198 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO. 1,

JANUARY 2018

Towards Quality Aware Information Integration
in Distributed Sensing Systems

Wenjun Jiang, Chenglin Miao, Lu Su
Jing Gao, Member, IEEE, Hengchang Liu

, Member, IEEE, Qi Li, Shaohan Hu, Shiguang Wang,
, Member, IEEE, Tarek F. Abdelzaher, Member, IEEE,

Jiawei Han, Fellow, IEEE, Xue Liu, Member, IEEE, Yan Gao, and Lance Kaplan, Fellow, IEEE

Abstract—In this paper, we present GDA, a generalized decision aggregation framework that integrates information from distributed
sensor nodes for decision making in a resource efficient manner. Different from traditional approaches, our proposed GDA framework is
able to not only estimate the reliability of each sensor, but also take advantage of its confidence information, and thus achieves higher
decision accuracy. Targeting generalized problem domains, our framework can naturally handle the scenarios where different sensor
nodes observe different sets of events whose numbers of possible classes may also be different. GDA also makes no assumption
about the availability level of ground truth label information, while being able to take advantage of any if present. For these reasons, our
approach can be applied to a much broader spectrum of sensing scenarios. In this paper, we also propose two extensions of the GDA
framework; i.e., incremental GDA (I-GDA) and parallel GDA (P-GDA) to deal with streaming and large-scale data. The advantages of
our proposed methods are demonstrated through both theoretic analysis and extensive experiments.

Index Terms—Information integration, distributed sensing system, participatory sensing, crowd sensing, social sensing, quality

1 INTRODUCTION

THE proliferation of embedded sensing devices in the
recent years has given rise to the fast development and
wide deployment of distributed sensing systems. Designed
to connect people and the physical world in ways previ-
ously unimaginable, such systems have become an integral
part of people’s everyday lives, hosting a whole spectrum
of civilian and military applications, providing useful infor-
mation to help people with decision making about events in
the physical world.

One of the most widely used techniques for decision mak-
ing is classification [1], [2], which is the task of assigning
objects (data) to one of several predefined categories (clas-
ses). Its basic idea is to “learn” a function (also called classi-
fier) from a set of training data, in which each object has
feature values and a class label, and use the learned function
to determine the class labels for newly-arrived data.

e W.Jiang, C. Miao, L. Su, Q. Li, and |. Gao are with the State University of
New York at Buffalo, Buffalo, NY 14260.
E-mail: {wenjunji, cmiao, lusu, qli22, jing)@buffalo.edu.

e S.Hu, S. Wang, T.F. Abdelzaher, and |. Han are with the University of
Illinois at Urbana-Champaign, Urbana, IL 61801.
E-mail: {shul7, swang83, zaher, hanj}@illinois.edu.

e H. Liu is with University of Science and Technology of China, Hefei
230022, China. E-mail: hcliu@ustc.edu.cn.

o X. Liu is with McGill University, Montreal, Quebec, QC H3A 0G4,
Canada. E-mail: xueliu@cs.mcgill.ca.

e Y. Gao is with LinkedIn, 2029 Stierlin Ct, Mountain View, CA 94043.
E-mail: gaoyan.hrb@gmail.com.

o L. Kaplan is with Army Research Laboratory, Adelphi, MD 20783.
E-mail: lance.m.kaplan@us.army.mil.

Manuscript received 29 Mar. 2016; revised 4 Feb. 2017; accepted 13 Feb. 2017.
Date of publication 6 June 2017; date of current version 8 Dec. 2017.
(Corresponding author: Lu Su.)

