
This paper is included in the Proceedings of the 
11th International Conference on Autonomic Computing (ICAC ’14).

June 18–20, 2014 • Philadelphia, PA

ISBN 978-1-931971-11-9

Open access to the Proceedings of the 
11th International Conference on  
Autonomic Computing (ICAC ’14) 

is sponsored by USENIX.

WattValet: Heterogenous Energy Storage 
Management in Data Centers for  

Improved Power Capping
Shen Li, Shaohan Hu, Shiguang Wang, Siyu Gu, Chenji Pan, and Tarek Abdelzaher, 

University of Illinois at Urbana–Champaign

https://www.usenix.org/conference/icac14/technical-sessions/presentation/li_shen



USENIX Association  11th International Conference on Autonomic Computing 273

WattValet: Heterogenous Energy Storage Management
in Data Centers for Improved Power Capping
Shen Li, Shaohan Hu, Shiguang Wang, Siyu Gu, Chenji Pan, Tarek Abdelzaher

University of Illinois at Urbana-Champaign

{shenli3, shu17, swang83, siyugu2, cpan8, zaher}@illinois.edu

Abstract
This paper presents WattValet, an efficient solution to
reduce data center peak power consumption by using
heterogeneous energy storage. We henceforth call an
energy storage device, a battery, with the understand-
ing that the discussion applies to other devices as well
such as pumped hydraulic and thermal systems. Previ-
ous work on energy storage management in data centers
often ignores or underestimates their degree of hetero-
geneity. Even if batteries used in a data center are of the
same model and purchased at the same time, differences
in storing temperature and humidity, as well as discharg-
ing cycles and depth, gradually drive their characteristics
apart. We show that differences in battery characteristics,
such as discharge rates, if not fully accounted for, can
lead to significantly suboptimal power caps. A new al-
gorithm, called WattValet, is described that reduces peak
power consumption by efficiently exploiting heterogene-
ity. Evaluation using Wikipedia traces shows that the
power cap generated by WattValet is within 2% of the
optimal solution, whereas WattValet finishes the compu-
tation orders of magnitude faster than the optimal solu-
tion even in small-scale experiments.

1 Introduction
With increased datacenter power consumption and grow-
ing concerns for sustainability of large-scale computing
systems, reducing datacenter power becomes an increas-
ingly important problem [9, 5, 17, 18, 4, 6]. Much re-
cent work in both industry and academia addressed the
challenge of shaving off power peaks using energy stor-
age devices (e.g., batteries) [7, 10, 16, 14]. Early work
considered smarter charging and discharging strategies
for energy storage systems [14, 16, 7, 2] to achieve im-
proved power capping. However, they took into account
only homogeneous environments, where all batteries are
the same [14], or allowed for a very limited heterogene-
ity [7, 2]. In reality, even in homogeneous systems, bat-
tery characteristics gradually deviate from each other due
to different storing temperatures, charging/discharging
cycles, aging, and other factors. Hence, heterogeneity
has to be considered explicitly.

Our work leverages the observation that load and
power demand in data centers often follow clearly re-
peated patterns [3, 14, 15]. That is to say, by extracting

This work was sponsored in part by the National Science Founda-
tion under grants CNS 13-20209, CNS 13-02563, CNS 10-35736 and
CNS 09-58314.

patterns from historical traces, future power demand can
be predicted. In principle, given a power demand pattern
and battery characteristics as input parameters, the opti-
mal power capping problem can be formulated as a lin-
ear programming problem and solved using an LP solver.
However, if the system contains hundreds of batteries,
and thousands of time slots, LP solutions cannot guar-
antee to generate optimal results in a reasonable amount
of time. For example, Wikipedia’s trace shows a weekly
pattern. If it is cut into 10-minute time slots, there will
be more than 1000 time slots in the power demand pat-
tern. Hence, clever approximations must be developed
that significantly reduce computational overhead without
tangibly degrading solution quality, which motivates this
work.

The paper describes WattValet, an efficient solution
to reduce datacenter peak power consumption using
heterogeneous energy storage. WattValet takes a pre-
dicted power demand pattern and a set of heteroge-
neous batteries as input. It searches for a battery charg-
ing/discharging schedule that minimizes the power con-
sumption peak. The search space is very large as it is
a function of all variables indicating the amount of en-
ergy charged into/discharged from each battery at each
time slot, and the starting time slot in the cyclic power
demand pattern. The contribution of the paper lies in
developing efficient heuristics that take into account not
only battery capacity and efficiency but also maximum
charge and discharge rates, leading to an improved power
cap compared to prior art.Evaluation results show that
the power cap achieved by WattValet is only 2% higher
than the optimal value in the worst case, which signifi-
cantly outperforms state-of-the-art solutions.

