client nodes are portals that allow users to sub-

mit and monitor jobs without acquiring accesses of the

master node and worker nodes, which protects the master

and workers from mal-behaving users. The master node

schedules jobs/tasks and monitors their status, and workers

execute tasks. All three components are configured by the

1A client executes Hadoop libraries to submit Hadoop jobs. We assume
clients run on different machines from both the master node and slave
nodes.

cluster administrator (not by users), and run a consistent

set of Hadoop libraries. Users may only submit workflows

through client nodes. The Hadoop cluster (clients, master,

and workers) analyzes and schedules workflows without

users involvement.

III. WORKFLOW SCHEDULING FRAMEWORK

This section presents the system design of WOHA.

First, we identify potential expensive operations incurred

by handling workflows, and describe solutions to mitigate

the overhead. Then, a high level WOHA architecture is

presented.

A. Design Philosophy

In Hadoop clusters, scheduling and monitoring already

incur heavy overhead on the master node, and the master

node may become the bottleneck if the the cluster becomes

too large. Given this consideration, several design decisions

have to be made to alleviate the overhead on the master node

when introducing workflow scheduling mechanisms to the

Hadoop architecture.

There are two expensive operations at the time of starting

a Hadoop job: loading user-defined jar files, and initializing

tasks. As a number of wjobs suddenly become available

when a workflow is submitted, we must make sure that this

process does not overload the master node. In the current

Hadoop implementation, the client machine loads jar files

locally, and hence adds no overhead to the master node.

However, this approach no longer works for submitting

wjobs. The reason is that some wjobs may depend on others’

outputs, and hence are not ready at workflow submission

time. Blocking the client session to wait for job activation

signals from the master node is an undesired solution from

the perspective of both user experience and system robust-

ness. Fortunately, there are plenty of slave nodes in industry

data centers. WOHA wraps the two expensive operations

mentioned above into map tasks, and creates a map-only

submitter job for each workflow. Each map task of the

submitter is responsible for submitting one specific wjob.

WOHA scheduler invokes submitter’s map tasks in an on-

demand manner (i.e., a map task for Jj
i will not be invoked

until all jobs in Pj
i have finished). In this way, WOHA shifts

the overhead of loading jar files to slave nodes, and scatters

the cost of initializing tasks over time.

The above design removes the bursty cost during work-

flow submissions. Besides that, processing workflow may

also induce a huge amount of computational and storage

resources. It is well known that the general workflow

scheduling problem is NP-hard [15]. However, this does not

mean WOHA needs to restrict users to use simple scheduling

heuristics. Users should be free to choose algorithms as

complex as they need. This creates a conflict. On one hand,

in order to maintain scalability, the scheduling algorithm

on the master node has to be fast. On the other hand, to
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Fig. 1. WOHA Framework

preserve users’ freedom in designing schedulers, they need

to be allowed to use complex workflow analysis algorithms.

To address this conflict, WOHA separates workflow analysis

from the master node, and shifts it into the client node during

workflow submission time. After the analysis, the client

node generates and sends a workflow scheduling plan to

the master node together with workflow configurations. The

scheduler on the master node then follows the scheduling

plan to prioritize jobs and workflows. A scheduling plan

can be as simple as assigning a priority to the workflow,

or as comprehensive as a total ordering of all tasks of all

jobs inside the workflow along with the triggering signal

to schedule it. Under this approach, users enjoy plenty of

room to create intelligent schedulers. At the same time,

the overhead of analyzing workflows is eliminated from the

master node.

B. WOHA Architecture

WOHA enhances the existing Hadoop framework with

workflow scheduling capabilities. In order to submit work-

flow Wi, users need to prepare an XML configuration file

specifying input and output dataset paths, wjob jar file paths,

wjob main class names, deadline, etc. WOHA takes this

XML file, checks the existence and validity of jar files

and input datasets, constructs prerequisite set Pi based on

inputs and outputs of each wjob, submits wjobs on demand,

and schedule wjobs to meet the deadline Di in a best-

effort manner. Fig. 1 shows the high-level system design

of WOHA.

As illustrated in Fig. 1, WOHA takes the following steps

to submit a workflow: (a) The user submits Wi’s configu-

ration XML file on WOHA client by executing “hadoop
dag [/path/to/W i.xml]”. (b) The Configuration Validator

checks specified jar files and input datasets, and then copies

them to HDFS if necessary. (c) The Configuration Validator

passesWi’s configurations to the Scheduling Plan Generator

and the Coordinator respectively. (d) The Scheduling Plan

generator generates a scheduling plan for Wi locally based

on Ji, Pi, and Di (discussed in detail in Section IV).