Recommended for acceptance by X. Wang.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2017.2712630

The major challenge in applying classification techniques
to solve decision making problems in distributed sensing
systems lies in the trade-off between decision accuracy and
resource consumption. On one hand, individual sensors are
not reliable, due to various reasons such as incomplete
observation, environment and circuit board noise, poor sen-
sor quality, lack of sensor calibration, or even deceptive
intent in the first place. To address this sensor reliability
problem, one common approach is to integrate information
from multiple sensors, as this will likely cancel out the
errors of individual sensors and improve decision accuracy.
On the other hand, distributed sensing systems usually
have limited resources (energy, bandwidth, storage, time,
money, or even human labor). Thus, it is often prohibitive
to collect data from a large number of sensors due to the
potential excessive resource consumption. Therefore, it is
challenging to solve the decision aggregation problem, that is,
to collect and integrate information from distributed sensors
to reach a final decision in a resource efficient manner.

Recent efforts have been made to address this challenge
under different sensing scenarios. Representative examples
include decision aggregation approaches [3], [4] designed
for remotely deployed sensing systems where unattended
sensor nodes forward their findings through wireless ad
hoc networks, and truth discovery schemes [5], [6], [7], [8],
[9], [10] that target on social and crowd sensing applications
where people themselves act as “sensors” and share their
observations via social networks (e.g., in the application of
crowdsourced road sensing, specific objects or events on the
road, such as potholes, bumps, traffic congestions, and acci-
dents, are detected and reported by the participating drivers
through their smartphones). Both strategies dictate that
each individual node report only its classification result
(decision) as opposed to raw data, thus minimizing network
transmission and leading to significant saving of system

1045-9219 © 2017 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7223-543X
https://orcid.org/0000-0001-7223-543X
https://orcid.org/0000-0001-7223-543X
https://orcid.org/0000-0001-7223-543X
https://orcid.org/0000-0001-7223-543X
https://orcid.org/0000-0003-0679-668X
https://orcid.org/0000-0003-0679-668X
https://orcid.org/0000-0003-0679-668X
https://orcid.org/0000-0003-0679-668X
https://orcid.org/0000-0003-0679-668X
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

JIANG ETAL.: TOWARDS QUALITY AWARE INFORMATION INTEGRATION IN DISTRIBUTED SENSING SYSTEMS 199

resources. Individual decisions, upon arrival at the server,
are further combined to produce the final decision.

Though yielding reasonably good performance in certain
cases, these approaches suffer from a major limitation, that
is, they only take as input discrete decision information.
Sometimes individual sensors may not be quite confident
about their decisions due to various reasons, such as incom-
plete or noisy observations. In this case, if each sensor’s con-
fidence information (the probability that it “believes” the
observed event belongs to each candidate class) can also be
taken into consideration, we should be able to further
improve the final decision accuracy. For example, suppose
a vehicle is observed by three sensors that try to determine
whether it is a tank or a truck (assuming it is actually a
tank). Each sensor then provides a confidence probability
vector corresponding to its belief in the vehicle being a tank
or a truck. Suppose the three probability vectors are (0.99,
0.01), (0.49, 0.51), and (0.49, 0.51). In this case, only one sen-
sor predicts the vehicle to be a tank, however, deciding so
with high confidence, as opposed to the other two that both
vote for a truck but with confidences not far from that of
random guess, as reflected by their decision probability vec-
tors. Therefore, we expect a reasonable decision aggregation
scheme to output tank as the aggregated decision, as
opposed to the traditional decision aggregation or truth dis-
covery schemes that only takes discrete decision labels as
input, which would likely get the wrong answer, favoring
the majority though incorrect decision in our example.

In practice, the decision probability vectors can be obtained
from both traditional device-centric sensing systems where
sensor nodes conduct explicit classification computations,
and newly-emerged people-centric sensing paradigms where
people conduct implicit classifications through their logical
reasoning. For example, when working with hardware sensor
nodes, we can adopt classification algorithms that derive deci-
sion probabilities through heuristic metrics like the distance
between the observed data and the decision boundary
learned from training data; When having people carry out
sensing tasks, we can ask each participant to explicitly pro-
vide the confidence level of each decision made.

