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Abstract 

We consider the use of cognitive models as both models of 
human cognitive function and human-compatible decision 
aids. The domain of application is prediction based on partial 
information in the context of emergency events where the 
availability and timeliness of information is limited. The 
cognitive model is based on the memory retrieval processes of 
the ACT-R cognitive architecture, most specifically its 
underpinnings in the rational analysis of cognition. The model 
is shown to capture well the temporal and spatial 
characteristics of the data. Finally, we discuss potential issues 
in the application of cognitive models as decision aids and 
recommender systems, in particular the ability to introspect in 
the workings of the model to select data most suitable for the 
human decision making process. 

Keywords: Rational Analysis, Cognitive Architecture, Long-
Term Memory, Decision Making, Decision Aids, 
Recommender Systems. 

Introduction 
In the Age of Big Data, we are confronted with an 
increasingly rich and rapid flow of information. While the 
availability of data is increasing seemingly exponentially in 
our personal and professional lives, our basic human 
capabilities are not keeping pace. Recognizing with his 
customary foresight the increasingly deep disconnect 
between our abilities and the demands placed upon them, 
Herbert A. Simon once said, “Moore’s Law fixes everything 
but us”.1 

Of course, technology has the potential to be the solution 
as well as the problem. Adaptive information retrieval tools 
such as search engines are helping us access and filter vast 
and diverse knowledge resources. In a more proactive way, 
personal electronic assistants such as Siri and Google Now 

                                                             
1 While Moore’s Law might finally be running out of steam, it 

has been replaced by the exponentially increasing availability of 
massively distributed computation and sensor resources (Kurzweil, 
2006). 

offer to manage our data flows and provide us with timely, 
contextual information. 

However, interpreting information and using it to make 
decisions is considerably more complex than simply making 
it available. Decision aids, including recommender systems, 
have been proposed to assist and delegate complex human 
decision-making. Leveraging the Big Data wave itself, those 
systems are typically data-driven, exploiting statistical 
regularities to extrapolate to similar situations. For instance, 
Netflix recently organized a competition to develop better 
algorithms for recommending movies by relying on ratings 
of viewers with similar tastes to a given customer. A 
fundamental problem with this approach is its opaque 
nature. When it fails, it tends to do so in ways unexpected 
and incomprehensible to human users, undermining trust in 
a system that not only performs poorly but cannot explain 
its own failures. 

One potential solution is to design personal assistants that 
work in ways similar to humans, making them both more 
transparent and more compatible. Recently, a number of 
proposals have been made to measure artificial intelligence 
in more effective ways than the classic Turing Test, in 
particular by having it perform more typical tasks in human-
like ways (AI Magazine, 2016). Going even further, the 
suggestion has been made to design intelligent agents based 
on the structure and mechanisms of the human brain (e.g., 
Stocco et al., 2010). For purposes of decision aids, such 
biologically inspired cognitive architectures might be a 
bridge too far. For instance, Google’s PageRank algorithm 
might work in a way roughly similar to human associative 
memory, but few users would presumably care whether it 
mimics the structure of the hippocampus or the posterior 
cortex. 

Cognitive architectures and models have primarily been 
developed as computational instantiations of theories of 
cognition. For purposes of serving as decision aids to human 
users, it is tempting to adopt the traditional AI view of 
treating them as black boxes and arguing that compatibility 
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with the human decision maker is primarily required from a 
functional, behavioral point of view. In terms of the Marr 
levels of analysis (Marr & Poggio, 1976), that would mean 
that what matters is primarily their functionality at the 
computational level rather than the algorithmic level or the 
implementational level. We disagree with that view. 

Instead, we argue that, while the implementational level 
might not be directly relevant other than perhaps for 
purposes of scalability and efficiency, compatibility with the 
human decision maker at the algorithmic level is essential 
for truly effective interaction. Computational equivalence 
only enables a relatively superficial integration of outcomes, 
while algorithmic equivalence enables a deeper integration 
of processes. 

We illustrate the distinction by introducing two functions 
of a cognitive model as decision aid: prediction and source 
selection. Prediction involves generating a recommended 
decision for the user to follow, and as such only requires 
computational compatibility. However, it leaves the user 
with little choice beyond accepting or rejecting the 
recommendation in its entirety. Source selection consists in 
selecting a subset of information on which the human user 
would base his own decision. While this enables richer 
interaction between user and decision aid, it also requires 
deeper compatibility, down to the algorithmic level, because 
the selection process requires integration with the processes 
of the human decision maker. 

