
Proteus: Power Proportional Memory Cache Cluster in Data Centers

Shen Li, Shiguang Wang, Fan Yang, Shaohan Hu, Fatemeh Saremi, Tarek Abdelzaher
University of Illinois at Urbana-Champaign, USA

{shenli3, swang83, fanyang5, shu17, saremi1, zaher}@illinois.edu

Abstract—In this paper, we describe the design, imple-
mentation and evaluation of Proteus, a power-proportional
cache cluster which eliminates the delay penalty during server
provisioning dynamics. To speed up data center services, a
cache cluster is used in front of the database tier, providing fast
in-cache data access. Since the number of cache servers is large,
building power-proportional cache clusters can lead to con-
siderable monetary savings. Dynamic server provisioning, one
common methodology for realizing power proportionality in
data centers, calls for agile load balancing schemes and smart
in-cache data migration algorithms when applied to cache
clusters. Otherwise, it induces unacceptable delay spikes due
to data re-allocation among cache servers. Proteus addresses
both challenges by using a specifically designed virtual nodes
placement algorithm and an amortized data migration policy.
We implement Proteus, and evaluate it on a 40-server cluster
using real Wikipedia data and workload traces. The results
show that, with Proteus, the load distribution is much more
evenly balanced compared to the case of applying unmodified
consistent hashing. At the same time, Proteus induces almost
no extra delay during provisioning transitions, which is a
significant advantage over other state-of-the-art solutions.

Index Terms: Energy proportionality, Load balancing, Mem-
cached, Bloom filter, Data center.

I. INTRODUCTION

In this paper, we present Proteus, which aims at re-

ducing performance penalties caused by applying energy

management policies to memory cache clusters where cache

servers may be turned on and off. Energy consumption in

cloud computing attracts attention due to the increasing

energy cost in large data centers. Most of the previous

work [1–8] focuses on stateless or computation-intensive

workloads. Some systems [9–11] manipulate the data layout

in distributed file systems (DFS) to create opportunities for

turning off a subset of data storage servers. However, the

energy issue in cache clusters is surprisingly ignored. To the

best of our knowledge, this is the first paper that achieves

power proportionality in memory cache clusters without

sacrificing performance.

The memory cache cluster usually sits in front of the

database or distributed file system tier to offer fast in-

memory data access by running Memcached instances. The

cache layer is playing a very important role. For example,

Facebook reported that their cache hit ratio is higher than

95% [12], which significantly reduces the database work-

load. (Below, we use cache and Memcached interchange-

ably.) In industry data centers, workload seen by the cluster

varies over time, and the peak workload can be as much

as twice the valley workload [13]. This property offers us

golden opportunities to apply dynamic server provisioning

policies, such that when the workload is light, a subset of

the servers is turned off to save energy. As the cache cluster

may consist of hundreds or thousands of servers[14], the

monetary benefits brought by energy management could be

large.

Dynamic server provisioning, a common energy man-

agement methodology, is widely used for both stateless

web servers and distributed replicated file systems. Unfor-

tunately, due to distinct characteristics of cache clusters,

directly applying dynamic server provisioning will suffer

from severe performance degradation during provisioning

dynamics (i.e., when servers are turned on or off). For state-

less web servers, a reasonable assumption is that one request

can be handled by any server without much performance

penalty. Nevertheless, this assumption does not hold for

the cache cluster. If one request is directed to some cache

server that does not have the requested data, the request will

have to reach the database tier (or DFS), which induces

high response time. For distributed File systems, requests

are usually directed by using deterministic load distribution

policies. Many current designs employ master server [15],

name node [16], or meta servers [17] to store the data chunk

location information. One request will first reach the master

server to look up the corresponding chunk server address,

and then communicate with the chunk server to fetch data.

However, given that the cache servers are designed for fast

in-memory data access for a large number of data items,

similar look-up operations, which involve one or more disk

seeks, are too slow to serve the cache tier.

Under static scenarios, achieving load balancing is trivial:

The web server can simply hash the requested data ID to a

large integer range, and then apply the modulo operator to

wrap it to a valid cache server ID. Reddit, a popular social

news website, did use this scheme before. However, hey

soon experienced the pain of expanding cache clusters for

capacity upgrades [18]. This is because, in an n-server cache

cluster, if one more server is added, this simple solution will

remap n
n+1 data IDs to cache servers where the requested

data is not in-memory. Therefore, in expectation, n
n+1 of

the requests will reach the database tier simultaneously,

and the databases are easily overloaded. The same problem

happens when dynamic server provisioning is used to turn

servers on or off. Consistent hashing alleviates the problem

to some degree. Nevertheless, how to balance load under

dynamics and how to make dynamic server provisioning

smooth enough are still problems that are yet to be solved.

In this work, we focus on achieving three performance

objectives in the cache cluster when using dynamic server

provisioning policies. First, the load distribution among all
running cache servers should be balanced. No matter how
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Fig. 1. Simplified Information Flow

many cache servers are running, each server should handle

roughly the same amount of user workload. Second, the pro-
visioning transition should not induce much response time
penalty. Proteus needs to make this operation unnoticeable

to users, although losing in-memory “hot” data and data

migration for load re-balancing is inevitable when turning

servers off. Third, the load distribution algorithm should be
distributed, consistent, and efficient. As there are multiple

web servers answering a large number of user requests,

each web server should be able to make load distribution

decisions locally. At the same time, the decisions must be

consistent among different web servers, such that requests

asking for the same piece of data are directed to the same

cache server.