The goal of this paper is to develop a generalized decision
aggregation (GDA) framework for distributed sensing systems
that can address the above challenge, by taking as input each
individual sensor’s decision probability vectors and comput-
ing the aggregated decision (class label) for all events under
observation. In pursuing the generalizability so that it is appli-
cable to a full range of sensing scenarios, our proposed GDA
framework bears the following properties.

1) Each individual sensor’s reliability level is explicitly
accounted for when GDA integrates individual deci-
sions. A sensor’s reliability information is important
as it reflects the general quality of information it can
provide. The aggregated decision should favor more
reliable sensors and weigh less unreliable ones instead
of treating all individuals equally. In reality, however,
the reliability information is usually unknown a pri-
ori. To address this, in our GDA framework, the
sensors’ reliability is estimated along with the deci-
sion aggregation process and provided as part of the
final outputs to the user.

Please note that high confidence does not necessar-
ily imply high reliability. For example, a sensor
should be labeled unreliable if it is always confident

about its decisions that are actually wrong. The ability
of accounting for sensor reliability thus differentiates
our GDA framework from prior information integra-
tion schemes (e.g., data fusion [11], [12], [13], [14],
[15], [16]) that can also deal with continuous confi-
dence probabilities.

2) Different from traditional decision aggregation
schemes that assume all the events are observed by all
the sensors, the proposed GDA framework is able to
handle the scenarios where different sensor nodes
observe different sets of events whose numbers of pos-
sible classes may also be different. Doing so enables us
to seize more opportunities to estimate sensor reliabil-
ity, thus leading to better final decision accuracy.

3) Inorder to be applied to newly emerged sensing sce-
narios where people are playing increasingly more
critical roles, which implies more opportunities for
ground truth label collection, we design our GDA
framework from ground up to be able to cope with
any availability level of label information, and do so
in a dynamic and intelligent manner.

4) In addition to pursuing higher accuracy in aggregat-
ing decisions, we also want to do it in an efficient
and scalable way. Towards this end, two extensions
of the GDA framework are proposed in this paper.
First, in order to deal with the data that arrive in a
streaming manner, we come up with an incremental
GDA (denoted as I-GDA) algorithm that can, upon
the receipt of new decisions, calculate the true deci-
sion as well as update the reliability of each sensor
without revisiting the old data. Second, to expedite
the processing of massive sensory data, we develop
a parallel GDA (denoted as P-GDA) scheme that
adopts MapReduce [17] framework to process large-
scale data in parallel.

The rest of the paper is organized as follows. We first
summarize the related work in Section 2. Section 3 provides
an overview of the system model and architecture. In
Section 4, we formulate the generalized decision aggrega-
tion problem as an optimization program and propose an
efficient algorithm to solve this problem, followed by two
extensions of it. The proposed algorithms are evaluated in
Section 5. Finally, Section 6 concludes the paper.

2 RELATED WORK

Classification techniques are widely used in a full range of
sensing scenarios, such as habitat monitoring [18], [19], [20],
[21], target surveillance and tracking [22], [23], environmen-
tal monitoring [24], activity recognition [25], [26], [27], road
sensing and monitoring [28], and many others. Our general-
ized framework proposed in this paper can essentially be
applied to all these sensing scenarios, addressing the deci-
sion aggregation problem by corroborating the scattered
classification results and making the consolidated near-opti-
mal final decision for the target events, and doing so in a
resource efficient manner.

There are prior attempts on similar problems. For exam-
ple, Su et al. [3], [4] study the decision aggregation problem
for remotely deployed sensing systems where very limited
label information can be accessed. Recently, the problem of
truth discovery [5], [6], [7], [8], [9], [10], [29], [30] is investi-
gated in the data mining and social sensing communities.
Their goal is to identify the truth from claims made by

200 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29,

Sensors

Fig. 1. An example of belief graph.

different information sources (e.g., websites, social network
users). These approaches suffer from a major limitation,
that is, they only take as input discrete decision information.
In contrast, our proposed decision aggregation framework
is able to take advantage of the confidence information of
each sensor about its decision, and thus achieves higher
decision accuracy. Recently, Li et al. [31], [32] propose a
truth discovery scheme that can deal with continuous val-
ues. Different from this work, we customize the proposed
GDA framework to account for the sensor confidence prob-
ability vectors that are subject to the decision constraint.