(e-f) The coordinator submits Wi’s configuration to the

JobTracker, and gets a unique workflow ID in return. (g) The

Coordinator passes the workflow ID to the Submitter Job

Generator. (h) The Submitter Job Generator creates a map-

only Hadoop job (the submitter), and writes its input splits

into HDFS. Each of the submitter’s map task will submit one

wjob in Ji. (i) JobTracker receives the submitter job from

the client side, and puts it under the internal data structure of

Wi. (j) When some slots become available, the JobTracker

will get that submitter job from the WorkflowScheduler if

it is the time to schedule it. (k) The submitter job runs on

slave nodes to prepare inputs for wjobs. (l) The submitter

job submits wjobs to the JobTracker.

Same as Hadoop, the scheduling events in WOHA are

triggered by heartbeat messages with slot idling information.

JobTracker consults Workflow Scheduler for tasks to assign.

The Workflow Scheduler first picks the workflow with the

highest priority (Section IV explains how workflow priorities

are assigned dynamically in detail), and then chooses the

active job with the highest job priority within the workflow

according to the scheduling plan. The job completion signal

is also captured by WOHA, which is in turn used to activate

its dependent jobs.

Users may replace the Scheduling Plan Generator module

and the Workflow Scheduler module in WOHA with their

own design and implementation according to their needs.

When users have implemented those two modules, the

substitution is as easy as modifying two lines of code in

the workflow-scheduler.xml configuration file.

As we are the first to deal with deadline-aware Hadoop

workflow scheduling, no existing solution directly fits into

WOHA framework. To show benefits of the WOHA, we

design and implement a novel progress based scheduling

algorithm that covers the Scheduling Plan Generator and the

Workflow Scheduler. This is also the default implementation

of those two components in the current WOHA release.

IV. PROGRESS BASED SCHEDULING

WOHA architecture does not restrict how the Scheduling

Plan Generator and Workflow Scheduler interact with each

other to schedule workflows. Users have plenty of room to

show their creativity. We present one novel solution that

encloses job ordering and workflow progress requirement list

(Fi) in the scheduling plan to assist the Workflow Scheduler

to schedule Wi at runtime. Intuitively, the progress require-

ment states that by ttd (time to deadline) time before the

workflow’s deadline, Fi(ttd) tasks from this workflow have

to be scheduled. During scheduling, the Workflow Scheduler

needs to prioritize both inter-workflow and intra-workflow

jobs. We borrow existing solutions to intra-workflow cases

(e.g., Longest Path First, or Highest Level First), and focus

on the inter-workflow prioritization.

According to the scheduling plan, the scheduler picks the

workflow that falls furthest from its progress requirement

given the current ttd. Then, it chooses the highest-priority
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job within that workflow to assign tasks. Scheduling pro-

ceeds in a work-conserving way. The intuition behind the

progress based scheduling is as follows. Workflows call

for different amount of resources during their runtime. For

example, in order to unlock a long sequence of jobs, it

may require large numbers of slots to finish some preceding

jobs as soon as possible. After that, it needs little resource,

as all remaining jobs may all contain a small number of

tasks. That is to say, priorities of workflows need to be

dynamically tuned. However, the master node does not have

enough computational resource to analyze all workflows

comprehensively to get a thorough understanding at runtime.

Fortunately, the client node may generate some scheduling

plans which the master node may efficiently follow.

Section IV-A elaborates details of the progress based

Scheduling Plan Generator. Section IV-B presents an effi-

cient scheduling algorithm for the Workflow Scheduler to

carry out the scheduling plan.

A. Scheduling Plan Generator

We assume that each map task of Jj
i takes M j

i time

to finish, and each reduce task of Jj
i takes Rj

i time to

finish. Estimations of task execution times can be acquired

from logs of historical executions [17] or by using models

based on task properties [9]. Developing accurate estimation

algorithms is not the focus of this paper.

When receiving Wi’s configuration XML file, the client

consults the JobTracker about the maximum number of

slots in the system (n). Then, with those two pieces of

information, the client generates the scheduling plan locally

by simulating the execution of Wi. The detailed algorithm

is shown in Algorithm 1. Assuming Wi monopolizes the

entire cluster (an improved version will be discussed later),

the procedure GENERATEREQS makes scheduling decisions

according to given job priorities and simulates job execu-

tions based on Ji, and Pi. The event queue E stores all

pending system events following the ascending order of their

occurrence time. Each event e in queue E consists of three

fields: time, type, and value. The field time indicates the

absolute time event e fires. There are only two events in

the simulation: FREE event indicates some slots are made

available, and ADD event puts one or more jobs into the

active job queue A where jobs are ordered according to

their given priorities. The value field encapsulates remaining

parameters based on the type of the event. To simplify the

presentation, we define Dj
i as the dependent wjob set of Jj

i ,

such that Jk
i ∈ Dj

i if and only if Jj
i ∈ Pk

i . Let Di denote

{D1
i , D

2
i , ..., D

ni
i }.