The remainder of this paper is organized as follows.
The system model is described in Section 2. Section 3
elaborates the design of WattValet. Our solution is com-
pared to the optimal solution as well as two others from
recent literature in Section 4. Section 5 briefly summa-
rizes related work. We conclude this paper in Section 6.

2 System Model
Datacenter workload often follows a clear periodic pat-
tern. As an example, Figure 1 plots the English
Wikipedia’s workload in 2008 [15], presenting an obvi-
ous weekly pattern. Therefore, future workload can be
predicted with accuracy from historical traces. Let P de-
note the power demand pattern. Hence, P can be repre-
sented by a repeating time series of period, T , composed



274 11th International Conference on Autonomic Computing USENIX Association

of successive slots, such that the average demand in slot
k is denoted by P [k], where k = 1, 2, . . . , T .

Without an energy storage capability, the power cap
P c needs to be greater than the peak power con-
sumption in the demand time series (i.e., P c ≥
max {P [k]|k = 1, 2, . . . , T}). The presence of batter-
ies can lower the power cap by charging during power
demand vallies and discharging during power demand
spikes.

Assume the datacenter is equipped with a centralized
pool of B batteries [2] that serves the entire datacenter.
We model each battery b with four parameters: max-
imum charging rate rcb , maximum discharging rate rdb ,
energy storage capacity cb, and efficiency ηb. The max-
imum charging (discharging) rate represents the max-
imum amount of energy the battery can charge (dis-
charge) in one time slot. The parameter cb denotes the
maximum amount of energy that battery b can store at
any time. For each unit of energy spent on charging bat-
tery b, only ηb goes into the battery, which represents the
battery efficiency. Please note, even if all batteries are of
the same model, with the passage of time, their charac-
teristics will gradually deviate due to differences in the
environment (e.g., temperature, humidity, etc.) and us-
age (e.g., charging/discharging cycles and depth) [8].

We further assume that the batteries are equipped with
on/off switches to connect or disconnect them for charg-
ing or for discharging purposes [2]. When a battery is
connected it can charge or discharge at a rate no larger
than its maximum charge or discharge rate. When a bat-
tery is disconnected it does not participate in charging or
discharging.

The objective of this paper is to determine how much
each battery should charge or discharge in each time slot
such that the power cap is minimized, while being able
to meet the power demand in every time slot. Let ub[k]
represent the amount of energy that battery b is supplied
(or, if negative, discharged) in time slot k. Hence, the
solution sought in the paper is to compute ub[k] for all b
and k, such that the demand is met and the power cap,
P c, is minimized. This can be modeled as a linear pro-
gramming problem as shown below:

min P c

s.t. ∀k : −rdb ≤ ub[k] ≤ rcb
∀k : xb[k] + ub[k] ≥ 0

∀k :
B∑

b=1

ub[k]− P c + P [k] ≤ 0

xb[0] = 0, ∀k : xb[k] ≤ cb

∀k, P [k] > P c : xb[k] +
ub[k]

ηb
= xb[k + 1]

∀k, P [k] ≤ P c : xb[k] + ub[k] = xb[k + 1]

(1)

where xb[k] is the amount of energy stored in battery b
at time slot k. The first constraint guarantees that charg-
ing and discharging rates are not violated. The second
constraint states that no battery can discharge more en-
ergy than it stores. The power balance equation at a

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
200

400

600

800

1000

Days

R
eq

ue
st

 p
er

 S
ec

on
d

Figure 1: Wikipedia Workload Trace in 2008

given time slot is described with the third constraint. The
fourth constraint enforces battery capacity. Batteries are
initially empty (xb[0] = 0). The last two constraints de-
scribe how the amount of energy stored in a battery is
updated when the battery charges or discharges, respec-
tively.1

The above linear programming model contains a large
number of variables and constraints. For example, if
the data center is equipped with 1000 batteries and the
weekly pattern is divided into 10-minute slots, this model
will generate more than 2 million variables and more
than 4 million constraints. LP solutions cannot guarantee
to finish the computation in a reasonable amount of time.
Hence, we seek an approximation with low worst-case
asymptotic complexity.

