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ABSTRACT
Sensor-enabled smartphones are opening a new frontier in
the development of mobile sensing applications. The recog-
nition of human activities and context from sensor-data us-
ing classification models underpins these emerging applica-
tions. However, conventional approaches to training classi-
fiers struggle to cope with the diverse user populations rou-
tinely found in large-scale popular mobile applications. Dif-
ferences between users (e.g., age, sex, behavioral patterns,
lifestyle) confuse classifiers, which assume everyone is the
same. To address this, we propose Community Similarity
Networks (CSN), which incorporates inter-person similar-
ity measurements into the classifier training process. Under
CSN every user has a unique classifier that is tuned to their
own characteristics. CSN exploits crowd-sourced sensor-
data to personalize classifiers with data contributed from other
similar users. This process is guided by similarity networks
that measure different dimensions of inter-person similar-
ity. Our experiments show CSN outperforms existing ap-
proaches to classifier training under the presence of popula-
tion diversity.

Author Keywords
Mobile Phone Sensing, Activity Recognition, Community
Learning.

ACM Classification Keywords
H.5.2 User/Machine Systems; I.5 Pattern Recognition

General Terms
Experimentation, Performance.

INTRODUCTION
The popularity of smartphones with embedded sensors is
growing at rapid pace. At the same time, research in the area
of mobile phone sensing [17] is expanding the boundaries
of mobile applications [12, 25, 22, 21]. Advances in human
centric sensing is being fueled by the combination of: i) raw
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sensor-data, which is now practical to sample from large user
populations; and ii) classification models that extract human
activities, events and context from low-level sensor-data.

As user populations of mobile sensing applications increase
in size the differences between people cause the accuracy of
classification to degrade quickly – we call this the popula-
tion diversity problem. In this paper, we demonstrate that
the population diversity problem exists and classification ac-
curacy varies widely even as the user population is scaled to
up as little as 50 people. To address this problem, we pro-
pose Community Similarity Networks (CSN). CSN is a clas-
sification system that can be incorporated into mobile sens-
ing applications to address the challenge to robust classifica-
tion caused by the population diversity problem. The con-
ventional approach to classification in mobile sensing is to
use the same classification model for all users. Using CSN,
we construct and continuously revise a personalized classi-
fication model for each user over time. Typically, personal-
ized models require all users to perform manual sensor-data
collection where users provide hand annotated examples of
them performing certain activities while their devices gather
sensor-data (i.e., labeling data). This is both burdensome to
the user and wasteful as multiple users often collect nearly
identical data but the training of each model occurs in iso-
lation of each other. The key contribution of CSN is that
it makes the personalization of classification models practi-
cal by significantly lowering the burden to the user through a
combination of crowd-sourced data and leveraging networks
that measure the similarity between users.

CSN exploits crowd-sourcing to acquire a steady stream of
sensor-data and user input, either corrections to classifica-
tion errors or the more common hand annotated examples
of sensor-data when performing an activity (i.e., labeling).
Under CSN training classifiers becomes a networked pro-
cess where the effort of individual users benefits everyone.
However, the use of crowd-sourced data must be done care-
fully. Crowd-sourced data must only selectively be used dur-
ing training so the resulting model is optimized for the per-
son using the model. CSN solves this problem by maintain-
ing similarity networks that measure the similarity between
people within the broader user population. We do this by
proposing three different similarity metrics (i.e., physical,
lifestyle/behavior and purely sensor-data driven) that mea-
sure different aspects of inter-person diversity which influ-
ence classifier performance. The CSN model training phase
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then utilizes forms of boosting and co-training to allow these
different types of similarity to each contribute to improving
the accuracy of the personalized classifier.

The contributions of this paper are as follows:

• CSN is the first system to propose embedding inter-person
similarity within the process of training activity classi-
fiers. To the best of our knowledge, CSN represents the
only activity recognition system designed specifically to
cope with the population diversity problem, which would
otherwise jeopardize large-scale deployments of mobile
sensing systems.

• We propose similarity metrics and a classification training
process that support: i) the extraction of similarity net-
works from raw sensor-data and additional end-user input
and ii) a learning process that adapts generic classifica-
tion models through careful exploitation of crowd-sourced
data guided by similarity networks.

• We have evaluated our system with two large-scale mo-
bile sensing datasets, each comprising of approximately
50 people. We measure the robustness of our classifiers
and the ability of CSN to cope with population diversity.

COMMUNITY-SCALE CLASSIFICATION
In this section we discuss a key difficulty in realizing large-
scale mobile sensing applications. Specifically, we examine
how population diversity can cause classification to become
unreliable and inaccurate.

One Size Does Not Fit All. As mobile sensing prototype
systems are deployed to an increasing number of users their
diversity increases as well. These users differ from one an-
other in a variety of ways, a concrete example being phys-
ical dissimilarities as measured by sex, weight, height or
the level of physical fitness. Beyond these visually obvi-
ous differences there are differences based on lifestyle and
background. People come from different ethnic and social-
economic origins, live and work in different locations and
while they may perform the same core collections of ac-
tivities (e.g., socializing, exercising, working) they may do
these activities in significantly different ways.