Algorithm 1 takes workflow configurations Wi and re-

source cap n as input. It assumes jobs in Ji are already

prioritized based on the user defined intra-workflow job pri-

oritization algorithm. Line 6-36 is the main loop, simulating

the execution ofWi on n slots. Events are processed in Line

Algorithm 1 Generate Progress Requirements
Input: Workflow configuration Wi, amount of slots n.
Output: Scheduling Plan Fi.
1: procedure GENERATEREQS(Wi, n)
2: Fi ← ∅;E ← ∅ /* Progress Requirements and Event queue */
3: A ← initially active jobs in W /* Active jobs */
4: E ← E ∪ {(time : 0, type :FREE, value : n)}
5: n ← 0; t ← 0
6: while |E| > 0 do /* there is at least one pending event */
7: e ← pick the event with earliest time from E
8: E ← E \ {e}; t ← e.time
9: if e.type = FREE then /* process the event */

10: n ← n+ e.value
11: else
12: A ← A ∪ {e.value}
13: end if
14: if n > 0 then /* there are some available slots */
15: Jj

i ← pick the job with highest priority from A

16: if mj
i > 0 then /* in the map phase */

17: maps ← min(mj
i , n);

18: Fi ← F ∪ {(ttd : t, req : maps)}
19: n ← n−maps;mj

i ← mj
i −maps

20: if mj
i ≤ 0 then

21: E ← E ∪ {(time:t+Mj
i ,type:ADD,value:Jj

i )}
22: A ← A \ {Jj

i }
23: end if
24: else /* in the reduce phase */
25: reduces ← min(rji , n)
26: Fi ← Fi ∪ {(ttd : t, req : reduces)}
27: n ← n− reduces; rji ← rji − reduces
28: if J.r ≤ 0 then
29: delete Jj

i from all Pk
i , where Jj

i ∈ Pk
i

30: D′ ← {Jk
i |Jk

i ∈ Dj
i ∧ |Dk

i | = 0}
31: E ← E ∪ {(time:t+Rj

i , type:ADD, value:D′)}
32: A ← A \ {Jj

i }
33: end if
34: end if
35: end if
36: end while
37: for ∀s ∈ Fi do /* translate event occurrence time to ttd */
38: s.ttd ← t− s.ttd
39: end for
40: return Fi

41: end procedure

9-13. Line 15-34 compute the number of mappers/reducers

to be scheduled. Job Jj
i will be removed from the active

queue A if all its mj
i map tasks or rji reduce tasks have

been scheduled (Line 20-23). An ADD event of the same

job Jj
i is inserted into E (Line 21) with mj

i set to 0.

Otherwise, if all rji reduce tasks have been scheduled, an

ADD event is inserted into E for Jk
i , such that Jk

i ∈ Dj
i

and |Pk
i | = 0. (Line 29-31). The last three lines convert the

event occurrence time into the time-to-deadline (ttd). That

is to say, the entry s in Fi indicates that at least s.req tasks

have to be scheduled by s.ttd before its deadline Di in order

to meet Di. In the worst case, the number of iterations in

the loop on Line 6 is of the same order of the total number

of tasks in the workflow Wi (i.e.
∑ni

j=1

(
mj

i + r
j
i

)
). Since

GENERATEREQS executes locally on the client side, the

computational complexity is not a serious concern. Please

note, due to data locality, resource contention from other

workflows, error in execution time prediction, and many

other factors, the progress requirement Fi may not faithfully

represent the real execution trace of the Wi on the Hadoop

cluster. The progress requirement is just a rough estimation
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of the workflow progress trace that helps the JobTracker to

prioritize workflows.

The above algorithm translates the configuration of Wi

into a deterministic progress requirement Fi. Besides the

workflow configuration Wi, the second parameter n (the

resource consumption cap) also shapes Fi. Without a mean-

ingful resource cap, Fi may act too optimistically in the

beginning and demand a huge amount of resources near the

deadline Di. Fig. 2 shows an example. The workflow topol-

ogy is shown on the left. Three workflows (W1,W2,W3)

with the same topology are submitted at time 0. Their

deadlines are D1 = 9, D2 = 9, and D3 = 50 respectively.

The cluster contains 3 map slots and 3 reduce slots. In Fig.

2 (a) where the resource cap is set to 6, each of W1 and

W2 thinks itself as having exclusive access to the entire

cluster, and thus it is able to meet the deadline by starting

at time 6. Hence, all three workflows require 0 tasks to be

scheduled in the first 5 time units, and each of them gets a

fair share of cluster resources. Entering the 6th unit time,W1

and W3 start to enjoy higher prioritization over workflow 2.

However, it is already too late. No matter how the scheduler

behaves from then on, at least one of them will miss its

deadline.