In the rest of this paper, we introduce a decision-making 
task based on a real world data set of emergency situations. 
We then describe a model of the task based on a rational 
analysis of cognition, and present quantitative results. 
Finally, we discuss implications for the design of 
cognitively inspired decision aids and recommender 
systems, and point out future work directions. 

Task and Data 
We focus on the problem of data extrapolation in 
participatory sensing applications, where users both use and 
provide information to the system, in the face of disruptive 
pattern changes, such as those that occur during natural 
disasters. We consider cases where resource limitations or 
accessibility constraints prevent attainment of full real-time 
coverage of the measured data space, hence calling for data 
extrapolation. Many time-series data extrapolation 
approaches are based on the assumption that past trends are 
predictive of future values. These approaches do not do well 
when disruptive changes occur. An alternative recourse is to 
consider only spatial correlations. For example, certain city 
streets tend to get flooded together after heavy rain (e.g., 
because they are at the same low elevation), and certain 
blocks tend to run out of power together after a 
thunderstorm (e.g., because they share the same power 
lines). Understanding such correlations can thus help infer 
state at some locations from state at others when disruptive 
changes (such as a flood or a power outage) occur. 

We evaluate our prediction model through a real-world 
disaster response application. In November 2012, Hurricane 

Sandy made landfall in New York City. It was the second-
costliest hurricane in United States history (surpassed only 
by hurricane Katrina) and the deadliest in 2012. The 
hurricane caused widespread shortage of gas, food, and 
medical supplies as gas stations, pharmacies and (grocery) 
retail shops were forced to close. The shortage lasted about 
a month. Recovery efforts were interrupted by subsequent 
events, hence triggering alternating relapse and recovery 
patterns. The daily availability of gas, food, and medical 
supplies was documented by the All Hazard Consortium 
(AHC), which is a state-sanctioned non-profit organization 
focused on homeland security, emergency management, and 
business continuity issues in the mid-Atlantic and northeast 
regions of the United States. Data traces2 were collected in 
order to help identify locations of fuel, food, hotels and 
pharmacies that may be open in specific geographic areas to 
support government and/or private sector planning and 
response activities. The data covered states including WV, 
VA, PA, NY, NJ, MD, and DC. The information was 
updated daily (i.e., one observation per day for each gas 
station, pharmacy, or grocery shop). 

With these points of interest sites and input data as ground 
truth, we evaluate the model predictions. The metrics we use 
are accuracy of inference and amount of data needed. We 
break time into daily cycles to coincide with the AHC trace. 
We then plot the performance of the model when a 
configurable amount of today’s data is available (in addition 
to all historic data since the beginning of the hurricane). 

We evaluate the solutions on November 3rd, and 
November 8th. November 8th corresponds to a period of 
disruptive change due to a second snowstorm that hit after 
Sandy, causing massive temporary relapse of recovery 
efforts due to new power outages, followed by a quick state 
restoration to the previous recovery profile. November 3rd 
is an example of a period of little change, when damage was 
incurred but recovery efforts have not yet been effective. 
The same trend was observed for all datasets, namely, gas, 
pharmacy, and food. 

 

 
 

Figure 1: Data Extrapolation Task Interface. 

                                                             
2 Available at: http://www.ahcusa.org/hurricane-Sandy-

assistance.htm 

34



Figure 1 displays a snapshot of the interface that we used to 
display the model results during model development. While 
we will focus in this paper on quantitative results for model 
evaluation, visualizing the spatial and temporal patterns of 
model prediction helped us understand the workings of the 
model and its strengths and shortcomings. It also helped us 
experiment with the model efficiently in exploring 
parameter settings and comparing model versions. Pull-
down menus let the modeler easily select the date of the 
comparison, the category of data (pharmacy, food, gas), the 
sampling rate (percentage of the day’s data to use in 
addition to historical data), the confidence threshold 
(probability to label an outlet as open, defaulting at an 
unbiased 50%) and any two versions of the model (see next 
section) to compare side by side against each other. 
Circles/crosses indicated a prediction that the outlet was 
open/closed. Color indicated the correctness of the 
prediction, with blue and red representing correct and 
incorrect respectively, while grey indicates no prediction 
was made because that data point was sampled. The data 
points were plotted on a Google Maps overlay of the 
geographical area, allowing the modeler to zoom in and out 
on various areas. 