To achieve these objectives, Proteus presents algorithms

for flexible load balancing and smooth provisioning tran-

sitions. We inherit the consistent hashing idea to achieve

load balancing by providing a deterministic virtual node

placement algorithm. All physical cache servers are guar-

anteed to handle the same amount of data IDs regardless

of the size of the running cache cluster. Another merit of

this algorithm is that the amount of data that needs to be

migrated during each provisioning transition is at its lower

bound. For smooth provisioning transitions, we modified

Memcached source code [19] to insert a counting Bloom

filter as the in-cache data digest. The digest is used by web

servers to determine the current location of the requested

data. Then the data migration cost is amortized over related

requests. Our evaluation results show that Proteus balances

the load distribution at the same level as the simple hash

does in static cases, which is much more balanced than

applying unmodified consistent hashing. Meanwhile, Proteus

induces almost no delay penalty during dynamic server

provisioning.

The remainder of this paper is arranged as follows.

Section II briefly introduces the background and motivates

this work. We present system design details in Section III,

and Section IV. Implementation and evaluation are presented

in Section V and Section VI, respectively. Related work is

surveyed in Section VII, and finally, Section VIII concludes

the paper.

II. SYSTEM MODEL

In this paper, we aim at eliminating the performance

penalties caused by dynamic cache cluster provisioning in a

3-tier server cluster as shown in Fig. 1. Time is divided into

slots. Let N denote the total number of cache servers, and

n(t) denote the number of running cache servers in the tth

time slot. The data key keyd can be a page title in Wikipedia,

a user ID in Facebook, etc. With keyd, the web server cluster

fetches corresponding data d from either the cache server md

or the database tier, and then presents the response to users.

Cache servers store data in the form of (key, data) pairs.

We define a piece of data as “hot” if it is touched at least

once during the past TTL seconds. Please note that, we do

not make any assumptions on the cache eviction strategy

(LRU, fixed expiration duration, etc.). At one time instance,

a cache server is called active if it hosts “hot” data and

serves requests. Otherwise, it is called inactive, and operates

in low power status.

Assumptions
• Each object in cache is of the same size. Even though

the size of pages or user accounts would vary consid-

erably, they can be divided into fixed-size pieces. One

piece is considered as the basic unit of objects in cache.

Actually, modern storage clusters already employ such

idea [15–17].

• The load of requests have temporal behavior, and the

gap between the peak and the nadir load is huge. Our

study of Wikipedia’s traces supports this assumption

(as shown in Fig. 4).

Objectives
• Balance load distribution in cache tier under dynamics:

We define the load as the amount of data objects served

by the cache cluster. In static environments, the load

can be easily balanced by using hash and modular

operations. We pursue the same level of load balance

in face of dynamic server provisioning.

• Minimize data movements during re-balancing transi-
tions: Proteus should achieve minimum data migration,

such that only at most
|n(t+1)−n(t)|

max{n(t+1),n(t)} of the in-cache

data is remapped when the number of active servers

changes from n(t) to n(t+ 1).
• Eliminate re-balancing transition delay spikes: Dy-

namic server provisioning should never hurt the per-

formance too much. We aim at managing energy with

no delay penalty.

Generally, our goal is to design a provisioning actuator

that executes decisions according to server provisioning

policy without degrading the system performance in terms

of response time. Please note that designing the best provi-

sioning policy is not our focus. Different policies [1, 4–8]

can cooperate with Proteus with no confliction.

III. LOAD BALANCE UNDER DYNAMICS

In this section, we describe an algorithm that not only

deterministically balances load distribution under provi-

sioning dynamics but also guarantees migrating minimum

amount of data during each re-balancing transition. Our

algorithm inherits ideas of consistent hashing and virtual

nodes [20, 21], and focuses on generating a virtual node

placement strategy.
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Load balance under dynamics requires each server han-

dles equal amount of objects even if the number of active

servers dynamically changes. As already used in many

Memcached clusters [22], consistent hashing and virtual

nodes help to balance load among multiple cache servers

to some degree [20, 21]. In consistent hashing, data keys

and servers are hashed into the same key space, which

forms a hashing ring. The ring acts as an indirect layer

of index for the hash. Each obejct will be stored in the

first server that succeeds the data key on the ring. When

one server is turned off, its direct successor takes care

of its workload. One physical server may have multiple

direct successors by placing multiple virtual nodes on the

hashing ring. Therefore, the load of one server can be spread

out to more physical servers when necessary. However,

without careful design, consistent hashing and virtual nodes

alone do not guarantee load balance in face of provisioning

dynamics. In this section, we borrow the idea of consistent

hashing, and improve it by designing and analyzing a virtual

node placement algorithm that deterministically balances

workload among all active Memcached servers.

A. Fixed Provisioning Order

In data centers, every individual server is under control.

Hence, it is possible to turn on/off servers according to

any fixed order. We argue that, a provisioning scheme with

a fixed order is not any weaker than the one that adapts

to arbitrary orders. The reason is that, when no failure

presents, the fixed order can be maintained easily. If some

server crashes, we have already lost the data in cache,

and both schemes need some fault tolerant solutions for

reconstructing the cache or directing the requests to some

redundant caches.