Inter-personal differences can manifest as differences in the
discriminative patterns contained in sensor-data that are used
to classify activities, events and contexts. For example, the
features from accelerometer data that allow classifiers to dis-
tinguish between the basic activities of walking and running
can be completely different between a group of older adults
(older than 65 years) and a group of people who are in their
20s and 30s. Figure 1 visualizes this difference when these
two groups are walking. We plot the first two PCA compo-
nents on each axis of the figure based on a range of already
validated activity recognition accelerometer features [18].
The very clear distinction between sensor-data sourced from
these two groups is surprising, particularly given the homo-
geneity you would expect in a simple activity like walking.

To further quantify this problem we build a LogitBoost clas-
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Figure 1. We visualize the differences in features under an identical
activity, walking, for two distinct community sub-groups. One group
contains people over 65 years old, the other group contains people in
their 20s and 30s. Here we show just the first two components of the
PCA of these features.
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Figure 2. Classification accuracy varies significantly within a large-
scale user population for two datasets, one containing everyday activi-
ties and the other transportation modes.

sification model [9] and reuse the same previously validated
activity recognition features. This model is trained using la-
beled data from the group of people in their 20s and 30s.
Using this model classification accuracywhile they walk and
climbed stairs ranges between 80% to 90% for each person.
However, when this same classifier is used by the group of
aged people the average accuracy dropped to nearly 60%.
Clearly, a one size fits all approach to classification models
will not scale to large user populations which will contain
many such groups.

This effect is not only limited to strictly physical behavior
(e.g., walking, running or climbing stairs) but extends to a
broader range of behavioral inferences. We investigate the
breadth of this problem by performing an experiment on two
distinct mobile sensing datasets. The first dataset (obtained
from the authors of [29, 30]) contains GPS sensor data for
51 people performing 4 different transportation modes (e.g.,
driving a car or riding a bike). The second is comprised of
multi-modal sensor-data (e.g., microphone and accelerome-
ter data) for 41 people performing a range of everyday ac-
tivities (e.g., walking up stairs, exercising, brushing teeth).
For both datasets we train a single classifier and evaluate the
accuracy for each user, by applying the classifier to test data
sourced only from that user. Figure 2 is the Cumulative Dis-
tribution Function (CDF) of accuracy for these experiments,
and shows the spread of accuracy within the user population
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under both datasets. Accuracy levels for the transportation
mode dataset are as low as approximately 40% for the bot-
tom performing 60% of end-users and as high as 90% for the
top 7%. Similarly, we find for the everyday activities dataset
for 40% of the users the accuracy is only 12%, even for 80%
of users the accuracy raises only marginally to 55%.

Limitations of Current Practice. The de-facto standard
practice in incorporating classification into mobile sensing
systems centers around a single unchanging classification
model which is trained prior to deployment. Due to the rea-
sons of population diversity this model works for some peo-
ple, but not others; the accuracy of the system remains diffi-
cult to predict and increasingly unreliable as the user popu-
lation grows.

Ideally the classifier would capture the distinctions between
certain activities performed by different subgroups in the
population as different activities entirely (e.g., walking when
performed by two sub-groups could be two different classes);
whenever these distinctions impact the classification process.
However, this would significantly increase the amount of
examples required for the same logical activity. Acquiring
these examples is manually intensive (requiring careful la-
beling of data segments), making this approach impractical
as it simply does not scale.

A promising direction being actively explored is the person-
alization of classification models to improve accuracy (e.g.,
[19, 26, 20, 15]). These models are tuned to sensor-data
generated or encountered by the individual. Typically tun-
ing occurs based on input from the user. For example, the
user corrects classification errors or provides additional ex-
amples of activities by labeling sensor-data with the ground-
truth activity occurring during the sampling of the data. The
classifier is then retrained using sensor-data collected and la-
beled only by the user.

The limitation of such personalization of classification mod-
els is that accuracy only improves when and if people take
the effort to manually provide additional sensor-data exam-
ples. Independent of effort it will also take time for people to
encounter certain situations that are good discriminative ex-
amples to incorporate into the model. The key problem with
this type of gradual improvement is that it leads to enormous
amounts of redundant effort. Classification models are im-
proved in isolation and each user potentially has to repeat
steps that have already been done by other users to improve
their own personal model.

COMMUNITY SIMILARITY NETWORKS
In this section we describe the system components and the
core algorithms used at each stage of CSN. The CSN system
is designed to construct and periodically update personalized
classification models for each user. A key novelty of CSN is
that it achieves personalization by using only a small amount
of a specific user’s training data and combining it with train-
ing data selectively recruited from others with whom the user
shares similar traits.

Framework
Figure 3 illustrates stages of the CSN framework that pro-
duce personalized classification models for each user. Each
of these stages occur either in one of two architectural com-
ponents, the Mobile Phone Client software or the Mobile
Cloud Infrastructure.

