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Abstract Sensor-enabled smartphones are opening a new

frontier in the development of mobile sensing applications.

The recognition of human activities and context from sensor

data using classification models underpins these emerging

applications. However, conventional approaches to training

classifiers struggle to cope with the diverse user populations

routinely found in large-scale popular mobile applications.

Differences between users (e.g., age, sex, behavioral pat-

terns, lifestyle) confuse classifiers, which assume everyone

is the same. To address this, we propose Community Simi-

larity Networks (CSN), which incorporates inter-person

similarity measurements into the classifier training process.

Under CSN, every user has a unique classifier that is tuned

to their own characteristics. CSN exploits crowd-sourced

sensor data to personalize classifiers with data contributed

from other similar users. This process is guided by simi-

larity networks that measure different dimensions of inter-

person similarity. Our experiments show CSN outperforms

existing approaches to classifier training under the presence

of population diversity.

Keywords Smartphone sensing � Activity recognition �
Community-guided learning

1 Introduction

The popularity of smartphones with embedded sensors is

growing at rapid pace. At the same time, research in the area

of mobile phone sensing is expanding the boundaries of

mobile applications [14, 21, 25, 26, 31]. Advances in human

centric sensing are being fueled by the combination of: (1)

raw sensor data, which is now practical to sample from large

user populations, and (2) classification models that extract

human activities, events, and context from low-level sensor

data.

As user populations of mobile sensing applications

increase in size, the differences between people cause the

accuracy of classification to degrade quickly—we call this

the population diversity problem. In this article, we dem-

onstrate that the population diversity problem exists and

classification accuracy varies widely even as the user pop-

ulation is scaled to up as little as 50 people. To address this

problem, we propose Community Similarity Networks

(CSN). CSN is a classification system that can be incorpo-

rated into mobile sensing applications to address the chal-

lenge to robust classification caused by the population

diversity problem. The conventional approach to classifica-

tion in mobile sensing is to use the same classification model

for all users. Using CSN, we construct and continuously

revise a personalized classification model for each user over

time. Typically, personalized models require all users to

perform manual sensor data collection where users provide

hand-annotated examples of them performing certain

activities while their devices gather sensor data (i.e., labeling

data). This is both burdensome to the user and wasteful as
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multiple users often collect nearly identical data but the

training of each model occurs in isolation of each other. The

key contribution of CSN is that it makes the personalization

of classification models practical by significantly lowering

the burden to the user through a combination of crowd-

sourced data and leveraging networks that measure the

similarity between users.

CSN exploits crowd-sourcing to acquire a steady stream

of sensor data and user input, either corrections to classifi-

cation errors or the more common hand-annotated examples

of sensor data when performing an activity (i.e., labeling).

Under CSN, training classifiers becomes a networked pro-

cess where the effort of individual users benefits everyone.

However, the use of crowd-sourced data must be done

carefully. Crowd-sourced data must only selectively be used

during training so the resulting model is optimized for the

person using the model. CSN solves this problem by main-

taining similarity networks that measure the similarity

between people within the broader user population. We do

this by proposing three different similarity metrics (i.e.,

physical, lifestyle/behavior, and purely sensor data driven)

that measure different aspects of inter-person diversity

which influence classifier performance. The CSN model

training phase then utilizes forms of boosting and co-training

to allow these different types of similarity to each contribute

to improving the accuracy of the personalized classifier.

The contributions of this article are as follows:

• CSN is the first system to propose embedding inter-

person similarity within the process of training activity

classifiers. To the best of our knowledge, CSN repre-

sents the only activity recognition system designed

specifically to cope with the population diversity

problem, which would otherwise jeopardize large-scale

deployments of mobile sensing systems.

• We propose similarity metrics and a classification training

process that support: (1) the extraction of similarity

networks from raw sensor data and additional end-user

input and (2) a learning process that adapts generic

classification models through careful exploitation of

crowd-sourced data guided by similarity networks.

• We have evaluated our system using three large-scale

mobile sensing datasets that range in size between 50

and 120 people. We measure the robustness of our

classifiers and the ability of CSN to cope with

population diversity.

This article is an extended version of a paper [18] pre-

sented at Ubicomp 2011. We begin in Sect. 2 by examining

the challenges presented by the population diversity prob-

lem. Sect. 3 details how activity recognition is performed

under the CSN approach. We present the evaluation of our

system in Sect. 4 Finally, we discuss related work in Sect. 5

before presenting our conclusions in Sect. 6.

2 Community-scale classification

In this section, we discuss a key difficulty in realizing

large-scale mobile sensing applications. Specifically, we

examine how population diversity can cause classification

to become unreliable and inaccurate.

2.1 One size does not fit all

As mobile sensing prototype systems are deployed to an

increasing number of users, their diversity increases as

well. These users differ from one another in a variety of

ways, a concrete example being physical dissimilarities as

measured by sex, weight, height, or the level of physical

fitness. Beyond these visually obvious differences, there

are differences based on lifestyle and background. People

come from different ethnic and social-economic origins,

live and work in different locations, and while they may

perform the same core collections of activities (e.g.,

socializing, exercising, working), they may do these

activities in significantly different ways.