3 System Design
The original problem of minimizing the power cap can
be transformed into a sequence of feasibility check prob-
lems. Each feasibility check needs to determine whether
the predicted power demand time-series can be met for
a given power cap P c. A binary search can then find
the minimum feasible power cap. Section 3.1 describes
a feasibility check algorithm for a specified power de-
mand sequence. It depends on which slot is considered
to be the beginning of the sequence. Since the demand is
cyclic, of period T , there are T candidate starting slots.
Section 3.2 describes how to efficiently consider all pos-
sible start slots to find the best power cap overall.

3.1 Feasibility Check for a Given Power Demand
Sequence

Let us call a time slot, a charging time slot if its average
power demand is smaller than the power cap P c. Other-
wise, it is a discharging time slot. A set of consecutive
charging (discharging) time slots is defined as a charging
(discharging) phase. Hence, a power cap naturally di-
vides a power demand sequence into alternating charging
and discharging phases. We can refer to the jth charging
phase as set, CPj , and to the ith discharging phase as
set, DPi. As graphed in Figure 2, solid green curves
represent the charging phases and dashed red curves rep-
resent the discharging phases. Figure 2 also suggests that

1Note that, in principle, battery inefficiency affects both charging
and discharging. Without loss of generality, we attribute all loss to
charging, while modeling discharge as lossless. This does not change
the result as long as capacity is reduced by discharge efficiency.

2



USENIX Association  11th International Conference on Autonomic Computing 275

datacenter power demand does not change dramatically
within small time intervals (e.g., 5 minutes). Therefore,
using the average power demand in a time slot, in lieu
of the instantaneous demand curve is a good approxima-
tion.

� � � �� �� �� �� �� �� �� �� �� ��
��

��

��

���

�����������

�
�
��
��
��

	
��
�
�
� �
	���
�����
����	��
	��

����	�������
�

Figure 2: Candidates

� � � �

��� ���

�������
�������

�������
�������

Figure 3: Example

Our algorithm alternates charging and discharging.
Two main intuitions guide the design:

• Intuition 1: Minimize lost energy: Lost energy is
energy that is wasted due to battery inefficiency.
To minimize lost energy, charging should exploit
more efficient batteries first. By exploiting them, we
mean (i) charge them first and (ii) discharge them
first, in order to incur minimum loss. Other less ef-
ficient batteries should be used only when the more
efficient ones do not suffice.

• Intuition 2: Minimize locked energy: Locked en-
ergy is energy that is charged but not discharged
within a given cycle. Specifically, the discharge rate
of a battery limits the total amount of energy that it
can discharge in different discharge phases. There
is never a need to charge a battery beyond the max-
imum amount it can discharge, as such energy will
in effect be “locked” and not utilized.

Note that, simple greedy algorithms that exploit the
most efficient batteries first can result in some amount of
locked energy, for example, if the maximum discharge
rate of these batteries was low. In contrast, by putting
a limit on how much each battery is allowed to charge
(based on the amount it can ever discharge), we are able
to outperform state of the greedy solutions. Below, we
describe the algorithm in more detail.

3.1.1 Spatial Energy Allocation According to Intu-
ition 1, we order batteries in decreasing order of effi-
ciency, such that we consider the most efficient battery
first. Let us number them 1, ..., B, such that ηb ≥ ηb+1.
For each battery, we need to determine how much to
charge or discharge it in each time slot.

According to Intuition 2, we need to limit battery
charging to the maximum amount that a battery can dis-
charge. To compute the latter, it is first useful to define
the notion of energy shortfall in slots, k, where demand
P [k] exceeds the power cap, P c. The initial energy short-
fall in a discharging slot k, denoted P0[k], is given by the
difference between the demand and the power cap. After

batteries 1, ..., b ≤ B have been allocated, the remaining
shortfall becomes Pb[k]. Hence:

Pb
[k] = Pb−1

[k] + ub[k] (2)

P0
[k] = P [k] − P

c

Let us now compute the maximum amount of energy
a battery can discharge in a set of time slots, DPi, be-
longing to the ith discharging phase. Let mdb[i] be the
maximum amount of energy that battery b may discharge
in that phase, when the battery starts full. The amount
can be computed as:

md[i] = min

⎧⎨
⎩cb,

�
k∈DPi

min
�
Pb

[k], r
d
b

�
⎫⎬
⎭ (3)

The equation states that the maximum energy discharged
in each time slot by battery b is the minimum of the re-
maining shortfall in that time slot, Pb[k], and the max-
imum discharge rate, rdb . The maximum discharge over
the entire phase is then the minimum of the discharge
sum over all time slots, and battery capacity, cb.