Cognitive Model 
While prediction can be viewed as a specialized exercise 
best left to domain experts and statisticians, e.g., weather 
forecasting, stock market investing, sports betting, it also 
forms the implicit basis of many common everyday tasks. 
Previous models have shown its ubiquity in domains 
ranging from game playing (West & Lebiere, 2001) to 
sports (Lebiere et al., 2003), decision-making (Erev et al., 
2010), and learning event sequences (Wallach & Lebiere, 
2000). 

While prediction can require the use of elaborate 
strategies and expert knowledge, those approaches are 
highly domain-specific and thus generalize poorly and tell 
us little about the basic nature of cognition. More 
fundamentally, complex approaches still seem to rely on a 
common basis of implicit statistical inference (e.g., 
Oaksford & Chater, 2007). The rational analysis of 
cognition (Anderson, 1990) has argued that our cognitive 
mechanisms have evolved to reflect the statistical structure 
of the environment. These regularities are quite pervasive 
and are displayed by our cognitive systems even when they 
are unwarranted and result in cognitive biases (Lebiere et 
al.You, 2013). 

The rational analysis of cognition can offer a 
computational-level account of cognitive prediction. To 
achieve an algorithmic account with constrained 
quantitative predictions, we used the ACT-R cognitive 
architecture (Anderson et al., 2004). The mechanisms of its 
declarative module, in particular, reflect pervasive statistical 
patterns of the environment such as the power laws of 
learning and forgetting. As prediction relies on the 
knowledge of past events, it is logical to base the model on 
retrieval of information from long-term declarative memory. 

In ACT-R, information is represented in declarative 
memory in the form of chunks, which are structured objects 
consisting of a set of attributes (also known as slots) with 
associated values. Chunk complexity (i.e., number of 
attributes) is typically limited, reflecting capacity constraints 
such as the size of working memory (Miller, 1956; Cowan, 
2001). For instance, it would be unreasonable to store the 
entire history of an outlet or a whole day’s data in a single 
chunk. Beyond capacity limitations, theories of chunk 
creation also typically limit their content to information that 
is available simultaneously at a given point in time and thus 
can plausibly be bound together in a new chunk structure. 

Therefore, each chunk in memory represents the 
availability of a given outlet on a given day. Attributes that 
are represented include the identity of the outlet (itself 
represented as another chunk) and its status: open or closed 
(also represented as a chunk). The specific day could have 
been represented as a third attribute, although we decided 
against it for two reasons. First, it is slightly implausible that 
people would explicitly label each memory with the date of 
the day in which it was formed. Second, it would have 
resulted in a proliferation of memory chunks (one for each 
day and outlet) without markedly affecting the model 
predictions when the blending mechanism is used (see 
below). 

Instead, time is represented implicitly in the activation of 
the corresponding chunk. The base-level activation Bi of a 
chunk i reflects its history of (re)creation and access as 
follows: 

 
!! = !"# !!!!!

!!!  (1) 
 
Where tj is the time lag since the jth occurrence of the 

chunk, n is the total number of occurrences, and d is the 
decay rate (typically fixed at 0.5, as is the case in this 
model). For any given outlet, at most two associated chunks 
exist in memory: one recording that the outlet is closed and 
another recording that it is open on a given day. The base-
level activation of these chunks will be reinforced with each 
occurrence of the respective event. The temporal version of 
the model then obtains a prediction for the status of a given 
outlet by retrieving the most active chunk associated with 
that outlet and returning the status stored in that chunk. 
Because the total activation Ai of chunk i also includes in 
addition to the base-level activation a stochastic component 
controlled by noise parameter s (using the typical value of 
0.25 here), the retrieval process is probabilistic, described 
by the probability P(i) following the Boltzmann (softmax) 
distribution over all candidate chunks j: 

 

! ! = !
!!
!

!
!!
!!

 (2) 

 
For a given outlet, only two chunks will compete for 

retrieval, and the winning chunk will reflect a combination 
of frequency and recency of the associated outcome, which 
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is generally the temporal properties that are desired for 
prediction. 