Fixing provisioning order eliminates one dimension of

freedom of the load balance problem, thus simplifies the

algorithm design. Well designed order further improves

power savings. For example, the decreasing order of server

efficiency should be better than a random order, where server

efficiency is defined as the amount of workload served

per unit of energy. The system administrators should be

responsible for choosing a reasonable order, which is not

the focus of this paper. Our solutions are able to cooperate

with any fixed order.

Define the list (s1, s2, ..., sN ) as the fixed order for

dynamic provisioning, where N is the number of servers.

Let n(t) denote the number of active servers in the tth time

slot. In other words, servers in set {si | 1 ≤ i ≤ n(t)} are

active in the tth time slot.

B. Optimal Number of Virtual Nodes

Let Vi = {vi1, vi2, vi3, ...} denote the set of virtual nodes

of the server si. Any request within the key range between

the virtual node vij and its direct predecessor on the hashing

ring will be served by virtual node vij , and thus, physical

node si. We call this key range the host range of the

virtual node vij . As the provisioning algorithm turns on and

off physical nodes dynamically, the direct successor of vij
varies as well. However, recall that the order for provisioning

is static, vij always precedes the same direct successor if the

number of active servers is the same. We define vij’s final
successor as the direct successor when i − 1 servers are

on. Denote viki → vjkj as the relation between two virtual

nodes viki and vjkj , such that vjkj is the final successor of

viki on the consistent hashing ring. Let Ps
i denote the set of

final successor servers of server si (as illustrated in Fig. 2),

i.e.,
Ps
i = {sj | ∃vjkj ∈ Vj , ∃viki ∈ Vi, s.t. viki → vjkj}.

In order to achieve load balance under provisioning dy-

namics, the virtual node placement policy should satisfy the

following conditions: (1) when one physical node is turned

off, objects served by this node should be evenly migrated to

all other running physical nodes, and (2) when one physical

node is turned on, it should take an identical amount of

objects from all other active physical nodes. We call this

condition the Balance Condition (BC).
Obviously, among all solutions that satisfies BC, the one

with minimum number of virtual nodes is preferred, since

less virtual nodes introduce less overhead in terms of both

space consumption and query complexity. We now prove

that N2−N
2 +1 is the lower bound on the number of virtual

nodes in order to meet BC.

Theorem 1: At least N2−N
2 +1 virtual nodes are required

to satisfy BC.

Proof: We first introduce a necessary condition of BC,

which we call the pseudo BC:

Ps
i ⊃ {sj | 1 ≤ j ≤ i− 1}.

The pseudo BC states that to achieve load balance, the

final successor set Ps
i should at least cover sj , ∀j < i.

Otherwise, if ∃j < i, sj �∈ Ps
i , si’s workload will not be

directed to sj when si is turned off. Hence the load is not

balanced. Please note that the pseudo BC does not guarantee

the feasibility of host ranges. 1.

One virtual node can only have one final successor on

the hashing ring. Since |Ps
i | ≥ i− 1, si needs at least i− 1

virtual nodes to precede i − 1 final successors. The corner

case is i = 1, where s1 needs to have at least 1 virtual node.

Therefore, altogether, at least 1+
∑N

i=2(i−1) = N2−N
2 +1

virtual nodes are required.

C. Virtual Node Placement

In this section, we elaborate the virtual node placement

algorithm. Assume the key space size is K. When generating

the placement solution, physical nodes are served one by one

according to the fixed provisioning order. For si (i > 1),
the algorithm places i − 1 virtual nodes on the consistent

hashing ring, denoted by {vij |1 ≤ j ≤ i−1}. When placing

vij , the algorithm borrows K
i(i−1) continues host range from

1Counter Example: Place the virtual nodes clockwise on the consistent
hashing ring with the following order: 1, 2, 3, ..., n, 2, 3, 4, ..., n, ..., (n−
3), (n− 2), (n− 1), n, (n− 2), (n− 1), n, (n− 1), n. The numbers are
corresponding to physical server ID. When n > 6, it is not possible to
have all responsible ranges positive.
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Fig. 2. An example of virtual node placement: Each small circle represents a virtual node. The number in the circle indicates the ID of the physical
server that hosts the virtual node. The turned-on/off order is fixed as (1, 2, 3, 4, 5, 6). Obviously, Ps

6 = {1, 2, 3, 4, 5}, Ps
5 = {1, 2, 3, 4}, Ps

4 = {1, 2, 3}
,Ps

3 = {1, 2}, and Ps
2 = {1}. Since we are turning off servers based on the above order, server 6 is already powered-off when server 5 is being turned

off. Hence, when calculating Ps
5 , server 6 no longer exists in the hashing ring.

one feasible virtual node of sj , and assigns it to vij . Fig.

2 shows an illustrative example with 6 physical nodes. In

Section III-D, we prove that the algorithm is correct and the

host ranges are balanced among all physical nodes.