An improvement
The above example demonstrates that, without the knowl-

edge of other workflows, the Scheduling Plan Generator

might underestimate resource contentions in the cluster, and

hence miss critical execution opportunities. Unfortunately,

it will incur heavy overhead on the master node to poll

configurations and statuses of all other workflows when

generating each scheduling plan. Moreover, often times,

even the master node has no idea about what kind of

workflows or jobs may come in the future. That is to say,

the knowledge of other workflows is not available for the

Scheduling Plan Generator when calculating the progress

requirement Fi for Wi.

An intuitive solution is to apply a smaller resource cap

when generating the scheduling plan, which enforces the

generator to be less optimistic. The system has to carefully

choose the value for the resource cap. Large values cannot

prevent underestimation of the resource contentions, whereas

small values lead to pessimistic behavior such that it may

putWi far behind its progress requirement at the submission

time Ri. We propose to perform binary search using GEN-

ERATEREQS as a subroutine to find the minimum possible

resource cap that does not violate its deadline Di. As shown

in Fig. 2 (b), if we enforce a resource cap of 2 on them, all

three workflows meet their deadlines.

B. Efficient Scheduling Algorithm

To carry out scheduling plans, the Workflow Scheduler

keeps track of the number of tasks that have been scheduled,

which we call the true progress ρi. The scheduler then

<10^1 <10^2 <10^3 <10^4 <10^5 <10^6
100

102

104

Change Interval (ms)

O
cc

ur
en

ce
 C

ou
nt

Fig. 3. Progress Requirement Change interval

chooses the workflow with the most lags according to its

progress requirement (i.e., the largest Fi(ttd) − ρi). The

intuition is straightforward: try to keep every workflow

following its progress requirement.

However, the above scheduling algorithm brings another

challenge. As the value ttd continuously changes, the

progress requirement Fi(ttd) may also change. In order to

get the correct ordering of all workflows, a naive solution

might update all workflows’ progress lags (Fi(ttd) − ρi)
and then reorder them. It is not efficient enough to scale

in large Hadoop clusters. In industry data centers, a huge

number of jobs and workflows queue up in the Hadoop

cluster, with a considerable amount of slots freeing up every

second[16]. For example, Yahoo! Hadoop cluster spans over

42,000 nodes [18]. According to Yahoo! WebScope data

[19], the master node may see a few thousand submissions

within a minute during peak time. The algorithm needs to

be invoked every time a heartbeat message mentions some

slots are available, and needs to be applied to a large set

of running jobs/workflows. The naive solution would thus

take too much from the master node’s scarce computational

resources.

In order to speed up the workflow reordering algorithm,

let us first identify opportunities that we can make use

of. Although there will be one slot free-up every few

milliseconds on average [16], the progress requirement does

not change in this time scale. For example, Fig. 3 shows

the intervals between two consecutive progress requirement

changes. The scheduling plan is calculated based on Yahoo!

data [19] using resource capped Highest Level First intra-

workflow job prioritization algorithm. From the figure, we

can see that all intervals incurred from this data set are

larger than 10 milliseconds. More than 99% intervals are

even larger than 10 seconds. That is to say, most of the time

Fi(ttd) and Fi(ttd−ε) will be the same value, where ε is the

time difference between these two slot free-up events. The

progress requirements list provides the information of the

remaining time until next progress requirement change (ct).
Hence, the scheduler can keep an ordered list of workflows

based on ct, and only walks through the first few elements

with ct smaller than ε.

After determining the right order of workflows, the sched-

uler picks the one with the highest priority (say Wi),

schedules its tasks, calculates its new true progress ρi,
updates its priority, and inserts it back into the workflow

ordered list. Based on the semantics of this operation, only
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Fig. 2. Benefits of Resource Capped Scheduling Plan

the workflow with the highest priority needs to be deleted,

and inserted again. Therefore, the scheduler calls for one

efficient data structure to store the ct list, and another one

to store the workflow priority list. Requirements on the two

data structures are the same: fast deletion and insertion.

Balanced Search Tree (BST) is a valid solution, but is not the

best because BST does not make use of the fact that more

than half of the deletions only happen to the head element of

the list. Below, we present the Double Skip List (DSL) algo-

rithm, that supports O(1) head deletions, O(logn) arbitrary

insertions, and O(log n) arbitrary deletions.

The Double Skip List algorithm is inspired by the Skip

List algorithm [20, 21]. It uses two correlated deterministic

skip lists to serve the workflow ordering and updating

purposes. Deterministic skip list is a data structure that

allows worst-case O(logn) searches, O(logn) insertions,

and O(log n) deletions on an ordered sequence of elements.

Please refer to the original paper [21] for more algorithm

details.