The Mobile Phone Client software samples sensor-data to
recognize human behavior and contexts by performing in-
ference using classification models. While inference occurs
locally the models themselves are downloaded from the Mo-
bile Cloud Infrastructure. The client software also collects
training data comprised of both raw sensor-data and data
segments that have been labeled by CSN users with the ground-
truth activity or context.

The Mobile Cloud Infrastructure is responsible for training
classification models. Sensor data is used to construct sim-
ilarity networks where network edges indicate the level of
similarity between two users. CSN employes multiple di-
mensions of similarity (e.g., sensor-data, physical and lifestyle)
to quantify the various ways users can differ. Several similar-
ity networks are generated for each user, one for each of the
similarity dimensions. Similarity-sensitive Boosting trains a
classifier for each of the different similarity networks (that
correspond to a different similarity dimension). Similarity
Network Multi-training performs semi-supervised learning
and improves every model by recruiting additional labels
from the pool of unlabeled data. The final step of multi-
training unifies each of the independent classifiers, trained
by Similarity-sensitive Boosting, into a single ensemble clas-
sifier ready to be installed on the phone of the user.

Mobile Phone Client
In the following subsection we describe the functions per-
formed by the Mobile Phone Client, specifically we detail: i)
the classification pipeline, ii) implementation specifics, and
iii) the collection of sensor-data and ground-truth labels from
users.

Classification Pipeline. The classification pipeline in-
cludes sensor-data sampling, feature extraction, and recog-
nition of an activity, event or context.

We use the accelerometer, microphone and GPS sensors to
make a variety of proof-of-concept inferences. Our choice of
features were based on observations made in prior work [30,
21, 29, 20]. For the accelerometer and microphone we use
the same feature set described in [21] which include a vari-
ety of time domain and frequency domain features effective
for general activity recognition. For the GPS we adopt fea-
tures that were specifically designed in [30, 29] for trans-
portation mode inference based on time-series GPS read-
ings. Classification is done using a boosted ensemble [23] of
naive Bayes classifiers [9]. Inference results are temporally
smoothed using a simple Markov model. Although in our
client the stages of the classification pipeline (i.e., features
and the classification model) remain fixed the parameters of
the model are determined, and updated periodically, by the
Mobile Cloud Infrastructure.
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Figure 3. The processing phases within Community Similarity Networks

Implementation. Our prototype client is implemented on
the Google Android Nexus One [2]. The design of the phone
client is split between a portable classification pipeline li-
brary written in C++ and set of device specific supporting
service (e.g., sensor sampling, end-user GUI). The library
provides core classification pipeline components, including
feature extraction and model inference. The device specific
components are written in Java and connected with the li-
brary via a JNI bridge.

CrowdSourcing. CSN exploits the crowd-sourcing of both
sensor-data and user input to improve classification models.
User input provides the ground-truth activity to segments of
sensor-data. Two specific types of user input is supported.
First, users can be asked to confirm or deny a class infer-
ence. For example, asking the user a question – ‘Are you
currently exercising?’. Such responses are used later as pos-
itive or negative examples of certain activities. Second, users
can explicitly label data as being an example of an activity
or event. For example, users indicate the ground-truth activ-
ity when a segment of sensor-data was sampled by selecting
it from a list presented on the phone GUI. These types of
interactions with users can be incorporated into applications
in various ways. As an example, simple binary yes/no ques-
tions can be presented when the user unlocks their phone.
Alternatively, more involved interaction, such as when users
are selecting activities from a list, can be framed as soft-
ware configuration or calibration. Similar forms of user in-
teraction already occur in real products, for example, read-
ing training sentences into speech recognition software or
running for precisely one mile to calibrate a single activity
recognition system like Nike+[3].

Mobile Cloud Infrastructure
In this section we describe how the Mobile Cloud Infras-
tructure: i) computes similarity networks and ii) uses these
networks to train personalized classification models that are
distributed to all users.

Implementation. Our prototype implementation makes
extensive use of Amazon Web Services [5] (AWS) which
offer a number of generic components useful in building a

distributed system. CSN utilizes the AWS message queues
(SQS), binary storage (S3) and the simple query-able hash
table service (SimpleDB). Each stage of the model train-
ing performed by the cloud is implemented either as python
scripts or C++ modules depending on available library sup-
port given the required functionality. These stages run on a
pool of linux machines as part of the Amazon Elastic Cloud
product and interact with the individual AWS services as
needed. Once a classification model is trained it is serialized
into a JSON-like format and written to the binary storage
(S3), ready to be downloaded by the client.

Similarity Networks
Each similarity network within CSN is constructed from the
perspective of a single target CSN user. Nodes in the net-
work represent other CSN users and edge-weights measure
the degree to which the target user is similar to the other
users. The CSN framework is designed to leverage multi-
ple similarity measurements, which capture different dimen-
sions of affinity between people. Depending on the activities
or contexts that are to be recognized different dimensions
may be utilized. In this paper we propose the use of three
dimensions of inter-person similarity: sensor-data similar-
ity, physical similarity and lifestyle similarity. We demon-
strate the effectiveness of each of these different dimensions
in classifying different categories of activities and contexts
in the Evaluation section. However, CSN is agnostic as to
the exact similarity dimensions used.