Next, we extend the result to multiple discharge
phases. First, we define mcb[i][j] as the maximum
amount of energy that battery b may carry from charg-
ing phase j (CPj) to discharging phase i (DPi), j ≤ i,
which is bounded by the summation of the amount of
energy it may charge in each time slot and the remain-
ing capacity. For mcb[i][i], the remaining capacity is
the battery capacity cb, as battery b has not been used in
charging phase i before and there is no phases between
charging and discharging phase i:

mcb[i][i] = min

⎧⎨
⎩cb,

�
k∈CPi

min
�
−Pb

[k], r
c
b

�
⎫⎬
⎭ (4)

where we extend the definition of shortfall Pb[k] to the
charging phases to denote the surplus energy. Hence,
meb[i][i] = min (mdb[i],mcb[i][i]) is the amount of en-
ergy battery b may carry from CPi to DPi. It becomes
more complex if the charging phase j and discharging
phase i are not consecutive (i.e., i > j). Because, 1) bat-
tery b has been used to carry energy from CPj� to DPi� ,
for all i� and j� such that j ≤ j� ≤ i� ≤ i, occupying a
portion of its capacity, 2) as battery b has been used in
CPj before when exploiting DPi� , j ≤ i� < i, we need
to deduct ub[k] from its charging rate rcb in each time slot
k ∈ CPj , resulting in:

c
�
b = cb − max

⎧⎨
⎩ max

j≤i�≤i

i��

j�=1

meb[i
�
][j

�
]

⎫⎬
⎭ (5)

mcb[i][j] = min

⎧⎨
⎩c

�
b,

�
k∈CPj

min
�
−Pd

[k], r
c
b − ub[k]

�
⎫⎬
⎭ (6)

where
∑i�

j�=1 meb[i
�][j�] in Equation (5) is the total

energy battery b has discharged in DPi� . Although
this energy has been depleted in DPj� , only cb −∑i�

j�=1 meb[i
�][j�] capacity can be used to carry energy

3



276 11th International Conference on Autonomic Computing USENIX Association

from charging phases before j� to discharging phases af-
ter j�. To calculate the remaining capacity for CPj and
DPi, all discharging phases between j and i have to be
accounted, leading to the remaining capacity c�b.

The above analysis is the foundation of our algorithm,
called the Discharge-bounded Highest Efficiency First
(DHEF). The pseudo code is shown in Algorithm 1.
The loop from Line 3 to 18 iterates over all discharg-
ing phases, where |DP | denoting the total number of
discharging phases. For each discharging phase, the al-
gorithm iterates over all batteries according to the de-
scending order of efficiency to carry energy from charg-
ing phases to the discharging phase. After calculating
meb[i][j], it calls a function, EALLOC, to allocate the en-
ergy into each time slot in charging phase j. It computes
ub[k] such that shortfall is updated correctly, using Equa-
tion (2). If the ith discharging phase cannot be satisfied,
line 15 exits the execution with return value null. Other-
wise, it proceeds to meet all discharging requirement and
return the battery scheduling plan in line 19.

Algorithm 1 Discharge-Bounded Highest Efficiency
First
Require: Power demand sequence P , battery set B
Ensure: Battery scheduling plan U
1: procedure DHEF(P , B)
2: U ← 2D array of size |B| × |P|
3: for i ← 1 ∼ |DP | do
4: for b ← 1 ∼ |B| do
5: Σ ← 0
6: calculate mdb[i]
7: for j ← i ∼ 1 do
8: calculate mcb[i][j]
9: meb[i][j]← min(mdb[i] - Σ, mcb[i][j])

10: Σ ← Σ + meb[i][j]
11: P,U ←EALLOC(P, CPj ,B[b],meb[i][j],U)
12: end for
13: P,U ←EALLOC(P, DPi,B[b],Σ,U)
14: end for
15: if DPi is not satisfied then
16: return null
17: end if
18: end for
19: return U
20: end procedure

Algorithm Analysis: The first 2 level loops of DHEF
enumerate over all discharging phases and all batteries
which contribute O(T ) and O(B) computational com-
plexity in the worst case. For each discharging phase,
DHEF checks all charging phases prior to it, which in-
duces at most O(T ) computational complexity. Hence,
the worst case computational complexity is O(T 2B).