As each virtual node can be identified by its host range,

placing virtual node is equivalent to assigning an unique

host range to each virtue node. Below, we use host range

and virtual node interchangeably. The pseudo code is shown

in Algorithm 1. The algorithm takes 2 inputs: the number

of physical nodes N , and the consistent hashing ring range

K. Line 2−3 adds s1’s only virtual node v1,0 into s1’s host

range set R[1]. Initially, v1,0 covers the entire consistent

hashing ring. The loop starting on line 4 enumerates all

si, i > 1 to add their virtual nodes. Line 5 − 15 iterates to

place each of si’s virtual node vij . For vij , the inner loop on

line 6 searches for one feasible virtual node r of sj whose

host range is larger than K
i(i−1) . When found, vij borrows

K
i(i−1) from r, and the algorithm inserts vij into si’s virtual

node set R[i].

D. Algorithm Analysis

We prove the virtual node placement solution generated

by Algorithm 1 balances the sum of host ranges assigned to

each physical server.

Proof: basis: If N = 1, there is only one node. Hence

the host range is trivially balanced.
Inductive Step: Assume the algorithm is correct for N =

k (i.e., the host range of each physical node is K
k ). For

N = k + 1, the host range of each physical node should
be K

k+1 . Hence, to achieve load balance, the (k+1)th node

needs to deduct K
k(k+1) from at least one virtual node of

each physical node with smaller ID, which is done in line
6 ∼ 14 in Algorithm 1. We now show that it is always
possible to find one feasible virtual node from R[j] whose
host range length is at least K

k(k+1) . By contradiction, we

assume that for some si, (i < k+ 1), the host range length
of all vij , (j < i) is smaller than K

k(k+1) . Therefore, the sum

of host range length deducted from si by physical nodes set
{sl|i < l < k + 1} is at least at least

(i− 1)

( K
i(i− 1)

− K
k(k + 1)

)
. (1)

According to the algorithm, each sl, l > i borrows K
l(l−1)

from si. So, we also have,
∑k

l=i+1
K

l(l−1) =
K
i − K

k , which

Algorithm 1 Virtual node placement

Input: Number of physical nodes N , consistent hashing ring range K.
Output: Virtual node placement strategy vps.
1: R← an array of N empty set

/* Host range set array for all physical vertices. */
2: v1,0.start← 0, v1,0.len← K
3: R[1]← {v1,0}

⋃
R[1]

/* Initially, the host range of s1’s only virtual node starts at 0 with
length K*/

4: for i← 2 to n do /* enumerate all si */
5: for j ← 1 to i-1 do /* compute host range for vij */
6: for r in R[j] do

/* borrow host range from one feasible virtual node of sj*/

7: if r.len > K
i(i−1)

then
8: vij .start← r.start, vij .len← K

i(i−1)

9: r.len← r.len− K
i(i−1)

10: r.start← r.start+ K
i(i−1)

11: R[i]← {vij}
⋃

R[i]
12: Break
13: end if
14: end for
15: end for
16: end for
17: vps← ∅ /*serialize host ranges in a sorted array for fast access*/
18: for i ← 1 to N do
19: for r in R[i] do
20: vps← vps

⋃{r}
21: end for
22: end for
23: sort vps based on vps[·].start
24: Return vps

is smaller than formula (1),

(i−1)
( K
i(i− 1)

− K
k(k + 1)

)
−
(K

i
− K

k

)
= K ik − i2

ik(k − 1)
> 0.

(2)

Hence, the assumption does not hold. It is always possible

to borrow K
k(k+1) host range length from at least one virtual

node of each physical node si, (i < k). Therefore, the host

ranges are balanced in N = k + 1 case.

E. Fault Tolerance
Given the scale of data centers, server failure is not

an exception, instead, it occurs frequently. For the sake
of fault tolerance, Proteus can easily extend to embrace
redundancies. For example, if Proteus is set to keep r
replications for each piece of (key, data) pair, it just needs
to construct r consistent hashing rings with r different hash
functions. Different hashing rings share the same virtual
nodes placement policy. If a key falls in the host range
of any virtual node of si on any hashing ring, si will store
one copy of the (key, data) pair. This strategy does not
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guarantee that the r replications will be stored in r different
servers. However, the confliction probability will be low. If
the hash function distributes the keys evenly and randomly.
The probability that no confliction occurs is:

Pnc =

r−1∏
i=0

n(t)− i

n(t)
. (3)

As r is usually a small number (e.g., 2 or 3), and n(t) is

much larger (e.g., a few thousand), Pnc for each data piece

should be close to 1.

IV. SMOOTH PROVISIONING TRANSITION

In this section, we elaborate an efficient solution for

smooth provisioning transition, which is executed before

turning on/off any cache server.

Each Memcached server may host tens or hundreds of

gigabyte “hot” data [23]. If we turn off the Memcached

servers brutally, we will lose a considerable amount of in-

cache data. As consequences, some users might see delay

spikes. We propose Smooth Provisioning Transition to avoid

such spikes. Our high level idea is that when turning off

si, si postpones this operation by TTL seconds to migrate

“hot” data to its final successor on demand. Define Ht as

the consistent hash in tth time slot. Let keyd and md
t denote

the data key and the corresponding Memcached server ID

for data d in tth time slot. Since (keyd, d) may reside in

both md
t and md

t+1 during the transition stage, web servers

need to know which cache server they should query.

Three objectives must be satisfied. First, the transition

must be unblocking. Memcached is designed as a fast key

value store. The performance of the Memcached tier should

not be interfered too much, otherwise the solution is useless.

Second, only the “hot” data should be transferred, otherwise

bandwidth and computational resources are wasted. Third,

the transition delay should be small and bounded. The

number of Memcached servers is tuned to catch up with

load dynamics. Thus, long transition delay harms the system

agility.