Inter-personal differences can manifest as differences in

the discriminative patterns contained in sensor data that are

used to classify activities, events, and contexts. For

example, the features from accelerometer data that allow

classifiers to distinguish between the basic activities of

walking and running can be completely different between a

group of older adults (older than 65 years) and a group of

people who are in their 20s and 30s. Figure 1 visualizes

this difference when these two groups are walking. We plot

the first two PCA components on each axis of the figure

based on a range of already validated activity recognition

accelerometer features [22]. The very clear distinction

between sensor data sourced from these two groups is

surprising, particularly given the homogeneity you would

expect in a simple activity like walking.

To further quantify this problem, we build a LogitBoost

classification model [10] and reuse the same previously

validated activity recognition features. This model is

trained using labeled data from the group of people in their

20s and 30s. Using this model classification accuracy while

they walk and climbed stairs ranges between 80 and 90 %

for each person. However, when this same classifier is used

by the group of aged people, the average accuracy dropped

to nearly 60 %. Clearly, a one size fits all approach to

classification models will not scale to large user popula-

tions which will contain many such groups.

This effect is not only limited to strictly physical

behavior (e.g., walking, running or climbing stairs) but

extends to a broader range of behavioral inferences. We

investigate the breadth of this problem by performing an

experiment on two distinct mobile sensing datasets. The

first dataset (obtained from the authors of [35, 36]) contains
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GPS sensor data for 51 people performing 4 different

transportation modes (e.g., driving a car or riding a bike).

The second is comprised of multi-modal sensor data (e.g.,

microphone and accelerometer data) for 41 people per-

forming a range of everyday activities (e.g., walking up

stairs, exercising, brushing teeth). For both datasets, we

train a single classifier and evaluate the accuracy for each

user, by applying the classifier to test data sourced only

from that user. Figure 2 is the Cumulative Distribution

Function (CDF) of accuracy for these experiments and

shows the spread of accuracy within the user population

under both datasets. Accuracy levels for the transportation

mode dataset are as low as approximately 40 % for the

bottom performing 60 % of end-users and as high as 90 %

for the top 7 %. Similarly, we find for the everyday

activities dataset for 40 % of the users the accuracy is only

12 %, even for 80 % of users the accuracy raises only

marginally to 55 %.

2.2 Limitations of current practice

The de-facto standard practice in incorporating classifi-

cation into mobile sensing systems centers around a single

unchanging classification model which is trained prior to

deployment. Due to the reasons of population diversity,

this model works for some people, but not others; the

accuracy of the system remains difficult to predict and

increasingly unreliable as the user population grows.

Ideally, the classifier would capture the distinctions

between certain activities performed by different subgroups

in the population as different activities entirely (e.g.,

walking when performed by two sub-groups could be two

different classes), whenever these distinctions impact the

classification process. However, this would significantly

increase the amount of examples required for the same

logical activity. Acquiring these examples is manually

intensive (requiring careful labeling of data segments),

making this approach impractical as it simply does not

scale.

A promising direction being actively explored is the

personalization of classification models to improve accu-

racy (e.g., [17, 23, 24, 32]). These models are tuned to

sensor data generated or encountered by the individual.

Typically, tuning occurs based on input from the user. For

example, the user corrects classification errors or provides

additional examples of activities by labeling sensor data

with the ground-truth activity occurring during the sam-

pling of the data. The classifier is then retrained using

sensor data collected and labeled only by the user.

The limitation of such personalization of classification

models is that accuracy only improves when and if people

take the effort to manually provide additional sensor data

examples. Independent of effort, it will also take time for

people to encounter certain situations that are good dis-

criminative examples to incorporate into the model. The

key problem with this type of gradual improvement is that

it leads to enormous amounts of redundant effort. Classi-

fication models are improved in isolation and each user

potentially has to repeat steps that have already been done

by other users to improve their own personal model.

3 Community Similarity Networks

In this section, we describe the system components and the

core algorithms used at each stage of CSN. The CSN

system is designed to construct and periodically update

personalized classification models for each user. A key

novelty of CSN is that it achieves personalization by using

only a small amount of a specific user’s training data and

Fig. 1 We visualize the differences in features under an identical

activity, walking, for two distinct community sub-groups. One group

contains people over 65 years old, and the other group contains

people in their 20s and 30s. Here we show just the first two

components of the PCA of these features

Fig. 2 Classification accuracy varies significantly within a large-

scale user population for two datasets, one containing everyday

activities and the other transportation modes
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combining it with training data selectively recruited from

others with whom the user shares similar traits.

3.1 Framework

Figure 3 illustrates stages of the CSN framework that

produce personalized classification models for each user.

Each of these stages occurs either in one of the two

architectural components, the Mobile Phone Client soft-

ware or the Mobile Cloud Infrastructure.

The Mobile Phone Client software samples sensor data

to recognize human behavior and contexts by performing

inference using classification models. While inference

occurs locally, the models themselves are downloaded

from the Mobile Cloud Infrastructure. The client software

also collects training data comprised of both raw sensor

data and data segments that have been labeled by CSN

users with the ground-truth activity or context.

The Mobile Cloud Infrastructure is responsible for

training classification models. Sensor data are used to

construct similarity networks where network edges indicate

the level of similarity between two users. CSN employes

multiple dimensions of similarity (e.g., sensor data, phys-

ical, and lifestyle) to quantify the various ways users can

differ. Several similarity networks are generated for each

user, one for each of the similarity dimensions. Similarity-

sensitive Boosting trains a classifier for each of the dif-

ferent similarity networks (that correspond to a different

similarity dimension). Similarity Network Multi-training

performs semi-supervised learning and improves every

model by recruiting additional labels from the pool of

unlabeled data. The final step of multi-training unifies each

of the independent classifiers, trained by Similarity-

sensitive Boosting, into a single ensemble classifier ready

to be installed on the phone of the user.