It remains to show how to compute ub[k] such that
shortfall is updated correctly, using Equation (2), as we
consider each battery. This is described below.

3.1.2 EALLOC: Allocating One Battery The prob-
lem solved in function EALLOC is the following: Given
an initial amount of available energy, xb[k] in battery, b,

and given a discharge phase, compute the energy alloca-
tion ub[k] for battery b for each slot k in the discharge
phase.

To appreciate why some allocations are better than
others, consider Figure 3. Assume that two batteries, b1
and b2, carry 8 and 6 units of energy respectively. Their
discharge rates are 8 and 3. The batteries are discharged
into two time slots, with a shorfall of 8 and 6 units of
energy respectively. In Figure 3 (a), b1 is used exclu-
sively in time slot 1. Hence, it is depleted and cannot
contribute to time slot 2. The discharge rate constraint of
b2 (namely, 3) falls short of supplying the needed power
in slot 2 (namely, 6). Consequently, the schedule fails
even though there is enough battery capacity to cover the
shortfall. In contrast, Figure 3(b) is a solution where the
shortfall is covered in all time slots. Specifically, in the
first time slot, both batteries contribute (5 and 3 units of
energy), leaving 3 units of energy in each battery. This
is enough to cover the remaining shortfall in the second
time slot.

The example demonstrates that one needs to be mind-
ful of not only capacity but also the discharge constraints
of batteries, as such constraints, if exceeded, will prevent
covering the shortfall. Note that, these rate constraints
apply independently in each time slot. Hence, given a
set of undepleted batteries, the maximum shortfall slot
determines the feasibility of meeting discharge rate con-
straints. If the shortfall in that slot is higher than the sum
of the rate constraints, the allocation is infeasible.

The above observation suggests a simple solution to
the problem of battery energy allocation; namely, allo-
cate the energy across time slots such that the maximum
remaining shortfall is minimized, hence maximally re-
ducing the odds that rate constraints of remaining bat-
teries will preclude filling the shortfall. The algorithm
maintains a variable bar (the level to which to reduce the
remaining shortfall). As bar is reduced, slots that reach
the maximum discharge rate are “closed”. Shortfall in
the remaining slots continues to be reduced to the same
level (bar) until all capacity of battery, b, is exhausted.
The resulting allocation value, ub[k], is then returned for
each slot, k, as as well as the updated shortfall, Pb[k].

3.2 Sequence Selection
Section 3.1 introduced algorithms to check feasibility
under a given power demand sequence. Given that the
power demand pattern is cyclic, one has to decide on
a start time for the precending algorithm to be applied.
Naively checking all possible start slots multiplies the
computational complexity by another O(T ) term, re-
sulting in anO(T 3B) overall computational complexity,
which is undesirable. Below, we describe how to de-
scribe a more efficient way of considering all possible
start times.

4



USENIX Association  11th International Conference on Autonomic Computing 277

The curve in Figure 2 shows a power demand pattern
generated using Wikipedia’s workload trace. The dashed
horizontal line represents an attempting power cap P c.
As the power demand pattern is cyclic, fixing a starting
instance is equivalent to selecting a sequence from the
pattern. Let Dl

s = (Ps, Ps+1, ..., Ps+l−1) denote the
power demand sequence starting from time instance s
with length l. As batteries are all empty in the very be-
ginning, feasible sequence does not start with discharg-
ing time slots. We can also exclude time slot k if k − 1
is a charging time slot. Because, if P c is feasible for
Dl

s, the same set of batteries is also able to satisfy Dl
s−1

under P c. Therefore, remaining power sequence candi-
dates start with intersection points of the power cap P c

and the power demand pattern. At last, we remove inter-
section points with positive derivatives on the power pat-
tern curve, as no energy can be discharged from empty
battery to meet the shortfall in discharging slot Ps+1.
Hence, the feasibility checker only needs to try the in-
tersection points whose derivatives are negative on the
power demand curve, which are highlighted with circles
in Figure 2.