Moreover, the proposed problem and solution in this
paper are different from the traditional data aggregation or
data fusion schemes in wireless sensor networks. First, data
aggregation techniques [33], [34] do not consider sensor reli-
ability, and usually only involve applying simple operations
(e.g., mean, min, and max) directly on the raw sensory data.
Second, data fusion (or classifier fusion) schemes [11], [12],
[13], [14], [15], [16] are designed to gather and combine infor-
mation from multiple sensors in order to improve the accu-
racy of target detection and recognition. However,
the aforementioned work does not take into consideration the
reliability of individual sensor nodes. In contrast, the pro-
posed GDA framework jointly optimizes aggregated deci-
sions and sensor reliability, and can be applied in more
general sensing scenarios where the sensor nodes, the
observed event sets, and the possible candidate classes can all
be different, which can thus be combined in arbitrarily com-
plex manners. In addition to the above work, there are also
some data fusion methods that capture the reliability of sen-
sors. For example, optimal fusion rules based approaches [35]
take into consideration the prior knowledge of sensory data’s
error distribution. However, in many cases, the reliability of
each sensor is unknown a priori. To address this challenge, the
proposed GDA framework can estimate sensor reliability in
an unsupervised manner without any prior knowledge of
sensor reliability. Moreover, the methods developed in [36],
[37] can detect faulty sensors. GDA is also different from these
methods because it can not only detect anomalous sensors
(e.g., the sensors with extremely low reliability), but also esti-
mate the reliability for all the sensors based on their decisions.

The basic GDA framework has been published in [38]. In
this paper, we propose two extensions of GDA, i.e., incre-
mental GDA (I-GDA) and parallel GDA (P-GDA), to deal
with streaming data and large-scale data, respectively.

3 SYSTEM OVERVIEW

We now give an overview of our system model and
architecture.

3.1 System Model

We consider a sensing system consisting of n sensor nodes that
are denoted by § = {s;| ¢ = 1,2,...,n}. The sensor nodes col-
lect information about the events taking place within their
sensing ranges, and classify these events into predefined

NO. 1,

JANUARY 2018

sensor 1 Sensor 2

Data Data
Classification Classification Gée
Module Module
Decision Vector Decision Vector

N
Decision Aggregation Module
| Aggregated Decision | Sensor Reliabllity |

Class Label

Base Station

Fig. 2. System architecture.

classes. Formally, we let £ = {¢;[i =1,2,...,t} denote the
sequence of events (sorted in chronological order) observed by
the sensor nodes. Generally, each sensor observes a subset of
events, and each event is observed by a subset of sensors. The
relationship between sensor nodes and events can be repre-
sented as a bipartite graph, called belief graph, where vertices
are partitioned into sensors and events, and edges represent
the observation relationship of sensor-event pairs, as illus-
trated in Fig. 1. We denote the belief graph by an affinity
matrix called observation matrix A = (a;;),,,,, Where a;; indi-
cates whether event ¢; is observed by sensor s;.

In this case, suppose the mission of the sensing system is to
classify different vehicle types, specifically, to find out
whether an observed vehicle is a tank, a jeep, or a truck. As
shown, 10 events are observed by 5 sensor nodes. Each event
corresponds to a vehicle. Each sensor can be either a sensing
device deployed on the roadside, or a pedestrian in the
vicinity.

3.2 System Architecture

In this section, we provide an overview of the system archi-
tecture. The system contains two modules: a data classifica-
tion module and a decision aggregation module. They are
deployed on two different platforms: sensor nodes, and the
base station. Fig. 2 illustrates the system architecture. We
next discuss each of these two modules in more detail.