To achieve these objectives, we propose to use one

Counting Bloom Filter [24, 25] as the content digest for each

cache server. Below, we elaborate the details of maintaining

and configuring the counting Bloom filter.

A. MemCached Digest

Bloom filter is a data structure that stores a set of elements

and supports membership queries. Counting Bloom filter is

a variant of Bloom filter that supports both element inser-

tion and deletion. In our solution, each Memcached server

maintains one counting Bloom filter for in-cache keys. We

call the counting Bloom filter the digest. Let Fi denote the

digest of si. When keyd and its data are inserted into (or

deleted from resp.) si, Fi will also be updated accordingly.

We do not assume any cache replacement policy, as long as

Fi is consistent with si’s content, our solution works.

At the beginning of the transition stage, digests (a few

KB each) will be broadcasted to all web servers. Then,

the web server knows what is in-cache and what is not.

The algorithm for data retrieval is described in Algorithm

2. Line 2 ∼ 4 checks whether the data is in smd
t+1

. If hit,

the algorithm returns the data and does not go any deeper.

If miss, line 6 checks whether the data resides in smd
t
.

If yes, it retrieves the data. Since Bloom filter may have

false positives, line 8 further checks if the data is indeed

retrieved. If and only if both attempts miss, will the request

reach the database tier. Therefore, the database tier will not

realize transition dynamics is taking place. If the data is

retrieved from either smd
t

or the database tier, the algorithm

also updates smd
t+1

.

Algorithm 2 Date Retrieval

1: procedure FETCH DATA(keyd)
2: data ← smd

t+1
.get(keyd)

3: if NULL �= data then
4: return data /* found in new server. */
5: else
6: if Fmd

t
.check(keyd) then /* data is “hot”. */

7: data ← smd
t

.get(keyd)

8: end if
9: if NULL = data then /* false positive or “cold” data. */

10: data ← database.get(keyd)
11: end if
12: smd

t+1
.put(keyd, data)

13: return data
14: end if
15: end procedure

The algorithm has two important properties. First, for

“hot” data d, only the first request will reach smd
t
, all sub-

sequent requests will find the data in smd
t+1

. Therefore, no

bandwidth and computational resources are wasted. Second,

Memcached servers can be safely turned off after TTL
seconds. Because, if one piece of data d is touched in the

past TTL second, it has already been transferred to smd
t+1

.

If it is not touched in the past TTL second, it is no longer

“hot”, and can be safely discarded.

B. Bloom Filter Configuration

The Bloom filter employs a bit array with h hash func-

tions. All bits in the array are initialized to 0. When an ele-

ment ei is inserted, bits at position hash1(ei), hash2(ei), ...,

hashh(ei) will be set to 1. When querying the membership

of ei, the Bloom filter checks the bits at position hash1(ei),
hash2(ei), ..., hashh(ei). If all of them are 1, the Bloom

filter answers “yes”. Otherwise, it answers “no”. Bloom filter

may have false positives.

Counting Bloom filter is a variant of Bloom filter,

which uses counters rather than bits. When one element

is inserted/deleted, the corresponding counters will in-

crease/decrease by 1. The Counting Bloom filter suffers

from both false positive and false negative issues. False

negative is caused by either deleting an absent element (due

to false positive) or counter overflow. In our scenario, the

first case will never happen. The deletion from digest is only

triggered by the deletion from Memcached. The Memcached

deterministically knows whether an element is in-cache or
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Symbol Description

h Number of different hash functions

κ Number of inserted keys

l Number of counters in Bloom filter

b Number of bits in each counter

TABLE I
BLOOM FILTER PARAMETERS AND DESCRIPTIONS

not. Therefore, deleting absent element from digest will

never happen. However, counter overflow may occur. In

order to achieve low false negative rate, the Bloom filter

should curb its counter overflow probability. Otherwise, if

counter overflows, underflow will also be possible, which

triggers false negatives. The counter overflow probability

decreases with the increase of the counter size and the

number of counters. However, more and larger counters lead

to more memory consumption and higher overhead when

broadcasting digests. We now compute Bloom filter config-

urations to achieve minimum memory consumption subject

to given false positive and false negative rate constraints (pp,

pn). Table I shows the descriptions of symbols.

The probability that one counter remains 0 after inserting

κ keys into l counters with h hash functions is (1− 1/l)κh.

Hence, the false positive rate is,

(1− (1− 1/l)κh)κ ≈ (1− e−
κh
l )h. (4)

As Memcached is designed as a high performance software,

fewer hash functions are preferred. Therefore, we take h as

a parameter.

As we have stated above, the counter overflow (and hence,
underflow) is the only reason of false negatives in our
system. The probability that any counter is greater than 2b

is [25, 26],

Pr
(
max(counter) ≥ 2b

)
≤ l

(
κh

2b

)
1

l2b
≤ l

(
eκh

2bl

)2b

(5)

Let Gp(l) = (1−e−κh
l )h and Gn(l, b) = l( eκh

2bl
)2

b

represent

the false positive and false negative rate respectively. Then,

our objective is:

Minimize lb

s.t. Gp(l) ≤ pp Gn(l, b) ≤ pn (6)

where pp and pn are given false positive and false negative

probability bounds.