Fig. 4 illustrates an example of the Double Skip List

algorithm. Assume there are 8 workflows queuing in the

scheduler. We specifically care about two properties of these

workflows: 1) the time of the next progress requirement

increase event (Next Event Time), and 2) their current

priority value. The graph on the right side shows how those

workflows are arranged into ct list and priority list based on

their property values. When a slot free-up event occurs, the

scheduler first iterates from the head of the ct list until it

encounters the workflow whose next progress requirement

change event has not fired yet. For each workflow visited

during the iteration, the algorithm calculates its new progress

requirement, and updates its position in the priority list

accordingly. For example, suppose one slot frees up at time

3 with the DSL status shown in Fig. 4. Then, the algorithm

behaves as follows: (a) The algorithm first accesses the head

node of the ct list. (b) Following the link, it arrives at the

node representing the same workflow in the priority list, and

updates its priority according to the scheduling plan (say it

is updated to 0). (c-g) Find the right location to insert the

workflow with its new priority. Assume the workflow’s next

ct is 10. Steps (h-k) insert it into the right position in the ct
list.

Algorithm 2 presents the detailed pseudo code. For work-

flow Wh, Wh.t denotes the absolute time of next progress

requirement change event, Wh.i denotes the corresponding

index of that event in the progress requirement, Wh.p is

its inter-workflow priority, and Fh represents its progress

requirement. For progress requirement Fh, Fh[i].ttd is the

time to deadline of its i’s element, and Fh[i].req the

corresponding progress requirement. Line 4-19 iterates over

the ct list. If the current head workflow in ct has fired one or

more progress requirement change events before the current

time t, its position in both ct list and priority list will be

updated accordingly in line 6-15.

Algorithm 2 Double Skip List
Input: The current double skip list L, current time t.
Output: The task to be scheduled.
1: procedure ASSIGNTASK(L, t)
2: Lct ← the ct list of L
3: Lpri ← the priority list of L
4: while True do /* update ordering of workflows */
5: pick the head workflow Wh from Lct.
6: if Wh.t ≤ t then /* Wh’s progress requirement changes */
7: Lttd ← Lttd \ {Wh}
8: while Dh - Fh[Wh.i].ttd ≤ t do /* go to the latest change */
9: Wh.i ← Wh.i + 1

10: end while
11: Wh.t ← Dh - Fh[Wh.i].ttd /* next change time */
12: Lct ← Lct ∪ {Wh} /* insert back to ct list */
13: Lpri ← Lpri \ {Wh}
14: Wh.p ← Fh[Wh.i - 1].req - ρh /* inter-workflow priority */
15: Lpri ← Lpri ∪ {Wh}
16: else
17: break
18: end if
19: end while
20: pick the head workflow Wh from Lpri

21: Lpri ← Lpri \ {Wh}
22: ρh ← ρh + 1; Wh.p ← Wh.p− 1
23: Lpri ← Lpri ∪ {Wh}
24: return next task of Wh

25: end procedure

Complexity Analysis: Let nf denote the number of slots

free-up per unit time in the cluster, and nw denote the

number of workflows queuing on the master node. Assume,

on average, a progress requirement change event fires every l
seconds for one workflow. Then, the ASSIGNTASK method

will be called every 1
nf second. During this time period,

there are at most min{ nw

nf l
, nw} ≤ nw

nf l
workflows firing

progress requirement change event, which is the upper bound
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Fig. 4. Double Skip List Example

of the number of iterations occurs on Line 4 − 19. Each

iteration contains an access operation from the head of the

ct list (Ah), a pair of delete and insert operations at arbitrary

places of the priority list (Da+ Ia), a delete operation from

the head of the ct list (Dh), and an insert operation into an

arbitrary position of the ct list (Ia). After that, the algorithm

schedules the workflow with the highest priority, which

includes a delete operation from the head of the priority

list (Dh) and an insert operation into an arbitrary position

of the priority list. Altogether, the computational complexity

of one ASSIGNTASK call is:

nw

nf l

(
Ah +Da + Ia +Dh + Ia

)
+Dh + Ia

=
nw

nf l
(2O(1) + 3O(lognw)) +O(1) +O(log nw)

=
nw + 1

nf l
O(lognw)

The total scheduling overhead is the complexity of one

ASSIGNTASK invocation times the number of invocation

in one second, which is 1
lO(nw lognw). According to the

statistics shown in Fig. 3, l is larger than 10 seconds. There-

fore, the asymptotic scheduling overhead is O(nw lognw).
Therefore, the scheduler scales up to tens of thousands of

queuing workflows. In contrast, the naive algorithm causes

O(nw lognw) overhead for each ASSIGNTASK call, and

hence results in O(nfnw lognw) computational complexity.

V. IMPLEMENTATION

A. Experiments Setup

We implemented WOHA by adding 9,292 lines of

code into Hadoop-1.2.1. The revision included adding

the org.apache.hadoop.mapred.workflow package as well as

modifying JobTracker, JobInProgress, TaskTrackerManager,

JobConf, JobStatus, etc. The experiments were carried out

on the UIUC Green Server Farm cluster [22–25]. The cluster

consists of 40 Dell PowerEdge R210 and 40 Dell PowerEdge

R620 servers. Each server was configured to run 2 map slots

and 1 reduce slot.