However, as mentioned earlier, temporal criteria are of 
limited usefulness when facing sudden disruption such as 
natural disasters. While a given outlet is usually open 
(frequency), and was open yesterday (recency), it may not 
be open today if a disaster event happened in the meantime. 
In that case, spatial factors constitute an additional basis for 
making predictions. Assuming lack of specific event 
knowledge, e.g., where the storm happened to hit, the most 
direct basis for including spatial factors is the limited known 
availability of nearby outlets. In the absence of additional 
semantic information (e.g., the outlet brand), the most direct 
information to use when attempting to generalize across 
outlets is their spatial location. 

Specifically, the spatial component of the model makes 
use of the partial matching mechanism in memory retrieval, 
which allows for chunks that do not exactly match the 
requested pattern to be considered for retrieval, but with a 
penalty that reflects the degree of mismatch. Specifically, 
the activation Ai of chunk i is now the sum of the base-level 
activation and a mismatch penalty term: 

 
!! = !! +!" ∗ !"#(!,!)!  (3) 

 
where MP is a mismatch penalty scaling parameter (set in 

this model at a fairly standard value of 2.0) applied over all 
k pattern components specified in the retrieval request (only 
the outlet identity in this case) and Sim(v,d) is the similarity 
penalty between the corresponding value d requested and 
the actual value v present in the chunk. To avoid introducing 
needless free parameters, the similarity between outlet 
chunks is set to a linear function of the geographic distance 
between them, scaled such that a distance of 25 miles 
corresponds to a penalty of 1 unit of activation. 

When making a prediction for a given outlet, the model 
will therefore not only consider the history of that given 
outlet as expressed in the base-level activation of the two 
associated chunks, but also chunks associated with other 
outlets as well, with a preference for those closer to the 
given outlet. Note that unlike that is the target of the 
prediction, some of those outlets will a known status for the 
present day, significantly increasing the base-level 
activation of the corresponding day. Thus the retrieval 
process will reflect a competition between the recency (and 
frequency) of outcomes, as reflected in the base-level 
activation, and its (spatial) relevance, as reflected in the 
mismatch penalty term. 

The final component of the model concerns how to 
aggregate the relevant knowledge. As specified in the 
retrieval equation (2), one could simply select the most 
relevant chunk and return the associated outcome (open or 
closed). However, that would leave the prediction relying on 
a comparatively small piece of information, e.g., a chunk of 
limited relevance being retrieved purely through recency 
bias or simply the stochasticity of the process. To reflect 
people’s ability to weigh a sizable part of their knowledge 

base when making predictions (e.g, Lebiere, 1999), the 
blending retrieval mechanism specifies how to return a 
value V (in this case, the availability prediction of a specific 
outlet) that reflects the consensus of the entire set of 
considered chunks, weighted by their respective probability 
of retrieval P(i): 

 
! = !"#$%& !(!)! ∗ !"#(!,!!) ! (4) 

 
Where Sim(V, Vi) is the similarity between the consensus 

value V and the value Vi proposed by chunk i.  In this 
model, those values returned by the retrieval process are the 
outlet availability values: open or closed. Treating those 
values as binary would result in a process where the 
evidence for each outcome in the form of the activation of 
the chunks representing that outcome would be weighted 
against that of the competing outcome, and the greater one 
selected. 

However, a more general decision process is also 
possible. By setting those values as numerical outcomes 
(e.g., 1 for open and 0 for closed) and assuming linear 
similarities in that range (the default, as for distance 
similarities earlier), the consensus value V will be 
somewhere in that interval reflecting the degree of 
preponderance of one outcome over the other. That value 
can then be interpreted as a confidence value in the open 
outcome, and assessed against a probability decision 
threshold (as mentioned in the description of Figure 1). This 
reflects the requirements of real world applications, e.g., 
where one might not want to predict that an outlet is open 
during an emergency without a fairly high certainty. 
However, we will only consider majority decisions (i.e., 
probability threshold of 0.5) in the following results section. 

Results 
In the absence of comparable human data, we examine the 
prediction performance of the model on a functional basis, 
but also looking to assess its cognitive plausibility. We also 
report results for the temporal and spatial versions of the 
model to assess the relative contribution of the two 
mechanisms. 