3.2.1 Data Classification Module

The data classification module runs on individual sensor
nodes. It locally classifies the events observed by each sen-
sor node, and uploads the classification results (i.e., decision
vector) to the base station. The decision vector of node s; for
e; is a probability vector denoted by d/ = (d},,...,d},),
where m; is the number of possible classes of event e;. In
this vector, each element probability, say d/,, represents the
confidence level in which s; “believes” the observed event
belongs to the kth class. For example, suppose sensor s; in
Fig. 1 outputs a decision vector for event e, (e,
d) = (0.8,0.1,0.1)). This implies that s; believes that with
80 percent probability e, is a tank, and is a jeep or truck
with 10 percent probability each.

3.2.2 Decision Aggregation Module

Asshown in Fig. 2, the decision aggregation module resides on
the base station. It combines the decision vectors from multiple

JIANG ETAL.: TOWARDS QUALITY AWARE INFORMATION INTEGRATION IN DISTRIBUTED SENSING SYSTEMS 201

sensor nodes through iteratively updating the aggregated deci-
sion and sensor reliability, which are explained as following:

o Aggregated Decision: The aggregated decision for an
event e; is also a probability vector, denoted by
X; = (Ti1, ..., Tim,). It represents the consensus of the
sensor nodes on the probability that e; belongs to
each candidate class.

e Sensor Reliability: As discussed in Section 1, the reli-
ability levels of individual sensor nodes should be
taken into account when aggregating the decisions of
multiple nodes. To capture sensor reliability, we asso-
ciate each node, say s;, with a non-negative weight w;,
where higher weights indicate higher reliability.

Finally, as shown in Fig. 2, the decision aggregation mod-

ule takes the highest probability in the aggregated decision
vector as the predicted class label of each unlabeled event
and sends the result to the user.

4 GENERALIZED DECISION AGGREGATION

In this section, we first formulate the generalized decision
aggregation problem as an optimization program on the
belief graph. Then a two-step block coordinate descent
method [39] is proposed to solve the optimization problem.
Based on this general GDA framework, two extensions are
further developed to deal with streaming data and large-
scale data respectively.

4.1 Optimization Program
With the previously introduced terminology and notions,
we formulate the following optimization program:

4 n
P : min Z Zaijwj”xi - d?||2 ey

=1 j=1
s.t. Zexp(fwj) =1 (2)
=1
x; >0, |x]=1 for i=1,2,...,¢. 3)

where the observation matrix A = (a;;),,,, and the decision
vector d] are the constants of the optimization program
while the aggregated decision x; and sensor reliability w;
are the variables.

Objective Function. The objective function (1) aims at min-
imizing the disagreement over the belief graph, namely, the
weighted summation of the distances between the decisions
of individual sensor nodes and the aggregated decision. In
this case, we use squared L2 norm as the distance function

Ixi — d!|* = (za + (im, —).

_d;1)2+ (xi2 _dg2)2+ im;

Intuitively, the optimal aggregated decision should be
close to the majority of individual decisions'.

Furthermore, the sensors with higher reliability score
(i.e., w;) should have more impact on the weighted summa-
tion. In other words, more reliable sensors would incur
higher penalties if they deviate far away from the aggre-
gated decision, as compared to less reliable ones. This way,
the objective function tends to be minimized when the
aggregated decision agrees with that of reliable sensors.