Evaluations are based on both synthetic data and job traces

from Yahoo! WebScope [19]. The data trace contains the

detailed information of more than 4000 jobs on 2012 March

7th. Fig. 5 (a) and Fig. 6 (a) show the cdf of task execution

duration and task number respectively: the former shows

that most mappers finish between 10s to 100s, while more

than half of the reducers take more than 100s and about 10%

reducers even take more than 1000s; the latter illustrates that

about 30% jobs have more than 100 mappers, while more

than 60% jobs have less than 10 reducers. In Fig. 5 (b),

we calculate the average mapper duration and the average

reducer duration within each job, then plot the ratio of two

durations. Fig. 6 (b) shows the ratio of the mapper number

over the reducer number in the same job. The statistics meet

the common belief that mappers usually outnumber reducers,

while reducers take much longer to finish. These statistics

acted as guidelines when we generated synthetic jobs.

For demonstration purpose, we constructed a small scale

(33 jobs) workflow topology as shown in Fig. 7. Three

workflows with the same topology (Fig. 7) are submitted at

time 0, 5 minute, and 10 minute respectively. Their relative

deadlines (Di −Ri) are set to 80 minutes, 70 minutes, and

60 minutes. That is to say, the third workflow has the latest

release time, and earliest deadline. In order to show WOHA’s

performance in real-world cases, larger workflow topologies

(180 jobs) from Yahoo! cluster were also used in evaluations.

B. Porting Existing Schedulers

Since WOHA is the first system that schedules workflow

over Hadoop cluster with deadline considerations, there is

no directly comparable counterparts. Therefore, we also

ported several state-of-the-art Hadoop job scheduling behav-

iors onto workflows by implementing a WOHA Workflow

Scheduler for each of the following three policies.

Oozie with FIFO job scheduler (FIFO): This is the default

behavior when putting Oozie and Hadoop together. If all

predecessors are completed, Oozie will submit the job to

Hadoop JobTracker. The default JobQueueTaskScheduler of

Hadoop maintains an ordered list of jobs according to their

submission times. To assign a task to an idle slot, the

scheduler goes through the ordered list one by one until it

finds an available task to schedule. Oozie offers a rich set of

configuration options, including the maximum concurrently

running jobs within the same workflow, workflow recurrence

frequency, etc. However, those are all static configurations

set independently with the scheduling progress.
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Oozie with Fair job scheduler (Fair): This workflow

scheduler mimics the behavior of Facebook FairScheduler,

under which all running jobs evenly share the resources of

the Hadoop cluster in a work conserving way.

Earliest Deadline First job scheduler (EDF): Earliest

Deadline First scheduler is one of the most famous sched-

ulers from the realtime community [26]. It assigns the

highest priority to the job with the earliest deadline. Verma

et al. [10] first introduced the EDF scheduler to Hadoop job

scheduling. We ported EDF by assigning highest priority to

the workflow with the earliest deadline.

C. Job Priorities

Progress-based scheduling takes job priorities within each

workflow as input, and generates the scheduling plan accord-

ingly. There are a large number of existing job prioritizing

algorithms for workflows. In the evaluation, we cover three

of them.

Highest Level First (HLF): With HLF, jobs are arranged

into levels, those with no dependents are assigned to level

0. For jobs on level i, all its dependents must be on levels

smaller than i, and at least one of its dependent is on level

i − 1. Then, the job at higher level gets higher priority.

Ties are broken by using their job IDs in the workflow.

The intuition behind HLF is that, jobs at higher levels have

longer sequences of subsequent jobs following it. It assumes

longer sequence of jobs takes longer time to finish, and

hence deserves higher priority.

Longest Path First (LPF): LPF is an improved solution

compared to HLF. Besides the number of jobs on the path,

it also considers the length of each job. In the evaluation,

the job length is defined as the sum of estimated map task

execution time and estimated reduce task execution time.

Maximum Parallelism First (MPF): Under MPF, the job

with maximum dependents gets the highest priority. During

the scheduling procedure, a workflow has to satisfy two

conditions to schedule a task on the available slot: 1) it

currently owns the highest workflow priority, and 2) it has

available tasks to schedule. MPF aims at reducing the chance

of violating the second condition.

VI. EVALUATION

In this section, we evaluate WOHA with both synthetic

data and real-world traces from Yahoo!. Synthetic data are

used to demonstrate detailed scheduler characteristics and

behaviors.

A. Meet Deadlines

Let us first take a look at WOHA’s performance at meeting

deadlines, as this is one of the major objectives of this paper.