 

 
Figure 2: Performance of Temporal Model Across Time. 
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Figure 2 reports the aggregate performance of the 
temporal model across the entire range of data for about a 
month after the storm. This is the version of the model that 
only matches chunks for that specific outlet and relies only 
on its history. Performance is very poor on the day 
following the storm because of the lack of relevant data, but 
improves very quickly, with even a single day worth of data, 
because of the importance of the recency factor. 
Performance actually regresses slightly after that, as outlets 
become available again in a pattern that is difficult to 
predict, especially without access to semantic data such as 
outlet brands, which might get resupplied at the same time. 

 

 
Figure 3: Effect of Decay Rate on Temporal Model. 

 
Performance especially degrades on day 8, following a 

secondary storm that disrupts the pattern again. After that, it 
gradually improves over time to about 10% errors. 
Following the strong suggestion of the importance of the 
recency effect, Figure 3 examines the performance of the 
temporal rate as a function of the power law decay rate d for 
each outlet category averaged over all days, separated by 
outlet category. In general, a higher decay rate results in a 
lower error rate, indicating the primacy of recency over 
frequency. The availability of food outlets tends to be harder 
to predict than gas or pharmacy outlets, perhaps because 
their merchandise is more important or more perishable, 
leading to faster depletion, but the pattern is similar. 

 

 
Figure 4: Effect of Decay Rate on Spatial Model. 

Figure 4 reports the effect of the same decay rate, but for the 
spatial3 model, that also reflects generalization across 
outlets using the partial matching and blending mechanisms. 
One can see that there is now a penalty for very high decay 
values that overemphasize recency. When considering a 
broader knowledge base, frequency of occurrence becomes 
more important and balances out against recency around the 
decay rate value of 0.5 that has become the standard value 
in ACT-R models for capturing human performance. 

 

 
Figure 5: Effect of Sampling Size on Spatial Model. 

 
The results of the spatial model presented in Figure 4 are 

actually slightly worse than those of the temporal model 
because we evaluated them on common ground, i.e., without 
including any of the current day’s data for the spatial model 
to generalize from. Figure 5 examines the impact of the 
sampling rate of data for the current day to determine the 
effectiveness of the spatial model to generalize from nearby 
outlets. Generalization is quite effective, reducing the 
probability of error by half with about 20% of the current 
data. Note that more data (up to 50%) doesn’t improve 
generalization further because of the overall unpredictability 
of the task, at least in certain conditions. 
 

 
Figure 6: Effect of Circumstances on Spatial Model. 

                                                             
3 We could refer to it as the integrated model because it also 

includes the temporal aspect through the base-level component, but 
we found the spatial/temporal distinction to be more descriptive. 
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Finally, to examine the impact of conditions on 
generalization, Figure 6 focuses on performance on Day 3 
(2 days after the storm) and Day 8 (the day after a secondary 
storm hit) for food and gas outlets (pharmacy outlets 
omitted but results similar to gas). Because of the difficulty 
of predicting availability immediately after a disruptive 
event, the error rate is consistently and significantly higher 
on Day 8 than Day 3. However, as for the average across all 
days, performance significantly improves with sampling 
rate, becoming almost error-free on Day 3, which relies only 
on a single day of useful complete data (Day 2) and the 
specified proportion of the current day’s data. 

Discussion 
Gu et al. (2014) applied a variety of algorithmic 

approaches to the prediction problem using this data set. 
They similarly differentiated their approaches between 
spatial and temporal algorithms. Their algorithms can be 
seen as specialized version of the cognitive mechanisms 
used here, e.g., the LastKnownState algorithm is simply the 
recency component of base-level activation without 
frequency, while the BestProxy algorithm is effectively 
partial matching without blending (or stochasticity). 
Recognizing the need to reflect both temporal and spatial 
data, they develop an algorithm that combines the best of 
the two approaches, in a way similar to, but more limited 
than, how those factors are combined in chunk activation. 

The compelling argument for cognitive models, however, 
is not that they outperform a given machine learning 
algorithm. Rather, it is that they provide a way to augment 
human cognition in a way that is fundamentally compatible 
with it, for example by selecting a limited set of data to 
provide to the human decision maker that would result in 
the best human performance. In ongoing work, we are 
exploring mechanisms to introspect into the mechanisms of 
our cognitive model to drive data selection that would 
maximize its performance. We plan to then verify the 
model’s predictions by collecting data in situations that 
combine model data selection and human decision making. 
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