We now describe the different similarity dimensions included
within the CSN framework.

Physical Similarity. Physical differences between people
(e.g., weight, height, age, level of physical fitness or wellbe-
ing) will vary greatly from person to person within a large
user population. Such differences can alter the way peo-
ple move and perform certain physical activities. For exam-
ple, as we detailed in the earlier section on community-scale
classification differences in age can effect the recognition of
seemingly simple activities like walking upstairs or jogging.

To compute a single physical similarity value between a pair
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of users CSN employes five types of physical information:
age, height, weight, and the scores from two well established
physical well-being surveys (Yale Physical Activity Survey
[13] and SF-36 physical activity score [4]). Each of these
five values act as elements in a vector that represents a single
user. The physical similarity between users (i, j) is based on
the mahalanobis distance between the two vectors for each
person, as shown here,
sim(i, j)phy = exp(−γ(xi − xj)

"Σ−1(xi − xj)) (1)
where, xi and xj are the physical vectors for user i and user
j, Σ is the covariance matrix and γ is an empirically deter-
mined scaling parameter.

Lifestyle Similarity. The lifestyle similarity metric at-
tempts to capture the diversity in how people lives their lives,
examples of which include: occupation, diurnal patterns (e.g.,
are they an early morning person or active late at night), the
distribution of activities performed, mobility patterns and
significant places [8] (e.g., where they work and live). Oc-
cupation and the location of work alter, for instance, the ac-
celerometer and audio patterns occurring during social inter-
actions (e.g., meetings and conversations). The time of day
and significant places can effect the background context in
which people perform activities. For example, late at night
or early in the morning different locations will have differ-
ent background activities that alter the sampled data (e.g.,
noise from people or cars). Collectively, these factors can
change the distribution of features and shift discriminative
boundaries for recognizing classes of activities.

We compute lifestyle similarity using three types of informa-
tion: mobility and diurnal patterns in combination with the
distribution of activities performed by users. Mobility pat-
terns are based on GPS location estimates, which are tessel-
lated into m distinct square tiles of equal size. Diurnal pat-
terns are captured as a series of timestamps that are recorded
whenever the user is inferred to be non-stationary by the
classification pipeline. These timestamps are rounded, and
are represented as the particular hour in the week in which
they occur (e.g., they range between hour 0 at the start of the
week to hour 167 on the final hour of the final day). The
distribution of activities is based on the duration users are
inferred to be performing each activity classes (e.g, walking,
socializing) detected by the classification pipeline. We con-
struct three histograms for each of these types of lifestyle in-
formation for every user, normalizing the frequencies across
all histograms. For each pair of users (i, j), we compute the
lifestyle based similarity by the following equation:

sim(i, j)life =
∑

f∈F

Tf (i)
"
Tf (j) (2)

where Tf (i) is a histogram vector for user i of type f and
F contains each type of lifestyle histogram. Lifestyle sim-
ilarity between two users is the sum of the inner product of
the histograms for each type of lifestyle information used by
CSN.

Sensor-data Similarity. Differences between users lifestyle,
behavioral patterns, or location will likely manifest as dif-
ferences in their sensor-data. Sensor-data similarity, unlike

lifestyle similarity, does not require feature engineering to
extract particular dimensions from the data. Similarly, un-
like physical similarity it does not require additional infor-
mation to be provided by the user (e.g., age). Instead, mea-
suring inter-person similarity based on sensor-data is inher-
ently purely a data-driven approach. Later, we report its ef-
fectiveness across a wide range of classification tasks. How-
ever, it requires much larger amounts of computation to de-
termine similarity between users than computing lifestyle or
physical similarity.

Computing similarity based on the raw sensor-data will be
effected by noise and capture too many insignificant varia-
tions in the data. Instead, we compute sensor-data similarity
between the features extracted from the raw data. For this
purpose CSN employes the same features used by the classi-
fication pipeline, described earlier in this section. Individual
users will accumulate varying amounts of sensor-data based
on how frequently they use their device. Consequently, we
compute “set” similarity whereby any duplicate feature vec-
tor for a user is ignored and only the unique vectors gener-
ated from the data of a person are used. For our similarity
measurement we adopt a commonly used formulation [28]
where the similarity between two users is,

sim(i, j)data =
1

NiNj

Ni∑

l=1

Nj∑

m=1

sim(xil,xjm) (3)

where, {xil, l = 1 : Ni} is the data of user i, and {xjm,m =
1 : Nj} is the data of user j.

However, this pairwise computation quickly becomes im-
practical as the number of unique features per user increases.
To cope with this problem, we adopt Locality Sensitive Hash-
ing (LSH) [7] to construct a histogram to characterize the
“set” of data from each user and then compute the similarity
between a pair of users by employing this histogram rep-
resentation. Our method obviates the need to compute the
pairwise relations of data from two users as required by the
traditional “set” similarity, which has a linear time complex-
ity with the average data size of each user. The basic idea of
the LSH method is that a hashing function family can cap-
ture the similarity between data. In other words, similar data
have a high probability to share the same value after hash
mapping.
Prh∈H[h(x1) = h(x2)] = sH(x1,x2) = Eh∈H[sh(x1,x2)]

(4)
Therein, x1,x2 ∈ X are two data, H is a LSH family, h
is the hash function sampled from H, and sH is a similarity
measure of X , which is induced by the LSH familyH [7].