The experiment employs the workflow topology illustrated

in Fig. 7. Three workflows are submitted consecutively with

5 minute time intervals. Their relative deadlines are set to

80 minutes, 70 minutes, and 60 minutes respectively (i.e.,
workflows with larger release time have to meet earlier

deadline). Experiments are carried out on a 32-slave Hadoop

cluster. Each slave offers two map slots, and one reduce

slot. This small scale setup is also used later to explain the

behavior of different schedulers in Section VI-C.
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Fig. 11 shows workspans of three workflows under six

different schedulers. Among the schedulers, EDF, FIFO,

and Fair are ported from existing solutions on scheduling

Hadoop jobs, while the other three combine WOHA with

workflow scheduling algorithms from the realtime commu-

nity. In the figure, the X axis marks workflow IDs, and

the Y axis shows their workspan values. Fair scheduler

behaves the worst compared to others, as each workflow
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gets fair share of the cluster resource regardless of their

deadlines. The EDF scheduler favors the third workflow,

since it has the earliest deadline. As a result, W-3 finishes far

before its deadline, while the other two workflows violate

their deadlines. FIFO completes W-1 20 minutes ahead of

the requirement. However, it creates huge tardiness on the

third workflow. In contrast, all three experiments using the

WOHA framework satisfy their deadlines. As a side benefit,

WOHA also increases the cluster utilization as shown in Fig.

12.
The next set of experiments apply the same set of sched-

ulers to data traces from Yahoo!. The data set contains 180

jobs arranged into 61 workflows, among which 15 contains

only single job. The largest workflow contains only 12 jobs.

There are much larger ones running in their cluster for user

log analysis purposes. However, those workflow configura-

tions are not available to authors of this paper. Small scale

workflows actually bias against WOHA, since the topologies

are too simple to show benefits of applying smart workflow

analysis. In the evaluation, we remove workflows containing

only single job to even the bias to some degree. Fig. 8

shows the ratio of deadline violation number over the total

number of workflows. The X axis shows the cluster size,

where “200m-200r” means the cluster contains 200 map

slots and 200 reduce slots. The two widely used Hadoop job

schedulers (FIFO, and Fair) behave terribly in meeting dead-

lines. When the cluster contains more resources, EDF and

WOHA schedulers result in similar performance. However,

when the amount of resource shrinks, WOHA with HLF

and LPF start to outperform the EDF scheduler. When the

cluster offers even less resources, their performance starts to

merge again. This behavior agrees with the intuition. If the

cluster offers more than adequate resources, all active jobs

get enough resources to execute their tasks. On the other

hand, if the cluster contains a very limited amount of slots,

it will be impossible for workflows to meet their deadlines.

Hence, the largest differences are incurred when the amount

of resources are less than adequate but more than scarce.
Fig. 9 and Fig. 10 present maximum tardiness and total

tardiness of all workflows. Although EDF violates more

deadlines, its total tardiness is very close to WOHA sched-

ulers’ outcomes. Sometimes (“280m-280r”), EDF’s total

tardiness is even less. Please note, reduce the tardiness is

not an objective of this paper. Evaluations on tardiness again

show that EDF does not allocate tardiness clever enough to

meet more deadlines, which agrees with results shown in

Fig. 11.

B. Scalability

The second major concern is the scalability of WOHA.

It has to guarantee that new components added to Hadoop

do not restrict the deployment size of the system. In this

section, we specifically evaluate the scheduler throughput

and the progress plan size of WOHA.
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Fig. 13 (a) shows the number of ASSIGNTASK calls that

can be made within one second (throughput) against differ-

ent running workflow queue lengths. The naive solution that

updates all workflows priority and reorders accordingly them

cannot finish 2 invocations when the queue size increases to

10,000. In Section IV-B, in order to honor the considerable

amount of head element access, we designed the Double

Skip List (DSL) algorithm, rather than combining two

Binary Search Trees (BST). Fig. 13 (a) clearly shows the

benefits.

Fig. 13 (b) illustrates the size of scheduling plans when

using the progress-based scheduling. This is an important

metric, as the scheduling plan consumes both network and

memory resources on the master node. It has to be small

enough, even when the workflow is large. We feed Yahoo!

data and different job prioritization algorithms into the

progress requirement list generation algorithm as shown

in Algorithm 1. Even when the workflow contains more
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than 1400 tasks, the scheduling plan only grows to 7 KB.

Under most cases, it stays within 2 KB. Hence, we can

conclude that the scheduling plan approach adds negligible

communication and storage overhead to the master node.

C. Scheduler Behaviors

Showing only the workspan information offers little for

understanding the behavior of different schedulers. In this

section, we dive into the detailed slot allocation under

different workflow schedulers and analyze the cause of

scheduling outcomes. This information will help people to

design better schedulers for Hadoop workflows.

Fig. 14 - 19 illustrate slot allocation status of the six

experiments used in Fig. 11. The workflow with earlier

release time is shaded with darker color. We keep the

scale small for demonstration purpose. Rectangles empha-

size those spots that convey the characteristics of schedulers.