1. Here we assume the majority of the sensor nodes are functioning
appropriately and thus can make reasonable decisions.

Constraints. Next, we elaborate on the constraints that our
objective function is subject to.

e Reliability Constraint (2) is a regularization function.
It is used to prevent the sensor weight w; from going
to infinity, otherwise the optimization problem
would become unbounded. In fact, the most straight-
forward choice of regularization function could be
>~j—y w;j = 1, which is unsuitable for our purpose as
an optimal solution is achieved when the aggregated
decision is set to that of any single sensor, whose
weight is set to 1 and the rest sensors 0. Therefore,
we propose to formulate the regularization function
using the sum over exponential value of weights.
Exponential function is used to regularize weights so
that they are rescaled by logarithm (the range of
weights becomes smaller). One advantage of this
regularization formulation is that a closed-form opti-
mal solution can be derived.

e Decision Constraint (3) is used to guarantee that the
elements of the decision probability vector x; be non-
negative, and sum to 1 (e, x;/s L1 norm
Ixi| = 200 @ik = 1)

Unfortunately, P is not a convex program. This makes it
difficult to find the global optimal solution. To address this
challenge, we propose to solve P using the block coordinate
descent method [39]. The basic idea is as follows: In each itera-
tion, we update the values of sensor reliability and aggregated
decision alternatively and separately. In particular, in the first
step, we fix the weight (w;) of each sensor node, and solve P
with respect to the aggregated decision (x;) only. In the second
step, x; is fixed and P is solved with respect to w;. The two-
step process is repeated until convergence, which is guaran-
teed by the property of the block coordinate descent method.
That is, if we can find the optimal aggregated decision (sensor
reliability) when sensor reliability (aggregated decision) is
fixed, convergence can be achieved [39]. Next, we give
detailed explanation on these two steps, and show that each
step itself is convex, and thus has a globally optimal solution.

4.2 Updating Aggregated Decision
When the reliability w; of each sensor is fixed, we update
the aggregated decision x; for each event in order to mini-
mize the weighted distances between x; and the decisions
d’ made by individual,sensor nodes
Py : min ZZU/”‘U}J‘”XZ' - df”2
=1 =1

st. x,>0, |x]=1 for i=1,2,... ¢t

Different from P, Py has only one set of variables (i.e., x;’s),
and thus is a convex program. This ensures that we can find
globally optimal aggregated decisions. The detailed steps
are as follows. First, we denote the objective function by

t n m; -
F00 =Y aijuw; (ww —)’
=1 =1 =1

then the optimal solution can be obtained through setting
the partial derivative with respect to x to zero,

) _

2 55 W4 L —dj :07
arir ; aijw;j(Tik)

202 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO. 1,

fori=1,2,....,tand k=1,2,...,m,.
Solving this equation, we are able to get the optimal
value of x;;,

n)
> iy Gijwidsy
n . . N

> iy QijW;

Therefore, the optimal aggregated decision vector is actu-
ally the weighted average of individual decision vectors

n P V]
Zj:l a;jw;d;
n - X o
D1 QW

Lik =

(4

X; =

One should note that when we solve for x;, we do not
take into account the decision constraint (Eqn. (3)). This is
because the aggregated decisions obtained from Eqn. (4)
can automatically satisfy the constraint. In particular, each
individual decision d] is a probability vector, obviously we
have d/ > 0 and |d/| = 1. Thus, it can be derived that

.] i1 aijw;ld] |

b —Zw——— |
Z] 1 GijW;j
Moreover, since both a;; and w; are nonnegative, it is
clear that z;; > 0. Therefore, x;’s automatically satisfy the
decision constraint.

4.3 Updating Sensor Reliability

Next, we fix the values of the aggregated decision x;, and
update the reliability of each sensor w; through solving the
following optimization program:

i n
Py : min ZzaijijXi - dgHQ
i=1 j=1
n
> exp(-u;) = 1

Similar to the previoqu sltep, P,, has only one set of varia-
bles, the w;’s. And the decision constraint (Eqn. (3)) in P is
just constant here. Py, is clearly convex since the objective
function is linear with respect to w;, while the constraint is a
convex function.

We use the method of Lagrange multipliers to solve Py,.
We first take a look at the Lagrangian of Py,

t

Z Z aijw;l|xi — d]H

=1 j=

+A <Z exp(—w;) — 1) .