3.2 Mobile Phone Client

In the following subsection, we describe the functions

performed by the Mobile Phone Client, specifically we

detail: (1) the classification pipeline, (2) implementation

specifics, and (3) the collection of sensor data and ground-

truth labels from users.

3.2.1 Classification pipeline

The classification pipeline includes sensor data sampling,

feature extraction, and recognition of an activity, event or

context.

We use the accelerometer, microphone, and GPS sen-

sors to make a variety of proof-of-concept inferences. Our

choice of features were based on observations made in

prior work [24, 25, 35, 36]. For the accelerometer and

microphone, we use the same feature set described in [25]

which include a variety of time domain and frequency

domain features effective for general activity recognition.

For the GPS, we adopt features that were specifically

designed in [35, 36] for transportation mode inference

based on time-series GPS readings. Classification is done

using a boosted ensemble [27] of naive Bayes classifiers

[10]. Inference results are temporally smoothed using a

simple Markov model. Although in our client the stages of

the classification pipeline (i.e., features and the classifica-

tion model) remain fixed, the parameters of the model are

determined, and updated periodically, by the Mobile Cloud

Infrastructure.

Similarity
Sensitive 
Boosting

Similarity 
Network 

Multi-
Training

Community Similarity 
Networks based Learning

Personalized User Model 1

Personalized User Model n

cation models periodically retrained and distributed to end-user mobile phones

Physical Similarity Network

Lifestyle Similarity Network

Sensor-data Similarity Network

CSN Mobile Cloud Infrastructure
Crowd-sourced

Sensor-data
and Labels

Fig. 3 The processing phases within Community Similarity Networks
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3.2.2 Implementation

Our prototype client is implemented on the Google

Android Nexus One [2], although other smartphone plat-

forms also include the requisite capabilities needed by the

Mobile Client [28]. The design of the phone client is split

between a portable classification pipeline library written in

C?? and set of device-specific supporting service (e.g.,

sensor sampling, end-user GUI). The library provides core

classification pipeline components, including feature

extraction and model inference. The device-specific com-

ponents are written in Java and connected with the library

via a JNI bridge.

3.2.3 CrowdSourcing

CSN exploits the crowd-sourcing of both sensor data and

user input to improve classification models. User input

provides the ground-truth activity to segments of sensor

data. Two specific types of user input are supported. First,

users can be asked to confirm or deny a class inference. For

example, asking the user a question—‘Are you currently

exercising?’. Such responses are used later as positive or

negative examples of certain activities. Second, users can

explicitly label data as being an example of an activity or

event. For example, users indicate the ground-truth activity

when a segment of sensor data was sampled by selecting it

from a list presented on the phone GUI. These types of

interactions with users can be incorporated into applica-

tions in various ways. As an example, simple binary yes/no

questions can be presented when the user unlocks their

phone. Alternatively, more involved interaction, such as

when users are selecting activities from a list, can be

framed as software configuration or calibration. Similar

forms of user interaction already occur in real products, for

example, reading training sentences into speech recogni-

tion software or running for precisely one mile to calibrate

a single activity recognition system like Nike? [3].

3.3 Mobile Cloud Infrastructure

In this section, we describe how the Mobile Cloud Infra-

structure: (1) computes similarity networks and (2) uses

these networks to train personalized classification models

that are distributed to all users.

3.3.1 Implementation

Our prototype implementation makes extensive use of

Amazon Web Services [5] (AWS) which offer a number of

generic components useful in building a distributed system.

CSN utilizes the AWS message queues (SQS), binary

storage (S3), and the simple queryable hash table service

(SimpleDB). Each stage of the model training performed

by the cloud is implemented either as python scripts or

C?? modules depending on available library support

given the required functionality. These stages run on a pool

of linux machines as part of the Amazon Elastic Cloud

product and interact with the individual AWS services as

needed. Once a classification model is trained, it is serial-

ized into a JSON-like format and written to the binary

storage (S3), ready to be downloaded by the client.

3.4 Similarity networks

Each similarity network within CSN is constructed from

the perspective of a single target CSN user. Nodes in the

network represent other CSN users and edge-weights

measure the degree to which the target user is similar to the

other users. The CSN framework is designed to leverage

multiple similarity measurements, which capture different

dimensions of affinity between people. Depending on the

activities or contexts that are to be recognized, different

dimensions may be utilized. In this article, we propose the

use of three dimensions of inter-person similarity: sensor

data similarity, physical similarity, and lifestyle similarity.

We demonstrate the effectiveness of each of these different

dimensions in classifying different categories of activities

and contexts in the Sect. 4. However, CSN is agnostic as to

the exact similarity dimensions used.

We now describe the different similarity dimensions

included within the CSN framework.

3.4.1 Physical similarity

Physical differences between people (e.g., weight, height,

age, level of physical fitness, or well-being) will vary

greatly from person to person within a large user popula-

tion. Such differences can alter the way people move and

perform certain physical activities. For example, as we

detailed in the earlier section on community-scale classi-

fication, differences in age can effect the recognition of

seemingly simple activities like walking upstairs or

jogging.