Let C denote the power demand sequence candidate
set. Although |C| is much smaller than |P |, it is still
not efficient enough. As shown in Figure 2, a two day
trace generates 6 candidates with the given power cap. A
one week trace may result in several tens of intersections.
Before diving into refinements, we first discuss the com-
posability of feasibility. Suppose there are two power
demand sequences, Dl1

s1 and Dl2
s2 . Define the sequence

composition operation | as:

Dl1
s1
|Dl2

s2
= (Ps1 , ..., Ps1+l1−1, Ps2 , ..., Ps2+l2−1) (7)

Please note that the operation | is not commutative
(i.e., Dl1

s1 |Dl2
s2 �= Dl2

s2 |Dl1
s1 ). Given feasibility check re-

sults of Dl1
s1 and Dl2

s2 under the same power cap P c, can
we tell whether P c is feasible for Dl1

s1 |Dl2
s2? If P c is in-

feasible on Dl1
s1 , neither will it be feasible for Dl1

s1 |Dl2
s2 ,

as the first l1 time slots in Dl1
s1 |Dl2

s2 violate P c anyway.
If P c is feasible for both Dl1

s1 and Dl2
s2 , it will also be

feasible for Dl1
s1 |Dl2

s2 . Because the first l1 time slots in
Dl1

s1 |Dl2
s2 experience exactly the same situation as Dl1

s1 ,
and the last l2 time slots in Dl1

s1 |Dl2
s2 are no worse than

Dl2
s2 as it may or may not enjoy some leftover energy in

batteries from the first l1 time slots. For the last combina-
tion where P c is feasible for Dl1

s1 and infeasible for Dl2
s2 ,

we cannot tell its feasibility without invoking the fea-
sibility checking algorithm (DHEF). The reason is that
there might be some leftover energy after the first l1 time
slots which may help to meet shortfalls in the last l2 time
slots. Table 1 summaries the results, which we call the
feasibility composition law.

The candidate set C naturally divides the cyclic power
demand pattern into an array of smaller pieces. Please
note, the array is still cyclic, as we do not know the op-

Dl1
s1

feasible feasible infeasible infeasible
Dl2

s2
feasible infeasible feasible infeasible

Dl1
s1

|Dl2
s2

feasible unknown infeasible infeasible

Table 1: Feasibility Composition Law

timal starting time slot yet. Let 1 denote feasible, and 0
denote infeasible. With a given power cap P c, the fea-
sibility checker tests each piece separately and generates
a cyclic 0/1 series. According to feasibility composition
law, compose two feasible or two infeasible pieces does
not change the feasibility. Hence, we merge consecutive
0s into a single 0, and merge consecutive 1s into a sin-
gle 1. Now, we have a new series with alternating 0 and
1. Again, based on the feasibility composition law, com-
pose infeasible piece in front of feasible piece results in
a larger infeasible piece, and the only unknown combi-
nation is (1, 0).

As the cost of evaluating a (1, 0) piece grows quadrat-
ically with its length, it is more efficient to avoid long (1,
0) pieces when possible. Therefore, we propose a greedy
algorithm that only reduces the smallest candidate power
demand piece in each iteration instead of reducing all of
them. An example is shown in Figure 4.

� � � � � � �� � � ��� ���
� � � � � � �� � � �� ���
� � � � � � � � �

� � � � � � � � � �

� ���

� � � � � � � �
� � � � � � �

�

�������
�������
�������

�������
�������
�������
�������

� �������
� � 	����
� 	�����
������������������������������
Figure 4: Accelerated Feasibility Check Example

Suppose we have nk candidates in round k. Each
round, the algorithm checks the (1, 0) subsequence with
the smallest number of time slots. If the answer is feasi-
ble, this candidate merges with its right-hand side candi-
date, as all candidate subsequences start with a feasible
piece. Otherwise, it merges with its left-hand side candi-
date, as all candidate subsequences end with a infeasible
piece. Hence, we have |C| > nk > nk+1 > 1. Let
W denote the length of the entire power demand pat-
tern. Then, the length of the smallest candidate piece in
round k is shorter than W

nk
. According to the compu-

tational complexity of the DHEF algorithm, it takes at
most 1

n2
k
O(T 2B) to check the feasibility in kth round.