In CSN, we randomly choose B independent 0/1 valued
hashing functions {hi} from the random projection for L2

distance LSH family [7] and form a B−bit hash function
f = (h1,h2, , ...,hB). The number of functionsB controls
the tradeoff between efficiency and accuracy [7].

We apply the B−bit hash function to build histograms for
each user, whose size is 2B . Now, we formalize how to
construct a histogram from the features of the user. Ac-
cording to the description, let X be the data space, F be
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the B-bit hash functions family mapping from X to D =
{0, 1, . . . , 2B − 1}, and {e[i] | i ∈ D} be the standard basis
of the |2B|-dimensional vector space. Hence, given h ∈ H,
the histogram Tf for any user i is defined as follows,

Tf (i) =
∑

xil∈i

e[f(xil)] (5)

here, {xil, l = 1 : Ni} is data of user i, and Tf (i) is deter-
mined by the hash function f sampled from F .

Thus each element of the histogram vectorTf (i) can be re-
garded as a bin to record the frequency at which data from
user i is mapped into it. As the value of the hash function
indicates the probability that two data share the same value
after mapping, two users that have many “matched” values
in the corresponding bins of histograms implies a high simi-
larity between them. The inner product of the two histogram
vectors is next applied to compute the similarity metric for
the two users:

sim(i, j)data = Tf (i)
"
Tf (j) (6)

To estimate the expectation shown in Eq. 5, we construct
several histograms f ∈ F for each user and compute an
average value using Eq. 6.

The time complexity of computing the LSH based similarity
metric is linear with the average quantity of data for each
user. Compared with the pairwise computing method shown
in Eq. 3 which is quadratic, the LSH based similarity metric
is very efficient.

Community Similarity Networks based Learning
Learning personalized classification models for each user
occurs in two stages under CSN. First, Similarity-sensitive
Boosting trains three separate classifiers, one for each type
of similarity network that is maintained for every user. Each
of the classifiers are personalized to the characteristics of the
specific individual who will use them. Further, each have
different strengths when recognizing specific categories of
activity depending on the similarity network used (e.g., phys-
ical similarity performswell with physical activities like climb-
ing stairs). Second, Similarity Network Multi-training oc-
curs which: i) uses a semi-supervised approach to recruit ad-
ditional labels from the unlabeled pool of sensor-data lever-
aging the different strengths of each separate classifier; and
ii) unifies the three classification models trained by Similarity-
sensitive Boosting into a single ensemble classifier, ready to
be installed on the phone of the user.

Similarity-sensitive Boosting. A personalized classifica-
tion model emphasizes the particular characteristics found
in a target user to increase accuracy. CSN accomplishes
personalization using a modified online boosting algorithm
[23]. Boosting is a common learning technique that builds a
model that is a composite of several weak classifiers trained
over multiple iterations. At each iteration certain data seg-
ments are weighted higher than others. Under conventional
boosting these weights are only altered based on the classi-
fication performance of the weak learner trained during the
previous iteration. Those data segments that were incorrect
are weighted higher than others so the weak classifier pro-

duced in the next iteration will be better able to classify these
previously incorrect segments. CSNmodifies this process by
imposing an additional term to the weight at the initial itera-
tion. This weight is based on the similarity between the user
i, whose personalized model is being trained, and the user
which provides the data,

weight(0)(xk) = sim(i, k) (7)
where, k indicates the user who produces the data xk. We
define sim(i, k) as the edge weight between these two in-
dividuals within the similarity network being used during
the boosting process. As a consequence only data segments
from user i or any users who are highly similar to user i
will be weighted highly and so able to have strong influence
over the learned classification boundaries. In subsequent it-
erations the weighting of data segments is left to fluctuate
based solely on classification performance. As boosting is
an ensemble technique the CSN framework remains flexi-
ble, the weak learner can be replaced with any alternative
supervised classifier based on the requirements of intended
classification task.

Similarity Network Multi-Training. The three varieties
of similarity networks currently used in CSN capture differ-
ent dimensions of similarity between users. For example,
some users being highly similar in terms of physical charac-
teristics but polar opposites when it comes to lifestyle. Us-
ing Similarity-sensitive Boosting in conjunction with any of
these different networks will result in different classification
models. Each network will emphasize different partitions of
the training data. This diversity is valuable as the different
similarity networks produce models that are highly effective
for some classes of activity but not others (see evaluation
section). A simple example of this being those activities that
are closely connected to the physical characteristics of the
person, e.g., running and exercising, benefit from a classifi-
cation model trained using a physical similarity network.