To compute a single physical similarity value between a

pair of users, CSN employes five types of physical infor-

mation: age, height, weight, and the scores from two well-

established physical well-being surveys (Yale Physical

Activity Survey [15] and SF-36 physical activity score [4]).

Each of these five values acts as an element in a vector that

represents a single user. The physical similarity between

users (i, j) is based on the mahalanobis distance between

the two vectors for each person, as shown here,

simði; jÞphy ¼ expð�cðxi � xjÞ>R�1ðxi � xjÞÞ ð1Þ
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where xi and xj are the physical vectors for user i and user

j;R is the covariance matrix and c is an empirically

determined scaling parameter.

3.4.2 Lifestyle similarity

The lifestyle similarity metric attempts to capture the

diversity in how people lives their lives, examples of which

include the following: occupation, diurnal patterns (e.g., are

they an early morning person or active late at night), the

distribution of activities performed, mobility patterns, and

significant places [9] (e.g., where they work and live).

Occupation and the location of work alter, for instance, the

accelerometer and audio patterns occurring during social

interactions (e.g., meetings and conversations). The time of

day and significant places can effect the background context

in which people perform activities. For example, late at

night or early in the morning different locations will have

different background activities that alter the sampled data

(e.g., noise from people or cars). Collectively, these factors

can change the distribution of features and shift discrimi-

native boundaries for recognizing classes of activities.

We compute lifestyle similarity using three types of

information: mobility and diurnal patterns in combination

with the distribution of activities performed by users.

Mobility patterns are based on GPS location estimates,

which are tessellated into m distinct square tiles of equal

size. Diurnal patterns are captured as a series of timestamps

that are recorded whenever the user is inferred to be non-

stationary by the classification pipeline. These timestamps

are rounded and are represented as the particular hour in

the week in which they occur (e.g., they range between

hour 0 at the start of the week to hour 167 on the final hour

of the final day). The distribution of activities is based on

the duration users are inferred to be performing each

activity classes (e.g, walking, socializing) detected by the

classification pipeline. We construct three histograms for

each of these types of lifestyle information for every user,

normalizing the frequencies across all histograms. For each

pair of users (i, j), we compute the lifestyle-based simi-

larity by the following equation:

simði; jÞlife ¼
X

f2F
Tf ðiÞ>Tf ðjÞ ð2Þ

where Tf (i) is a histogram vector for user i of type f and F
contains each type of lifestyle histogram. Lifestyle simi-

larity between two users is the sum of the inner product of

the histograms for each type of lifestyle information used

by CSN.

3.4.2.1 Sensor data similarity Differences between users

lifestyle, behavioral patterns, or location will likely

manifest as differences in their sensor data. Sensor data

similarity, unlike lifestyle similarity, does not require fea-

ture engineering to extract particular dimensions from the

data. Similarly, unlike physical similarity, it does not

require additional information to be provided by the user

(e.g., age). Instead, measuring inter-person similarity based

on sensor data is inherently purely a data-driven approach.

Later, we report its effectiveness across a wide range of

classification tasks. However, it requires much larger

amounts of computation to determine similarity between

users than computing lifestyle or physical similarity.

Computing similarity based on the raw sensor data will

be effected by noise and capture too many insignificant

variations in the data. Instead, we compute sensor data

similarity between the features extracted from the raw data.

For this purpose, CSN employes the same features used by

the classification pipeline, described earlier in this section.

Individual users will accumulate varying amounts of sensor

data based on how frequently they use their device. Con-

sequently, we compute ‘‘set’’ similarity whereby any

duplicate feature vector for a user is ignored and only the

unique vectors generated from the data of a person are

used. For our similarity measurement, we adopt a com-

monly used formulation [34] where the similarity between

two users is,

simði; jÞdata ¼ 1

NiNj

XNi

l¼1

XNj

m¼1

simðxil; xjmÞ ð3Þ

where fxil; l ¼ 1 : Nig is the data of user i, and fxjm;m ¼
1 : Njg is the data of user j.

However, this pairwise computation quickly becomes

impractical as the number of unique features per user

increases. To cope with this problem, we adopt Locality

Sensitive Hashing (LSH) [8] to construct a histogram to

characterize the ‘‘set’’ of data from each user and then

compute the similarity between a pair of users by

employing this histogram representation. Our method

obviates the need to compute the pairwise relations of data

from two users as required by the traditional ‘‘set’’ simi-

larity, which has a linear time complexity with the average

data size of each user. The basic idea of the LSH method is

that a hashing function family can capture the similarity

between data. In other words, similar data have a high

probability to share the same value after hash mapping.

Prh2H½hðx1Þ ¼ hðx2Þ� ¼ sHðx1; x2Þ
¼ Eh2H½shðx1; x2Þ�

ð4Þ

Therein, x1; x2 2 X are two data, H is a LSH family, h

is the hash function sampled from H, and sH is a similarity

measure of X , which is induced by the LSH family H [8].

In CSN, we randomly choose B independent 0/1 valued

hashing functions fhig from the random projection for L2
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distance LSH family [8] and form a B-bit hash function

f ¼ ðh1; h2; ; . . .; hBÞ. The number of functions B controls

the trade-off between efficiency and accuracy [8].

We apply the B-bit hash function to build histograms for

each user, whose size is 2B. Now, we formalize how to

construct a histogram from the features of the user.