With the FIFO scheduler as shown in Fig. 14, W1 and

W2 win every resource contention over W3. As shown in

red rectangles, even if W3 only requires little resource to

activate more dependent jobs, it has to wait until W1 and

W3 finish all their computation requirements. In contrast, in

Fig. 19, WOHA with MPF scheduling plan makes room

for W3 during slot contentions if W3 falls too far from

its plan, which activates W3’s subsequent jobs in time and

significantly reduces its workspan. Same behavior happens

to EDF in the reversed manner. As highlighted on the reduce

slot allocation graph of EDF, W1 and W1 have only small

resource demand around the 900 second. Finishing them

in time will fill up the big gap from 900 second to 1600

second on the map graph. However, EDF’s pure deadline-

based priority assignment prevents that from happening.

The FairScheduler is used in Facebook’s Hadoop cluster

with the purpose of finishing small jobs faster. Nevertheless,

it is a terrible scheduler in terms of meeting deadlines.

Fair sharing resources just prevents every workflow from

finishing in time. Different from the above three scheduler,

WOHA dynamically assigns priorities to workflows based

on their progresses. No workflow dominates others during

the entire execution. Each workflow only takes adequate

resources to keep up with their scheduling plan. Fig. 17-19

also show that the scheduling plan itself significantly affects

the resource allocation among workflows. An interesting

future direction will be to study what is the best we can

do under WOHA framework to achieve different workflow

scheduling objectives.

VII. RELATED WORK

As WOHA is the first framework that schedules Hadoop

workflows with deadlines, there is no directly comparable

counterparts. However, plenty of efforts have been spent on

Hadoop job scheduling and multi-core workflow scheduling.

Along with broad deployments of Hadoop, many solutions

are proposed to improve its scheduling performance. Delay

scheduling [4] allows tasks to wait for a certain amount

of time, which increases the chance of encountering a slot

with the task data locally stored on its hard drive. Chang

et al. model MapReduce job scheduling as an optimization

problem, and design an approximation algorithm within a

factor of 3 compared to the optimal solution. EDF-based

scheduling algorithms for Hadoop have also been studied

in [10], where simulations confirm that simple scheduling

heuristics considerably improve the performance in terms of

meeting job deadlines. However, all those solutions apply to

job scheduling rather than workflow scheduling. A workflow

may contain large numbers of Hadoop jobs with complex

interdependent relationships. Above Hadoop job schedulers

help little to prioritize workflows or jobs within the same

workflow. Oozie emerges [12–14] as a generic hadoop

workflow management tool. It submits workflow’s jobs at the

right time based on predefined dependency topologies and

recurrence requirements. Nevertheless, Oozie does not share

any workflow configuration information with the Hadoop

cluster. From the Hadoop’s perspective, all submissions

made by Oozie are independent, which may lead to terrible

deadline violation ratios.

Workflow scheduling on multi-core systems also attracts

increasing interests from the real-time community. Saifullah

et al. [27] first arrange workflow into stages, and then pro-

pose a job decomposition method that breaks each parallel

job into a set of sequential jobs. If the input workflow

is schedulable under the optimal algorithm, their solution

is guaranteed to satisfy the deadline with 4X (speedup

bound) speed processors. Baruah et al. [28] further prove

that EDF can achieve 2X speedup bound for recurrent

workflows. Delay Composition Algebra [29] deals with a

special case of the workflow model where each job has

at most one predecessor and at most one dependent. The

solution utilizes a set of operators to transform distributed

real-time task systems into single-resource ones that preserve

schedulability properties of original systems. All those solu-

tions require global knowledge when processing workflows.

Unfortunately, the Hadoop master node, as the single entity

with the global view, suffers from a very limited amount of

computational and storage resources. Hence, above solutions

are not applicable to the Hadoop architecture.

VIII. CONCLUSION

This paper presents the design, implementation, and eval-

uation of WOHA, a framework specifically designed to

schedule Hadoop workflows with deadlines. The Hadoop

architecture introduces unique challenges to deadline-aware

workflow scheduling. Due to the limited amount of re-

sources, the node with global knowledge (the master node)

is not able to carry out any expensive workflow analysis

algorithms, while all remaining nodes in the system only

has incomplete information of the cluster status. To tackle
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Fig. 14. FIFO
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Fig. 15. EDF
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Fig. 16. Fair
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Fig. 17. WOHA-LPF
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Fig. 18. WOHA-HLF
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Fig. 19. WOHA-MPF

this problem, WOHA allows client node to locally generate

scheduling plans of workflows. Those plans are later sent

to the master node together with workflow configuration

information. On the master node, efficient algorithms are

designed to effectively follow received scheduling plans.

Our evaluations confirm that WOHA outperforms existing

Hadoop job schedulers in terms of meeting workflow dead-

lines, and scales up to tens of thousands of concurrent

workflows.
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