J=1

In L(w,), X is a Lagrange multiplier, corresponding to
the reliability constraint. It can be interpreted as the
“shadow price” charged for the violation of the constraint.

Let the partial derivative of Lagrangian with respect to
wj be 0

t
=Y aylxi — &I = X exp(—wy) =0,
i=1
we can get
t 72
1 Q|| X; — ClZ
2i-1]H)\ I = exp(—wj). 5)

JANUARY 2018

Summing both sides over j’s, we have,

! a;l|x; — d]
Z Z[1/\J|| _Zexp 'LU] 1

from which we can derive that
A= Zzauuxz &I ®)
7=1 =

Plugging Eqn. (6) into Eqn. (5), we obtain a closed-form
solution of reliability:

S aglx — dlf?
wJ — log <) 1[.1‘]. d] 5) (7)
Sy aglx; — dl]|

As can be seen, the reliability of a sensor is the log ratio
between the summed decision deviation (i.e., the difference
between a sensor’s decision and the aggregated decision) of
all the sensors and the decision deviation of this sensor.
Sometimes, the summed decision deviation may dominate
individual decision deviations, and thus diminish the vari-
ance among the sensor reliabilities. In this case, we can
replace the the summed decision deviation by the maxi-
mum decision deviation among all the sensors.

4.4 Algorithm

The detailed steps of the generalized decision aggregation
algorithm are shown in Algorithm 1. The algorithm takes as
input the observation matrix A as well as the individual deci-
sion of each sensor s, for each event ¢; (i.e., d). It starts by ini-
tializing the aggregated decisions randomly (line 1). The
iterative process then begins in line 3. First, we collect the
aggregated decision of each event observed by a sensor s;,
and update its reliability via Eqn. (7) (line 5). Then, the
sensors’ reliability information are used to consolidate the
aggregated decision of each event ¢; through Eqn. (4) (line 7).
Finally, each event is assigned to the class corresponding to
the highest probability in the aggregated decision (line 10).

Algorithm 1. Generalized Decision Aggregation

Input: Observation matrix A, individual decisions dZ , and error
threshold ¢;
Output: The class label for each event L;;
1: Initialize Xgo)’ xl(-l) randomly.
2: 1+ 1
3: while /3 [x” —x" Y7 > e do
4: forj 1tondo

" to (D g2
,wg_t“) — log (Z_/l D il _‘de)

S x|
fori <« 1totdo
: (#+1) g7
(t+1) Z’L:l "’U“’_,‘r d/

x! PR s Sl e M

7 Zn o w(rﬂ)
j=1"175

T—T1+1
fori — 1totdo

return L; « argmax; xiz)

o

@Y*r N D

2.Since P is not a convex program, the block coordinate descent
based algorithm would probably converge to local optimum. A com-
mon way to address this problem is to run the algorithm multiple times
with a different set of randomly chosen initial aggregated decisions
and select the best solution.

JIANG ETAL.: TOWARDS QUALITY AWARE INFORMATION INTEGRATION IN DISTRIBUTED SENSING SYSTEMS 203

TABLE 1 TABLE 2
Events Final Results
Event Sensor Node Decision Vector Ground Truth Event Aggregated Decision Label Sensor Reliability
S92 (0.1,0.8,0.1) 1 ey (0.5701, 0.2358, 0.1941) 1 S1 1.6093
€1 S3 (0.6,0.2,0.2) e (0.1517,0.3517, 0.4966) 3 S9 0.2731
e3 (0.8,0.1,0.1) 1 S3 4.5801
& o Eg'i" o 8'2 3 e1 (0.2505, 0.5243,0.2252) 2 54 47438
3 it es (0.3712, 0.6288, 0) 2 S5 3.9157
. S3 (0.8,0.1,0.1) 1
3 54 (0.8,0.1,0.1)
51 0.4,0.3,0.3) 5 the reliability of individual sensors. As can be seen in Table 2,
€4 54 (0.2,0.6,0.2) the reliability score of s3 is much higher than that of s,, so the
aggregated result should favor s3’s decision. A decision is
0.5,0.5,0)
o 51 o 7 ’0 3 ’0) 5 considered to be correct (or incorrect) if the class with the
’ iQ (0'3’ 07 0) highest probability in the decision vector matches (or differs