According to the description, let X be the data space, F be

the B-bit hash functions family mapping from X to

D ¼ f0; 1; . . .; 2B � 1g, and fe½i�ji 2 Dg be the standard

basis of the 2Bj j-dimensional vector space. Hence, given

h 2 H; the histogram Tf for any user i is defined as follows,

Tf ðiÞ ¼
X

xil2i

e½f ðxilÞ� ð5Þ

here, fxil; l ¼ 1 : Nig is data of user i, and Tf(i) is deter-

mined by the hash function f sampled from F .

Thus, each element of the histogram vector Tf(i) can be

regarded as a bin to record the frequency at which data

from user i is mapped into it. As the value of the hash

function indicates the probability that two data share the

same value after mapping, two users that have many

‘‘matched’’ values in the corresponding bins of histograms

imply a high similarity between them. The inner product of

the two histogram vectors is next applied to compute the

similarity metric for the two users:

simði; jÞdata ¼ Tf ðiÞ>Tf ðjÞ ð6Þ

To estimate the expectation shown in Eq. 5, we

construct several histograms f 2 F for each user and

compute an average value using Eq. 6.

The time complexity of computing the LSH-based

similarity metric is linear with the average quantity of data

for each user. Compared with the pairwise computing

method shown in Eq. 3 which is quadratic, the LSH-based

similarity metric is very efficient.

3.5 Community Similarity Networks-based Learning

Learning personalized classification models for each user

occurs in two stages under CSN. First, Similarity-sensitive

Boosting trains three separate classifiers, one for each type

of similarity network that is maintained for every user.

Each of the classifiers is personalized to the characteristics

of the specific individual who will use them. Further, each

has different strengths when recognizing specific categories

of activity depending on the similarity network used (e.g.,

physical similarity performs well with physical activities

like climbing stairs). Second, Similarity Network Multi-

training occurs which: (1) uses a semi-supervised approach

to recruit additional labels from the unlabeled pool of

sensor data leveraging the different strengths of each sep-

arate classifier and (2) unifies the three classification

models trained by Similarity-sensitive Boosting into a

single ensemble classifier, ready to be installed on the

phone of the user.

3.5.1 Similarity-sensitive Boosting

A personalized classification model emphasizes the par-

ticular characteristics found in a target user to increase

accuracy. CSN accomplishes personalization using a

modified online boosting algorithm [27]. Boosting is a

common learning technique that builds a model that is a

composite of several weak classifiers trained over multiple

iterations. At each iteration, certain data segments are

weighted higher than others. Under conventional boosting,

these weights are only altered based on the classification

performance of the weak learner trained during the previ-

ous iteration. Those data segments that were incorrect are

weighted higher than others so the weak classifier produced

in the next iteration will be better able to classify these

previously incorrect segments. CSN modifies this process

by imposing an additional term to the weight at the initial

iteration. This weight is based on the similarity between the

user i, whose personalized model is being trained, and the

user which provides the data,

weightð0ÞðxkÞ ¼ simði; kÞ ð7Þ

where k indicates the user who produces the data xk: We

define sim(i, k) as the edge weight between these two

individuals within the similarity network being used during

the boosting process. As a consequence, only data seg-

ments from user i or any users who are highly similar to

user i will be weighted highly and so able to have strong

influence over the learned classification boundaries. In

subsequent iterations, the weighting of data segments is left

to fluctuate based solely on classification performance. As

boosting is an ensemble technique, the CSN framework

remains flexible, the weak learner can be replaced with any

alternative supervised classifier based on the requirements

of intended classification task.

3.5.2 Similarity Network Multi-training

The three varieties of similarity networks currently used in

CSN capture different dimensions of similarity between

users. For example, some users being highly similar in

terms of physical characteristics but polar opposites when

it comes to lifestyle. Using Similarity-sensitive Boosting in

conjunction with any of these different networks will result

in different classification models. Each network will

emphasize different partitions of the training data. This

diversity is valuable as the different similarity networks

produce models that are highly effective for some classes

of activity but not others (see Sect. 4). A simple example of

this being those activities that are closely connected to the
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physical characteristics of the person, e.g., running and

exercising, benefits from a classification model trained

using a physical similarity network.

CSN exploits the strengths of each similarity network by

adopting the technique of multi-training (a variation of co-

training proposed in [37]). Multi-training is a semi-supervised

training algorithm designed to utilize multiple complemen-

tary views of the same labeled training data to generate

additional labels, which are assigned to data segments within

the pool of unlabeled data. This approach is appropriate for

CSN given that crowd-sourcing generates large amounts of

unlabeled data. People will only infrequently take the time to

provide any manual user input; but since simply collecting

data is transparent to the user, then large pools of unlabeled

data quickly can accumulate. Employing a multi-training

approach allows CSN to use the diversity provided by the

different similarity networks to make use of a plentiful and

otherwise wasted resource, unlabeled data.

The multi-training process begins by initially using the

three classifiers trained by Similarity-sensitive Boosting.

Each of these classification models maintains an indepen-

dent logical copy of the labeled and unlabeled data. An

iterative process is applied whereby the classification

models are used to in turn to ‘‘label’’ unlabeled portions in

the logical datasets maintained by each of the other models.