CSN exploits the strengths of each similarity network by
adopting the technique of multi-training (a variation of co-
training proposed in [31]). Multi-training is a semi-supervised
training algorithm designed to utilize multiple complemen-
tary views of the same labeled training data to generate ad-
ditional labels, which are assigned to data segments within
the pool of unlabeled data. This approach is appropriate for
CSN given that crowd-sourcing generates large amounts of
unlabeled data. People will only infrequently take the time
to provide anymanual user input; but since simply collecting
data is transparent to the user then large pools of unlabeled
data quickly can accumulate. Employing a multi-training
approach allows CSN to use the diversity provided by the
different similarity networks to make use of a plentiful and
otherwise wasted resource, unlabeled data.

The multi-training process begins by initially using the three
classifiers trained by Similarity-sensitive Boosting. Each of
these classification models maintains an independent logical
copy of the labeled and unlabeled data. An iterative pro-
cess is applied whereby the classification models are used to
in turn to “label” unlabeled portions in the logical datasets
maintained by each of the other models. At the end of each
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Figure 4. Classification accuracy for the Everyday Activities dataset
under CSN and three baselines.

iteration the classifiers are then retrained (using Similarity-
sensitive Boosting) based on the combination of the labeled
data from the previous iteration along with any new addi-
tional labels. Acquiring labels in this way can be an error-
prone process, as a result labels are only accepted when there
is agreement with more than half of the classification mod-
els. Judging the quality of a proposed new label, based on a
majority decision, is only one of many ways that quality can
be assessed. Multi-training continues to iterate for several
rounds until a stopping condition is met. CSN uses currently
a stopping condition based on how many labels are accepted
at each iteration. If the number of recruited labels is too low
for too many iterations then multi-training stops.

EVALUATION
In this section we evaluate the effectiveness and design choices
of CSN. Our experiments show that by incorporating simi-
larity networks among users into the classification process
CSN is better equipped to cope with the population diversity
problem, compared to existing techniques.

Experimental Methodology
To evaluate CSN we use two large real-world datasets and
three representative baselines.

Datasets. Our two datasets require a variety of the ac-
tivity inferences frequently used in mobile sensing applica-
tions. The first dataset, Everyday Activities, contains a broad
range of routine human activities that have been used to sup-
port application domains such as mobile health [12]. The
other dataset, Transportation, is much more focused on a
single category of activity, transportation modes, which are

building blocks of various mobile applications, e.g., appli-
cations that promote green transportation [14]. We collect
the data for Everyday Activities as part of a series of in-
ternal experiments. The data comprises both simple activ-
ities: {walk, run, stationary} and high-level behaviors:
{meeting , studying, exercising, socializing}. A total of
41 people contribute to this dataset using a Nexus One smart-
phone sampling sensor-data from the accelerometer, micro-
phone and GPS. People carry the device for variable lengths
of time that range between one and three weeks. For Trans-
portationwe use an external source [29, 30], with the dataset
containing only different transportation modes, specifically:
{bike, bus, car, walk}. This dataset comprises 51 people
who carry for three months one of a variety of devices that
are equipped with a GPS, including, phones, PDAs and per-
sonal navigation devices.

Benchmarks. We compare the performance of CSN against
three benchmarks, single, isolated and naive-multi. Our bench-
marks use the same features and apply the same classifica-
tion model as CSN but differ significantly in how they ap-
proach classifier training. The benchmarks of single and
isolated correspond with the two types of common practice
we detailed in the earlier section on community-scale clas-
sification. In single the same generic model is provided to
all users. Unlike CSN after the release of the system the
model does not change and new training data is not col-
lected. Under isolated every user has their own model. Each
user model is personalized by using training data sourced
directly from the user. The weakness is that each classifi-
cation model is considered in isolation of one another. No
co-operation or sharing of training data occurs among users.
Finally, naive-multi allows us to demonstrate the benefit of
CSN solely attributable to the use of similarity networks.
During training naive-multi performs boosting and multi-
training, the same techniques used in CSN. However, naive-
multi uses the conventional versions of these learning tech-
niques without the use of similarity networks. Specifically,
the differences are: i) during boosting the weighting of train-
ing data at each iteration only changes based on classifica-
tion performance instead of inter-personal similarity and ii)
during multi-training the classifiers used are not based on di-
mensions of similarity but based on classifiers trained with
equally-sized random subgroups of the training data.

Robust Classification with Low User Burden
Our first set of experiments finds, under both datasets, CSN
provides more robust classification than any of the bench-
marks. Not only is CSN able to achieve higher classifi-
cation accuracy but we observe classification accuracy is
also more evenly distributed throughout the user population.
Under CSN the burden to provide training data is lowered,
thus, accuracy numbers comparable to the benchmarks can
be achieved with smaller quantities of data. In what follows,
we report accuracy values resulting from five fold cross-
validation.