Take partial derivatives of Gn(l, b) with respect to l, and

b respectively, we have

∂Gn(l, b)

∂b
= C

(
b

2
ln

eκh

2bl
− ln 2

)
< C

(
b

2
ln

eκh

2bl

)
∂Gn(l, b)

∂l
= Gn(l, b)

1− 2b

l
> −C 1

l
(7)

where C = Gn(l, b)2
b. When

bl

2
>

(
ln

2bl

eκh

)−1

(8)
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Fig. 3. System Setup

∂Gn(l, b)

∂b
<

∂Gn(l, b)

∂l
. (9)

Please note that 8 is almost always true, since 2bl need to

be much larger than eκh to achieve low false positive and

false negative rate. Therefore, fixing lb, Gn(l, b) decreases

with the decrease of l. Hence, the optimal point is reached

at the minimum possible l, which can be derived from the

inequality Gp(l). Hence, the optimal solution is

l =
−κh

ln

(
1− p

1
h
p

) , b = ln

(
βe
W

(
− ln γ

β

))
(10)

where β = eκh
l , γ = pn

l , and the function W(x) is

the inverse of xex (Lambert function[27]).In practical, b
is an integer with a very small range. Therefore, we can

enumerate all possible values of b and pick the optimal one.

For example, with (κ = 104, h = 4, pp = pn = 10−4),

(l = 4 × 105, b = 3) is more than enough, which takes

about 150KB memory per digest.

V. IMPLEMENTATION

In this section, we show the data and methodology details

used in the evaluation.

A. System Setup

We use 40 Dell PowerEdge R210 servers with CentOS 5 (

2.6.18 kernel) to build up the evaluating environment. RBE

cluster consists of 10 servers who generate user workload.

Another 10 Servers are used as web Servers by running

our Java servlets on Tomcat 6.0.35. Memcached cluster

has 10 servers running our modified Memcached release

based on the source code pulled from github [19, 28]. The

database cluster stores 2011-12-01 wikipedia-English dumps

[29] in 7 non-overlapping shards on 7 different servers

by running MySQL 5.5.19. Our cluster is equipped with

Avocent PM3000 Power Distribution Unit which is able to

measure the power reading of every single socket by SNMP.

All 40 machines are connected by one NetGear Gigabit

Smart Switch as a complete graph. The cluster is arranged

as shown in Fig. 3.
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1) Workload Generator: We evaluate Proteus with two

different kinds of user workload: synthetic workload and

real wikipedia trace [30]. For the synthetic workload, we

simulate a large number of independent users. The user

session duration follows exponential distribution. Each user

has an independent, randomly selected wikipedia page set

to access. The think time for each user is set to 0.5 second,

so that we can simulate large number of requests with fewer

number of threads. The total number of active users is

dynamic and based on wikipedia trace. The wikipedia trace

[30] logs the time and requested URL of every single access.

However, the requested URL contains a lot of contents,

such as images, which are not available to us. Hence,

basing on the amount of request in Wikipedia trace, we

use synthetic workload to evaluate cluster provisioning and

smooth transition. As the data key is embedded inside the

URL, we use the real Wikipedia trace [30] to evaluate load

balancing performance and hit ratio of the counting Bloom

filter.

2) Web Server: The servlets are running above Tomcat

6.0.35. Most logics are done in web servers, including hash

data ID to Memcached server ID by using the consistent

hashing as described in Section III, find the right mysql

server if Memcached misses, check data availability by using

counting Bloom filter as described in Section IV (counting

Bloom filter is also implemented on Memcached servers),

and so on. In order to reduce the overhead of creating new

connections with Memcached server and database server, we

use Apache Commons Pool to hold connection pools. Both

connection pools are implemented as Singletons, such that

all servlet threads will see the same connection pool.

3) Memcached with Build-in Bloom Filter: We mod-

ified Memcached [19] source code to enclose a built-

in counting Bloom filter. The counting Bloom filter will

insert key when do item link(item ∗, const uint32 t)
function is called with key key, and will eject key when

do item unlink(item ∗, const unit32 t) is called with

key key. Memcached itself provides DTrace [31] probes

which will notify user-defined programs when one specified

function is called. This nice tool significantly simplifies the

modification towards Memcached. Developers can define

new logics without understand Memcached implementation

details. However, we directly modify Memcached source

code instead of using DTrace for two reasons. First, given

that do item link or do item unlink can be touched

hundreds of times per second, using DTrace will induce

considerable overhead, since every time one Memcached

DTrace probe fires, the context will switch between user

mode and kernel mode twice. Second, as having one built-

in Bloom filter in Memcached servers is meaningful, we

hope our code is reusable to other researchers. Modifying

the source code directly simplifies the usage.

Key “SET BLOOM FILTER” and “BLOOM FILTER”

are reserved for Bloom filter maintainable. When the client

calls get(“SET BLOOM FILTER′′), the Memcached

Scenario Server Provisioning Workload Distribution
Static All servers are on simple hash with modular
Naive Dynamically tuned simple hash with modular

Consistent Dynamically tuned Consistent hashing
Proteus Dynamically tuned Proteus’s algorithms

TABLE II
BLOOM FILTER PARAMETERS AND DESCRIPTIONS

server will take a snapshot of current Bloom filter bit array.