At the end of each iteration, the classifiers are then

retrained (using Similarity-sensitive Boosting) based on the

combination of the labeled data from the previous iteration

along with any new additional labels. Acquiring labels in

this way can be an error-prone process, as a result labels

are only accepted when there is agreement with more than

half of the classification models. Judging the quality of a

proposed new label, based on a majority decision, is only

one of many ways that quality can be assessed. Multi-

training continues to iterate for several rounds until a

stopping condition is met. CSN uses currently a stopping

condition based on how many labels are accepted at each

iteration. If the number of recruited labels is too low for too

many iterations, then multi-training stops.

4 Evaluation

In this section, we evaluate the effectiveness and design

choices of CSN. Our experiments show that by incorporating

similarity networks among users into the classification pro-

cess, CSN is better equipped to cope with the population

diversity problem, compared to existing techniques.

4.1 Methodology

To evaluate CSN, we use two large real-world datasets and

three representative baselines.

4.1.1 Datasets

Our three datasets require a variety of the activity infer-

ences frequently used in mobile sensing applications. The

first dataset, Everyday Activities, contains a broad

range of routine human activities that have been used to

support application domains such as mobile health [14].

The remaining two datasets, Transportation and

Physical Activities, are much more focused on

single activity domains—transportation modes and motion-

based user actions, respectively. These two categories are

building blocks of various mobile applications, for exam-

ple, applications that promote green transportation [16].

We collect the data for Everyday Activities as part

of a series of internal experiments. The data comprise both

simple activities: {walk, run, stationary} and high-level

behaviors: {meeting, studying, exercising, socializing}. A

total of 41 people contribute to this dataset using a Nexus

One smartphone sampling sensor data from the acceler-

ometer, microphone and GPS. People carry the device for

variable lengths of time that range between one and three

weeks. For Transportation and Physical

Activities we use external sources. Transporta-

tion is collected by the authors of [35, 36], with the

dataset containing only different transportation modes,

specifically: {bike, us, car, alk}. This dataset comprises 51

people who carry for three months one of a variety of

devices that are equipped with a GPS, including phones,

PDAs, and personal navigation devices. Physical

Activities are collected by the authors of [12] and

contain activities closely associated with the physical

actions of users, specifically: {run, skip, stairs up, stairs

down, stationary, walk}. This dataset includes 120 people

who contribute accelerometer data using a variety of iOS

devices (i.e., different models of iPhones and iPods).

People participate in this experiment for around 13 months.

4.1.2 Benchmarks

We compare the performance of CSN against three

benchmarks, single, isolated and naive-multi. Our

benchmarks use the same features and apply the same

classification model as CSN but differ significantly in

how they approach classifier training. The benchmarks of

single and isolated correspond with the two types of

common practice we detailed in the earlier section on

community-scale classification. In single, the same gen-

eric model is provided to all users. Unlike CSN, after the

release of the system, the model does not change and new

training data is not collected. Under isolated, every user

has their own model. Each user model is personalized by

using training data sourced directly from the user. The

weakness is that each classification model is considered in
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isolation of one another. No co-operation or sharing of

training data occurs among users. Finally, naive-multi

allows us to demonstrate the benefit of CSN solely

attributable to the use of similarity networks. During

training, naive-multi performs boosting and multi-training,

the same techniques used in CSN. However, naive-multi

uses the conventional versions of these learning tech-

niques without the use of similarity networks. Specifi-

cally, the differences are as follows: (1) during boosting

the weighting of training data at each iteration only

changes based on classification performance instead of

inter-personal similarity and (2) during multi-training the

classifiers used are not based on dimensions of similarity

but based on classifiers trained with equally sized random

subgroups of the training data.

4.2 Robust classification with low user burden

Our first set of experiments finds, under both datasets, CSN

provides more robust classification than any of the

benchmarks. Not only is CSN able to achieve higher

classification accuracy but we observe classification accu-

racy is also more evenly distributed throughout the user

population. Under CSN, the burden to provide training data

is lowered, and thus, accuracy numbers comparable to the

benchmarks can be achieved with smaller quantities of

data. In what follows, we report accuracy values resulting

from fivefold cross-validation.

Figure 4 shows the results of experiments where we

assume users contribute different amounts of labeled data.

For each quantity of labeled data, we measure the average

per person accuracy of classification for models trained

under CSN and the three other benchmarks. Figure 4a uses

Everyday Activities, and Fig. 4b, c repeats the

experiment using Physical Activities and

Transportation. In each figure, the accuracy of CSN

outperforms all baselines for each quantity of training data

tested. For example, Fig. 4a shows if 500 labeled data

segments are used (approx. 15 min of training data per

user) then CSN outperforms naive-multi and isolated by

22 %. Similarly, from Fig. 4b we discover if 2,000 labeled

data segments are used (approx. 55 min of training data

from each user) CSN exceeds the accuracy of the next best

performing baselines, single by 20 %. Finally, in Fig. 4c,

we see if 1.6 9 104 labeled data segments are used

(approx. 137 min of training data from each user) the

accuracy of CSN exceeds naive-multi by 32 % and single

by 47 %.

From Fig. 4 we also learn that CSN is able to lower the

user burden of contributing training data. As an example,

Fig. 4a shows isolated requiring 36 min of training data

from a user to achieve 74 % accuracy. CSN can provide

approximately this same accuracy for only 15 min of

training data, a data reduction of 58 %. Alternatively, if we

consider Fig. 4c, isolated is able to perform with 77 %

accuracy but requires 270 min of training data. Again,

CSN can provide approximately this level of accuracy but

with 49 % less data, only needing 137 min of data per user.