Figures 4(a) and 5(a) show the results of experiments where
we assume users contribute different amounts of labeled data.
For each quantity of labeled data we measure the average
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Figure 5. Classification accuracy for the Transportation dataset under
CSN and three baselines.

per person accuracy of classification for models trained un-
der CSN and the three other benchmarks. Figure 4(a) uses
Everyday Activities, and Figure 5(a) repeats the experiment
using Transportation. In both figures the accuracy of CSN
outperforms all baselines for each quantity of training data
tested. For example, Figure 4(a) shows if 500 labeled data
segments are used (approx. 15 minutes of training data per
user) then CSN outperforms naive-multi and isolated by 22%.
Similarly, from Figure 5(a) we see if 1.6 x 104 labeled data
segments are used (approx. 137 minutes of training data
from each user) the accuracy of CSN exceeds single by 47%
and naive-multi by 32%.

From Figures 4(a) and 5(a) we also learn that CSN is able
to lower the user burden of contributing training data. As
an example, Figure 4(a) shows isolated requiring 36 min-
utes of training data from a user to achieve 74% accuracy.
CSN can provide approximately this same accuracy for only
15 minutes of training data, a data reduction of 58%. Alter-
natively, if we consider Figure 5(a) isolated is able to per-
form with 77% accuracy but requires 270 minutes of train-
ing data. Again, CSN can provide approximately this level
of accuracy but with 49% less data, only needing 137 min-
utes of data per user. Under CSN users are better rewarded
for contributing data due to it having a higher ratio of clas-
sification accuracy to crowd-sourced training data, than the
other benchmarks.

Figures 4(b) and 5(b) present CDFs of per user accuracy. We
illustrate the fraction of the user population who experience
different classification accuracy under CSN and all bench-
marks. Figure 4(b) uses Everyday Activities and assumes

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

1
2

5

67

10
121518

4
8

9

11

13

14

16

17
19

20

21

22

3

(a) Physical

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

1
16

17
22

2

3

4

5

6

7

8

9

10

11

12

13

14

15

18
19

20 21

(b) Lifestyle

Figure 6. MDS projection of physical and lifestyle similarity networks
used by CSN.
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Figure 7. The classification accuracy of each activity class under dif-
ferent dimensions of similarity using the Everyday Activities dataset.
It shows different dimensions of similarity are effective for different
activities.

users provide 15 minutes of training data each, while Fig-
ure 5(b) assumes users provide 137 minutes of labeled data
and uses the Transportation. Ideally all users should receive
the same level of accuracy, otherwise classification perfor-
mance will be unpredictable when deployed. Better perfor-
mance is indicated in these figures by curves that are further-
est to the right. We observe from each figure CSN has the
most even distribution of accuracy compared to all bench-
marks. For example, Figure 4(b) shows for 75% of users
that CSN provides 82% accuracy compared to just 65% for
isolated, 48% for single and 52% for naive-multi. Figure 5(b)
reinforces this finding and indicates for again 75% of users
CSN provides 77% accuracy instead of the 68%, 53% and
66% accuracy offered by isolated, single and naive-multi re-
spectively.

Benefits of Leveraging Similarity Networks
With the following experiments we investigate the effective-
ness of the similarity networks used by CSN.

To test if the similarity networks used by CSN are captur-
ing meaningful differences between people, we collected ad-
ditional demographic information from 22 individuals who
contributed to Everyday Activities. Figures 6(a) and 6(b) plot
the result of applying multidimensional scaling (MDS) to
two similarity matrices for these people using physical and
lifestyle similarity. Distances between points in these fig-
ures are proportional to differences in similarity. Figure 6(a)
shows two clear groupings. We find these groups correspond
to people with similar physical characteristics. The people
in the tight cluster near the left of the figure are all over 30
years old, all male, and have similar physical fitness levels.
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In contrast, the looser clump of people near the middle are
in the same age range (22 - 26) but are all more diverse in
terms of sex, and fitness. The outlier in Figure 6(a) is a 50
year old woman and is distinct due to her sex and exceptional
fitness. The clusters in Figure 6(b) also correspond to our in-
terview ground truth. The tight cluster to the left are a small
group of people who live off campus and maintain regular 9
a.m. to 5 p.m. working hours. They are in sharp contrast to
the very loose cluster on the right of the figure. This cluster
contains students who, although they live very close to each
other, also have erratic sleeping and activity patterns which
results in them being grouped but not as tightly as the nearby
cluster.

In Figure 7 we can see the value of using multiple similarity
dimensions. The figure illustrates the different levels of clas-
sification accuracy achieved when using each of our three
similarity dimensions to classify classes found in Everyday
Activities. None of the three similarity metrics has the high-
est accuracy across all the activities. We find a similar pat-
tern exists within Transportation. By exploiting all of these
forms of similarity CSN is able to better handle a wide range
of classification tasks. This result supports the design choice
to use multiple dimensions of similarity and leverage them
all when training classification models.

Cloud Scalability with Low Phone Overhead
Our remaining results report on the overhead to smartphones
in adopting CSN, along with the ability for CSN to scale to
large user populations.