Therefore, the worst case computational complexity is:

O(T
2
B)

∑
k

1

n2
k

≤ O(T
2
B)

|C|∑
i=1

1

i2
≤ π2O(T 2B)

6
= O(T

2
B).

4 Evaluation
This section evaluates how WattValet compares to the
optimal solution as well as state-of-the-art solutions in
terms of approximating Optimality and handling Hetero-
geneity.

Battery configurations in our experiments are based on
APC 3U UPS [1] devices. The designed UPS capacity is

5



278 11th International Conference on Autonomic Computing USENIX Association

2 5 10 15
1.9

2.1

2.3

2.5

2.7

Number of Batteries

Po
w

er
 C

ap
 (k

w
)

WattValet
Optimal
Fair
PduCtrl

Average

Figure 5: Power Cap

2 5 10 15

100

101

102

103

Number of Batteries

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

WattValet
Optimal
Fair
PduCtrl

Figure 6: Computation Time

0.5 KW ·H , and its maximum charging and discharging
rate are 240W and 2100W respectively. The efficiency is
about 85% when serving more than 25% load. Aged bat-
teries suffer degradations in their performance. We apply
random degradations on batteries to generate a synthetic
battery set. Each battery parameter is scaled with a ran-
dom factor γ:

γ = random()× θ + 1− θ, (8)

where random() returns a random fractional number be-
tween 0 and 1 whenever called, and θ is an input parame-
ter that controls the randomness bound. Wikipedia hosts
its service on about 300 servers [13]. Wikipedia’s work-
load is translated into power consumption traces using
the linear power model of our Dell D620 servers [11, 12].

WattValet trades optimality for efficiency. How-
ever, we need to make sure it stays within a rea-
sonable range from the optimal solution. Evaluations
compare WattValet to the optimal solution as well as
two heuristics from recent literatures[2, 10]. The fair
battery scheduling algorithm [2] deducts equal current
from all batteries, whereas the pduCtrl algorithm [10]
charges/discharges batteries one after another. Both so-
lutions examine time slots chronologically. As the LP
solver takes excessively long to converge, optimal solu-
tions are only calculated for small scale evaluations. We
scale down wikipedia’s workload to fit into 30 servers,
and use at most 16 UPS devices. The other three-week
trace in Figure 1 is used to generate the predicted power
demand pattern by taking average in each time slot.
The LP problem is solved with Matlab using linprog
method. As plotted in Figure 5, the power cap achieved
by WattValet is only 2% higher than the optimal solu-
tion in the worst case, while the other two heuristics lead
to 7% and 12% degradations respectively. With the fair
scheduler, the power cap increases when using 8 UPS
devices. It is because the 8th battery suffers much lower
efficiency compared to other batteries. The computation
times of the four solutions are shown in Figure 6. The
LP solver takes 1600 times longer than WattValet when
using 16 batteries. The average power demand is plot-
ted with the dotted line. There is still a gap between
the settled optimal solution and average. The reason is
that batteries’ efficiency is at most 85%. Some energy
losses when carried from charging phases to discharging
phases.

5 Related Work
Recently, shaving off data center power peaks using en-
ergy storage devices was introduced by Govindan et
al. [7]. They gave a complete overview of the datacen-
ter power hierarchy, and implemented a simple heuristic
to reduce datacenter operational expenses. Later, Kon-
torinis et al. [10] adapted this idea to a Google’s data-
center, where each server is equipped with its own ded-
icated battery. Wang et al. [16] further investigated and
evaluated broader types of energy storage methods, and
compared their advantages and limitations. Other liter-
ature [14] explicitly achieved minimum power capping
by modeling the problem as one of linear programming.
However, all of above work considers only homogeneous
batteries, or environments with very limited heterogene-
ity. In real-world systems, even if all batteries are identi-
cal initially, different storage temperature, humidity, and
charging/discharging cycles will cause them to diverge
over time.

This paper shares a similar infrastructure setup to Ak-
sanli et al. [2]. Together with the utility power, a pool of
batteries provide centralized support to the entire com-
puting side. The major difference is that Aksanli [2] aims
at maintaining homogeneity of all batteries which may
not be possible in real world systems, whereas WattValet
takes explicit advantage of battery heterogeneity.