Under CSN, users are better rewarded for contributing data

due to it having a higher ratio of classification accuracy to

crowd-sourced training data, than the other benchmarks.

Figure 5 presents CDFs of per-user accuracy. We

illustrate the fraction of the user population who experience

different classification accuracy under CSN and all

benchmarks. Figure 5a uses Everyday Activities

and assumes users each provide 15 min of training data.

Figure 5b is based on Physical Activities under

the expectation of 110 min of per-user training data.

Finally, Fig. 5c assumes users provide 137 min of labeled

data from Transportation. Ideally, all users should

receive the same level of accuracy, otherwise classification

performance will be unpredictable when deployed. Better

performance is indicated in these figures by curves that are

furthest to the right. We observe from each figure CSN has

the most even distribution of accuracy compared to all

benchmarks. For example, Fig. 5(a) shows for 75 % of

users that CSN provides 82 % accuracy compared to just

65 % for isolated, 48 % for single and 52 % for naive-

multi. Figure 5b, c reinforces this finding. Figure 5b indi-

cates for again 75 % of users CSN provides 83 % accuracy

instead of the 79, 68, and 43 % accuracy offered by iso-

lated, single, and naive-multi, respectively. For the same

fraction of users (75 %), Fig. 5c echoes this result and

shows 77 % accuracy is attained by 75 % of CSN users

relative to 68, 53, and 66 % accuracy reached by the three

baselines.

4.3 Benefits of leveraging Similarity Networks

With the following experiments, we investigate the effec-

tiveness of the similarity networks used by CSN.

To test whether the similarity networks used by CSN

are capturing meaningful differences between people, we

collected additional demographic information from 22

individuals who contributed to Everyday Activi-

ties. Figure 6a, b plots the result of applying multidi-

mensional scaling (MDS) to two similarity matrices for

these people using physical and lifestyle similarity. Dis-

tances between points in these figures are proportional to

differences in similarity. Figure 6a shows two clear

groupings. We find these groups correspond to people

with similar physical characteristics. The people in the

tight cluster near the left of the figure are all over 30 years

old, all male, and have similar physical fitness levels. In

contrast, the looser clump of people near the middle are in

the same age range (22–26) but are all more diverse in
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terms of sex and fitness. The outlier in Fig. 6a is a

50-year-old woman and is distinct due to her sex and

exceptional fitness. The clusters in Fig. 6b also correspond

to our interview ground truth. The tight cluster to the left

is a small group of people who live off campus and

maintain regular 9 a.m. to 5 p.m. working hours. They are

in sharp contrast to the very loose cluster on the right of

the figure. This cluster contains students who, although

they live very close to each other, also have erratic

sleeping and activity patterns which results in them being

grouped but not as tightly as the nearby cluster.

In Fig. 7, we can see the value of using multiple sim-

ilarity dimensions. The figure illustrates the different

levels of classification accuracy achieved when using each

of our three similarity dimensions to classify classes found

in Everyday Activities. None of the three simi-

larity metrics has the highest accuracy across all the

activities. We find a similar pattern exists within

Transportation and Physical Activities. By

exploiting all of these forms of similarity, CSN is able to

better handle a wide range of classification tasks. This

result supports the design choice to use multiple dimen-

sions of similarity and leverage them all when training

classification models.

4.4 Cloud scalability with low phone overhead

Our remaining results report on the overhead to smart-

phones in adopting CSN, along with the ability for CSN to

scale to large user populations.

We profile the computation and energy consumption of

our CSN client on the Android Nexus One. We find

resource consumption comparable to prior implementations

of classification pipelines on phones (e.g., [25, 26]). As this

overhead is not specific to CSN but found in any mobile

sensing application, we do not report further details.

Overhead specific to CSN includes the transmission of

sensor data and the downloading of classifiers trained in the

cloud. We find typical file sizes for our classification

models are on the order of 1–2 KBs, which means the cost

of downloading classification models is minor. However, a

significant cost to the phone can accrue when uploading

sensor data. To lower this cost, the default cloud interaction

strategy of our client is to wait until the phone is recharging

before uploading data, under this policy the battery burden

due to uploading is eliminated.

Figure 8 justifies our choice of a conservative data

upload and classifier re-training policy by examining

potential benefits of a more aggressive uploading strategy.

(a) (b)

(c)

Fig. 4 Classification accuracy for CSN under different quantities of training data. a Everyday Activities, b Physical Activities,

c Transportation
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In this experiment, we use only Transportation and

assume a training set size of 1.6 9 104 labeled data seg-

ments. The dataset is replayed assuming that training test

data enter the system based on the original experiment

timestamps. Periodically, the classifiers for each user are

re-trained based on the subset of the training data segments

available. We repeat this experiment assuming different re-

training frequencies, which in turn drive the rate at which

data must be uploaded from clients. From this figure, we

see that—for this particular scenario—classifier accuracy is

not significantly impacted by the re-training frequency.

Large amounts of client-side energy can be saved without

lowering recognition accuracy. This figure also shows the

energy consumed jumps significantly when the re-train

frequency is equal or greater than 24 h. This is because at

this level the client must upload collected data intra-day

and so use the cellular radio; with less frequent re-training,

the client is instead able to upload at night while recharging

is occurring.