Calling get(“BLOOM FILTER′′) will retrieve the bit

array as normal data. It exactly follows Memcached proto-

col, and should be compatible with all Memcached client

package. We have conduct extensive tests with spymem-

cached [32] (implemented in Java), and Python-Memcached

[33]. The results show that our Memcached release works

perfectly with the above two clients.
4) Database: The Wikipedia English dump [29] is about

70GB in total. We divide the data horizontally into 7 pieces

and have one MySQL server for each piece. The table

engine is InnoDB and indexes are established for each key

column. Each database request contains one single page id
parameter, which is used to look up page latest from

page table. Then, the MySQL will perform another select
in rev text id table by using the page latest value, and

finally, the rev rext id will be used to find the old text
value from text table. The data retrieved from the corre-

sponding old text column will be sent back to web server,

and the web server presents the data to RBE.

VI. EVALUATION

In the evaluation part, we compare four different sce-

narios: Static, Naive, Consistent, and Proteus. The detailed

description is shown in Table II.
In this paper, we attack the performance penalty when

applying dynamic cluster provisioning. For the sake of

fairness, we use the same cluster provision feedback loop.

Due the limit of space, the details of the feedback loop

is omitted here. We run the feedback control algorithm

along with Proteus with the delay bound set to 0.5 second.

The feedback loop reference point is set to 0.4 second

to tolerate overshot. The loop updates its status every 30

minutes. After this experiment, we know the number of

running cache servers assigned to each 30-minute time slot,

which is shown as the curve with small circles in Fig.

4. Here we use the number of requests as the workload

based on which we do dynamic provisioning. It is true

that the number of data being visited should be the real

workload, because the bottleneck resource in Memcached

cluster is the main memory. However, although the number

of requests is not strictly linear proportional with the number

of data being visited, it is a reasonable estimation and it is

also easy to get. Please also note that our major focus is

not designing optimal provisioning algorithm but the load

balancing and smoothness of transition during provisioning

dynamics. Then we apply the same cluster provisioning

result, Wikipedia data and Wikipedia workload to all 4

different scenarios. In this way, the only differences of 4
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Fig. 4. WikiPedia Workload
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Fig. 5. Load Balancing

scenarios are the load balancing algorithm and their behavior

in face of provisioning transition.

A. Load Balancing under Dynamics

We first evaluate how our load balancing algorithm works

with real Wikipedia workload [30]. The trace contains

timestamp and requested URL for every single user request.

We first do some preliminaries to distill the requests that

hit English Wikipedia. Then we sort all the request by

timestamp, and count the number of requests inside every

1-hour time window. The result workload is depicted as the

curve with dots in Fig. 4. Due to the lack of Wikipedia

image data, our system cannot serve the real workload, and

hence the response time for real workload is not measured.

However, given that we are evaluating whether the load is

balanced or not under dynamics in Memcached tier, we do

not actually need the real image data. All we need is to

measure whether the number of requests handled by each

Memcached server is roughly the same. Again, as we stated

before, the paper does not focus on how to build an efficient

and accurate feedback loop for server provisioning. Here,

we use the provisioning result as shown as the curve with

circles in Fig. 4.

In Fig. 5, we study the performance of load balancing of

the algorithms by depicting the ratio of min{Lt
i|i < n(t)}

over max{Lt
i|i < n(t)} for all t, where Lt

i is the workload

on Memcached server i in tth time slot. The curve with

dimonds shows the load distribution by using Proteus, while

the curves with small circles and triangles show the load

distribution by using naive and static solutions (hash and

modular) respectively. Clearly, Proteus achieves as good

performance as the static and naive solutions. The curve
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Fig. 9. Response Time

with squares depicts the load distribution using consistent

hashing with O(log n) randomly placed virtual nodes. The

result is much worse than Proteus in face of real Wikipedia

workload. Then we increase the number of virtual nodes for

Consistent to n2

2 , and the result is shown by the curve with

stars. It is better than the O(logn) case but is still much

worse than Proteus.

B. False Positive and False Negative

The counting Bloom filter is the key feature used as a

digest for the Memcached data in the smooth transition

phase. Both Memcached server and Bloom filter should

be configured carefully, so that the cache achieves high

hitting rate and the Bloom filter has low false positive

and false negative rate. We apply the real Wikipedia trace

[30] to evaluate Bloom filter settings. Fig. 6 shows how

does the Memcached cache size affect hit ratio. When

each Memcached server uses 1GB memory (with 4KB data

per page), the hit ratio reaches above 80% (i.e., roughly

2,560,000 pages in cache). With this setting, we proceed

to tune the Bloom filter. As we stated before, using more

hash functions in the Bloom filter induces higher overhead.

Therefore, we choose to use only 4 non-encryption hash

functions and tune the Bloom filter size instead. Fig. 7 and

Fig. 8 present the relationship between the Bloom filter size

and the false positive/negative ratio. As shown, with 512KB

memory, the Bloom filter achieves negligible false positive

and false negative rate. So, we set the Bloom filter to use

512KB memory when doing other evaluations.

C. Response Time

In this section, we will evaluate the service response

time by applying synthetic workload to the server cluster.

The response time is measured on the RBE side, which

records the time duration from submitting one HTTP request

to receiving the corresponding response. Each RBE server

simulates hundreds of independent users with think time 0.5

second. As we have 10 RBE servers, altogether, there will

be approximately a few thousand user requests per second.