Finally, the paper suggests that energy storage alloca-
tion in data centers is a QoS mechanism of growing im-
portance at an age where sustainability of computation
becomes a dimension of quality. The minimum power
cap is presented as a metric of projected increasing inter-
est. Solutions that lead to smaller power caps are more
sustainable, because smaller power caps are indicative
of smaller power consumption and better alignment be-
tween maximum and average power, achieved via more
judicious energy storage management. The paper ad-
dresses the latter subproblem, where the cap is mini-
mized for a given power demand profile.
6 Conclusion
This paper presents WattValet that reduces datacenter
peak power consumption by using batteries. WattValet
explicitly considers heterogeneities between batteries
when generating the battery charging and discharging
plan. It breaks down the power capping problem into
two smaller parts, namely, generating battery charg-
ing/discharging plans for a given power demand se-
quence, and searching for the power demand sequence
that leads to the minimum power cap. The efficiency of
WattValet allows it to scale to datacenter-size problems,
whereas the power capping result achieved by WattValet
on Wikipedia’s data is within 2% of the optimal solution.
WattValet considerably outperforms state-of-the-art so-
lution, and the advantage increases as the heterogeneity
grows.

6



USENIX Association  11th International Conference on Autonomic Computing 279

References
[1] Apc smart-ups on-line model SURTA3000XLTW.

http://www.apc.com, Jan 2014.

[2] B. Aksanli, E. Pettis, and T. Rosing. Architecting effi-
cient peak power shaving using batteries in data centers.
MASCOTS, 2013.

[3] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel.
Finding a needle in haystack: facebook’s photo storage.
USENIX OSDI, 2010.

[4] A. A. Bhattacharya, D. Culler, A. Kansal, S. Govindan,
and S. Sankar. The need for speed and stability in data
center power capping. IGCC, June 2012.

[5] Gartner. Gartner says data center power, cooling and
space issues are set to increase rapidly as a result
of new high-density infrastructure deployments, May
2010. http://www.gartner.com/it/page.
jsp?id=1368614.

[6] D. Gmach, J. Rolia, C. Bash, Y. Chen, T. Christian,
A. Shah, R. Sharma, and Z. Wang. Capacity planning and
power management to exploit sustainable energy. CNSM,
October 2010.

[7] S. Govindan, A. Sivasubramaniam, and B. Urgaonkar.
Benefits and limitations of tapping into stored energy for
datacenters. ACM/IEEE ISCA, 2011.

[8] S. Govindan, D. Wang, A. Sivasubramaniam, and B. Ur-
gaonkar. Leveraging stored energy for handling power
emergencies in aggressively provisioned datacenters.
ACM ASPLOS, 2012.

[9] J. Hamilton. Cost of power in large-scale
data centers, November 2008. http://
perspectives.mvdirona.com/2010/09/
18/OverallDataCenterCosts.aspx.

[10] V. Kontorinis, L. E. Zhang, B. Aksanli, J. Sampson,
H. Homayoun, E. Pettis, D. M. Tullsen, and T. S. Ros-
ing. Managing distributed ups energy for effective power
capping in data centers. ISCA, 2012.

[11] S. Li, T. Abdelzaher, and M. Yuan. TAPA: Temperature
aware power allocation in data center with map-reduce.
In IEEE, IGCC, 2011.

[12] S. Li, H. Le, N. Pham, J. Heo, and T. Abdelzaher. Joint
optimization of computing and cooling energy: Analytic
model and a machine room case study. In IEEE ICDCS,
2012.

[13] R. Miller. Google gift means more servers for wikipedia.
http://www.datacenterknowledge.com/, Jan
2014.

[14] D. S. Palasamudram, R. K. Sitaraman, B. Urgaonkar, and
R. Urgaonkar. Using batteries to reduce the power costs
of internet-scale distributed networks. ACM SoCC, 2012.

[15] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia
workload analysis for decentralized hosting. Elsevier
Computer Networks, 53(11):1830–1845, July 2009.
http://www.globule.org/publi/WWADH_
comnet2009.html.

[16] D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar,
and H. Fathy. Energy storage in datacenters: what, where,
and how much? ACM SIGMETRICS, 2012.

[17] I. Widjaja, A. Walid, Y. Luo, Y. Xu, and H. J. Chao. Small
versus large: Switch sizing in topology design of energy-
efficient data centers. IEEE IWQoS, June 2013.

[18] D. X, X. Liu, and B. Fan. Minimizing energy cost for
internet-scale datacenters with dynamic traffic. IEEE
IWQoS, June 2011.

7