The computational demands of computing the three

CSN similarity dimensions range from being light-weight

to very demanding. We quantify this by profiling the

computational overhead for computing similarity networks

for all people within Everyday Activities. This raw dataset

is more than 400 GB (mainly due to audio data). Using our

CSN Mobile Cloud Infrastructure, configured with only

one linux machine in the node pool, the computational time

for each variety of similarity is, &200 min, &9 min, and

&3 min, respectively, for sensor data, lifestyle, and

physical similarity. The sensor data similarity is the most

costly of these three as it requires pairwise calculations

between users.

Personalized models are trained by CSN for each user;

however, this can become a bottle-neck. The workload of

the Mobile Cloud Infrastructure increases with population

size due to: (1) the pairwise calculation of similarity

between users and (2) each new user requires a new model

to be trained. For this reason, we designed our Mobile

Cloud Infrastructure to effectively leverage a variable sized

pool of cloud nodes, so additional nodes could be added

when required. Figure 9 illustrates the benefit of increasing

the cloud node pool while computing the complete simi-

larity network for Everyday Activities and

Transportation. From this figure, we see the ratio

between lower computation time and additional cloud

nodes is similar for both datasets. Further, the largest gains

occur when shifting from one machine to three.

We experiment with an alternative approach to

addressing this same problem that requires a simple

extension to CSN. Instead of training a model for each

(a) (b)

(c)

Fig. 5 DF of per-user classification accuracy for CSN. a Everyday Activities, b Physical Activities, c Transportation
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user, users are first grouped together by clustering. Simi-

larity networks are then built not between people but

between these groups, with a model trained for each group.

We investigate this trade-off and cluster people with

k-means using the least computationally costly similarity

dimensions, lifestyle, and physical. By lowering the num-

ber of groups, we can reduce the Mobile Cloud Infra-

structure workload. This trade-off is seen in Fig. 10. These

figures illustrate how accuracy falls as the cluster size (the

k in k-means clustering procedure) is reduced. Reducing

the number of models dilutes the similarity between people

in the cluster. Consequently, the model used by the entire

group is less appropriate for everyone. Still, as the cluster

number decreases the overhead to the mobile cloud is

reduced, since fewer models need to be maintained. This

approach allows us to regulate resource consumption by

CSN irrespective of the size of the user population.

5 Related work

Applications that use mobile phone sensors have been

steadily rising (e.g., [7, 11, 13, 14, 26]) and accurate

classification of sensor data is becoming increasingly

important.

(a)

(b)

Fig. 6 MDS projection of physical and lifestyle similarity networks

used by CSN. a Physical, b lifestyle

Fig. 7 The classification accuracy of each activity class under

different dimensions of similarity using the Everyday Activities

dataset. It shows different dimensions of similarity are effective for

different activities

Fig. 8 Trade-off between client energy and classifier accuracy if

classifiers are re-trained frequently
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Fig. 9 Latency of processing training data decreases as the pool of

cloud nodes is increased
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Researchers investigating sensor-enabled mobile phone

applications frequently encounter the limits of activity

classification. It is becoming obvious that conventional

approaches that rely on supervised learning and carefully

controlled training experiments are not suitable. In recog-

nition, researchers are considering alternatives. Current

research directions point toward models that are adaptive

and incorporate people in the process. Automatically

broadening the classes recognized by a model is studied in

[23] where active learning (where the learning algorithm

selectively queries the user for labels) is investigated in the

context of heath care. In SoundSense [24], a supervised

classification process for a fixed category of sounds is

augmented with a human-in-the-loop guided unsupervised

process for learning novel sounds.

Research, such as [23, 24], focuses primarily on the

individual to assist with classification. CSN leverages the

user but also exploits communities of people (rather than

just isolated individuals). How to precisely utilize com-

munities is increasingly becoming an area of active

research. Community-guided Learning (CGL) [29] models

of human behavior are built with training data provided by

non-expert mobile device users from the broader commu-

nity. CGL overcomes the challenge presented by noisy

labels being introduced to the training process by using

data similarity in combination with the crowd-sourced

labels. Lane et al. [19, 20] examines community-based

techniques that leverage social ties that can coarsely proxy

for the types of explicit similarity measurements used by

CSN. Applications of community-awareness that can ben-

efit more than just activity recognition are also beginning to

emerge. For example, [6] investigates how mobile content

dissemination can be improved by intelligently leveraging

cross-community information present in multiple hetero-

geneous social communities.

The potential for crowd-sourcing has been long recog-

nized with interest in the area being established by Luis

Von Ahn [33]. Now, commercially available systems

including Amazon’s Mechanical Turk [1] have made it

simple to exploit the power of using thousands of people.

The use in CSN of crowd-sourcing builds directly on these

existing directions. We see CSN as part of an exciting area

of hybrid systems (e.g., CrowdSearch [30]) that intelli-

gently combine the effort of the masses toward a task that

neither computers nor humans can perform on their own.

6 Conclusion

In this article, we have proposed CSN, a classification

system designed to address the population diversity prob-

lem. We demonstrated that the population diversity prob-

lem appears when using conventional techniques with as

few as 50 users. CSN combines the crowd-sourcing of

labels and sensor data with multiple similarity networks

that capture user similarities across different dimensions.

The similarity networks guide the process of selectively

merging data from different individuals to produce per-

sonalized classifiers at a much lower per-user cost. Finally,

the generality, flexibility, and effectiveness of CSN are

demonstrated using three distinct mobile sensing datasets.
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