Each user has an independent page set of 50 pages. Every
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Fig. 8. False Negative vs Bloom Filter Size

time generating one request, the user thread will choose

one page from her page set, and contact the web server

to perform server side logic. The user requests will be

uniformly randomly directed to all web servers.
Fig. 9 shows the experiment result. The recorded response

time data are grouped into 480 slots according to physical

time. We look at the response time locating at 99.9%

percentile. The delay is plotted logarithmically. The curve

with squares shows the response time for the Naive solution

where the requests are directed by using simple hash and

modular operation. Obviously, there is a huge response

time spike when the number of running Memcached servers

changes. As we explained before, it is because, when the

number of running Memcached server changes, the mapping

between data key and Memcached server ID changes signif-

icantly. A large number of requests will see misses in cache

tier and will reach the database tier, hence induce a spike in

response time. The curve with triangles depicts the response

time when using consistent hashing with exactly n2

2 virtual

nodes. The virtual nodes are placed randomly using Java

Random class. All web servers share the same random seed

(0) to generate virtual node positions. Therefore, the view

of all web servers are consistent. The consistent hashing

solution shows much better performance during dynamics.

But there are still considerable performance degradation

during transition. The curve with circles demonstrates the

response time when using Proteus. The delay spike is clearly

removed, and users see almost no difference during the tran-

sition stages. Proteus’s performance match what the static

solution achieves as shown by the curve with diamonds.

D. Power Consumption
In previous sections, we have shown that, by using

Proteus, the performance degradation induced by dynamic

server provisioning is almost eliminated. Now, we compare

the power consumption of the four different scenarios. We

measure the real power reading by using the Avocent 3000

Power Distribution Unit. The data is sampled every 15

seconds. We take the entire cluster (web servers, cache

server, and database servers) into consideration to see total

power saving, rather than considering only the Memcached

tier. Fig. 10 shows the power consumption over time. The

Static scenario consumes roughly the same level of power
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Fig. 11. Total Energy

during the whole experiment. The power consumption actu-

ally decreases slightly as the workload decreases. However,

when compared with the power saving induced by server

provisioning (as shown in the other three scenarios), the

difference is almost unnoticeable. The curve with small dots

shows the power draw of Proteus. It is clear that, Proteus not

only eliminates performance degradations, but also saves the

same amount of energy compared to Naive and Consistent

cases. The total energy consumption during the experiments

is shown in Fig. 11. The final result is that, with Proteus, we

are able to save roughly 10% energy over the entire cluster,

and 23% over the cache cluster without delay penalty.

VII. RELATED WORK

Most previous data center energy management work fall

into two scenarios: stateless clusters and stable storage

systems. Plenty of prior work discussed [1–8] dynamic

server provisioning under computational-intensive workload

or stateless web servers. In these work, response time

constraints or job deadlines are usually presented. The
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OptiTuner [1] models 3-tier web server energy management

problem as a optimization problem that aims at minimizing

the energy consumption while follows the delay constraints.

Decomposition technologies are used to achieve optimal

iteratively. Yao et al. [2] and Liu et al. [3] try to minimize the

cost among multiple geologically distributed data centers.

Literature [4–7] takes the thermal effect into consideration to

further improve the energy efficiency. However, all of these

works focus on computation-intensive workload or assumes

that the servers are stateless. As we have stated before, the

assumption does not hold for many real systems (e.g., web

servers with session enabled, or cache clusters).

Another hot topic is energy management in distributed

file system (DFS). Different from the stateless web servers,

the most import property in DFS is data availability. Hence,

related work [9–11] often focus on designing smart data

placement policies, such that a portion of DFS servers

can be powered off. In DFS, data are usually divided into

small pieces and stored on different servers with multiple

replications. In order to turn off DFS servers while guarantee

data availability, Leverich et al. [10] proposed the covering

set policy that one replication of each piece of data will

be placed inside a small subset of DFS cluster. Hence, the

remaining servers can be turned off safely without breaking

the data availability guarantee. The GreenHDFS [11] further

improve the idea by accounting data popularity. However,

the above two papers do not consider load balancing the

DFS system. Hrishikesh et al. [9] proposed the “equal work”

policy, such that every running DFS server will serve the

equal amount of data pieces regardless of the size of running

DFS cluster. The above ideas are smart and reasonable.

But they are not applicable to the cache cluster, as they

rely on meta servers to store the location of every piece

of data. The memory cache cluster are design for fast

data access for huge amount of data pieces. Performing

multiple operations on centralized meta servers for every

single request will create a performance bottleneck, and

hence, induce unacceptable huge delay.

VIII. CONCLUSION

In this paper, we attack the performance penalty caused by

dynamic cache cluster provisioning in data centers. Tuning

the the size of the cache cluster brutally leads to loss of

in-memory “hot” data. Also, if load balancing is required,

a significant amount of data will be re-mapped to different

cache servers. Proteus proposes solutions for both problems.

To minimize the amount of migrated data during load re-

balancing, we design a virtual node placement algorithm that

guarantees the amount of re-mapped data meets the lower

bound. In order to make losing “hot” data less painful, we

propose an on-demand data migration policy to amortize

the cost to every single related request. By evaluating

Proteus with Wikipedia data and workload trace on a 40-

node cluster, we conclude that Proteus is able to reduce

the cache cluster energy consumption without sacrificing

response time.
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