We profile the computation and energy consumption of our
CSN client on the Android Nexus One. We find resource
consumption comparable to prior implementations of clas-
sification pipelines on phones (e.g., [22, 21]). As this over-
head is not specific to CSN but found in any mobile sensing
application we do not report further details. Overhead spe-
cific to CSN includes the transmission of sensor-data and the
downloading of classifiers trained in the cloud. We find typ-
ical file sizes for our classification models are on the order
of 1 ∼ 2 KBs, which means the cost of downloading classi-
fication models is minor. However, a significant cost to the
phone can accrue when uploading sensor-data. To eliminate
this cost our client implements an uploading strategy that
waits until the phone is recharging before uploading data,
effectively removing any burden to the battery.

The computational demands of computing the three CSN
similarity dimensions range from being light-weight to very
demanding. We quantify this by profiling the computational
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(b) Transportation
Figure 8. The accuracy of CSN when we group the users into different
number of clusters under both datasets.

overhead for computing similarity networks for all people
within Everyday Activities. This raw dataset is more than
400GB (mainly due to audio data). Using our CSN Mo-
bile Cloud Infrastructure, configured with only one linux
machine in the node pool the computational time for each
variety of similarity is, ≈200 minutes, ≈9 minutes and ≈3
minutes respectively for sensor-data, lifestyle and physical
similarity. The sensor-data similarity is the most costly of
these three as it requires pairwise calculations between users.

Personalized models are trained by CSN for each user, how-
ever, this can become a bottle-neck. The workload of the
Mobile Cloud Infrastructure increases with population size
due to: i) the pairwise calculation of similarity between users
and ii) each new user requires a new model to be trained.
For this reason we designed our Mobile Cloud Infrastruc-
ture to effectively leverage a variable sized pool of cloud
nodes, so additional nodes could be added when required.
However, we experiment with an alternative approach that
requires a simple extension to CSN. Instead of training a
model for each user, users are first grouped together by clus-
tering. Similarity networks are then built not between peo-
ple but between these groups, with a model trained for each
group. We investigate this trade-off and cluster people with
k-means using the least computationally costly similarity di-
mensions, lifestyle and physical. By lowering the number
of groups we can reduce the Mobile Cloud Infrastructure
workload. This trade-off is seen in Figure 8. These figures
illustrate how accuracy falls as the cluster size (the k in k-
means clustering procedure) is reduced. Reducing the num-
ber of models dilutes the similarity between people in the
cluster. Consequently, the model used by the entire group
is less appropriate for everyone. Still, as the cluster number
decreases the overhead to the mobile cloud is reduced, since
fewer models need to be maintained. This approach allows
us to regulate resource consumption by CSN irrespective of
the size of the user population.

RELATED WORK
Applications that use mobile phone sensors have been steadily
rising (e.g., [10, 12, 11, 6, 22]) and accurate classification of
sensor-data is becoming increasingly important.

Researchers investigating sensor-enabled mobile phone ap-
plications frequently encounter the limits of activity classifi-
cation. It is becoming obvious that conventional approaches
that rely on supervised learning and carefully controlled train-
ing experiments are not suitable. In recognition researchers
are considering alternatives. Current research directions point
towards models that are adaptive and incorporate people in
the process. Automatically broadening the classes recog-
nized by a model is studied in [19] where active learning
(where the learning algorithm selectively queries the user
for labels) is investigated in the context of heath care. In
SoundSense [20] a supervised classification process for a
fixed category of sounds is augmented with a human-in-the-
loop guided unsupervised process for learning novel sounds.

Research, such as [19, 20], focuses primarily on the indi-
vidual to assist with classification. CSN leverages the user
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but also exploits communities of people (rather than just iso-
lated individuals). Researchers are beginning to explore this
new direction. [16] proposes a community-based technique
that groups people based on their social clique and parti-
tions their data accordingly to improve learning. However,
the grouping is based on self-reported social-networks and
is evaluated only under a location-based classification sce-
nario. Community-guided Learning (CGL) [24] builds mod-
els of human behavior with training data provided by non-
expert low-commitment mobile device users. CGL over-
comes the challenge presented by noisy labels being intro-
duced to the training process by using data similarity in com-
bination with the crowd-sourced labels.

The potential for crowd-sourcing has been long recognized
with interest in the area being established by Luis Von Ahn [27].
Now, commercially available systems including Amazon’s
Mechanical Turk [1] havemade it simple to exploit the power
of using thousands of people. The use in CSN of crowd-
sourcing builds directly on these existing directions. We see
CSN as part of an exciting area of hybrid systems that intel-
ligently combine the effort of the masses towards a task that
neither computers nor humans can perform on their own.

CONCLUSION
In this paper, we have proposed Community Similarity Net-
works (CSN), a classification system designed to address
the population diversity problem. We demonstrated that the
population diversity problem appears when using conven-
tional techniques with as few as 50 users. CSN combines the
crowd-sourcing of labels and sensor-data with multiple sim-
ilarity networks that capture user similarities across different
dimensions. The similarity networks guide the process of se-
lectively merging data from different individuals to produce
personalized classifiers at a much lower per-user cost. Fi-
nally, the generality, flexibility, and effectiveness of CSN are
demonstrated using two distinct mobile sensing datasets.
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