4.5 Performance Analysis

In each iteration, the GDA algorithm takes O(mnt) time,
where n and t represent the number of sensors and events,
while m = max,cem; is the maximum number of classes
among all the events. Also, the convergence rate of coordi-
nate descent method is usually linear [39] (we actually fix
the number of iterations in the experiments). In practice, the
number of candidate classes of the observed events and the
number of sensor nodes that observe the same events are
usually small. Thus, the computational complexity of the
algorithm can be considered linear with respect to the num-
ber of events. Consequently, the proposed algorithm is not
more expensive than the classification algorithms, and thus
can be applied to any platform running classification tasks.
Furthermore, since wireless/wired communication is the
dominating factor of the energy consumption in distributed
sensing systems, our algorithm actually saves much more
energy than it consumes since it significant reduces the
amount of information delivered by each sensor by trans-
forming its raw data into decisions.

4.6 Example

We now walkthrough a simple example to illustrate the iter-
ative process of the GDA algorithm. Table 1 provides the
information of the first 5 events shown in Fig. 1. We omit
other events’ information due to space limitation. In this
table, we list the sensor nodes that observe each of the 5
events, and the corresponding decision probability vectors
generated by the sensors. In addition, the ground truth label
of each event is given in the last column.

We apply the GDA algorithm to the sensing system in
Fig. 1. Initially, the aggregated decision of each event is set
as the average of individual decisions made by the sensors
that observe this event. The predicted label corresponds to
the class with the highest probability. In rare cases where
ties occur, we break them randomly.

Then, the algorithm starts to iterate, and update the values
of sensor reliability and aggregated decisions repeatedly.
After the algorithm converges, as shown in Table 2, the pre-
dicted label for each event exactly matches the ground truth.
From the results, we have several observations. For example,
sensor s; and s3 have conflicting decisions about event e;,
and ss is more confident with its decision. Thus, the simple
averaged decision gives a predicted label of 2, which contra-
dicts against the ground truth. In this case, the GDA algo-
rithm outputs the correct label, because it takes into account

from) the ground truth label. As shown in Table 2, the sen-
sors that can make more correct decisions are assigned
higher reliability scores.

4.7 Incremental GDA
In many real applications, events (e.g., detection of animals)
may take place sequentially, and as a result, the decisions
may arrive in a “streaming” manner. Clearly, it is not eco-
nomic to invoke the decision aggregation procedure once
again on the whole data set whenever some new decisions
are reported, since tremendous unnecessary computations
would be incurred to update the decisions on outdated
events. Therefore, our goal is to develop an incremental deci-
sion aggregation mechanism that can, upon the receipt of
new decisions, calculate the true decision as well as update
the reliability of each sensor without revisiting the old data.
Formally, for each sensor s; we represent its “old
information” regarding the outdated events by d; =
S aijllx; —d/|I¥, which summarizes the difference
between its decisions and the aggregated decisions on all
the events observed in the past. With d;, on the occurrence
of the tth event e;, we are able to carry out decision aggrega-
tion and reliability update as follows:

o Calculating the agqregated decision for e;.

Z;:l (If‘/’ﬂ)jd{
21 94
o Updating the reliability of each sensor.

0, log (Zjl (dﬁaz.fxt—dV))

Xt —

—
djtagj|x —d|*

This idea is summarized in the following incremental
generalized decision aggregation algorithm.

As can be seen in Algorithm 2, the “old information”
d; is used as the input to reduce unnecessary computa-
tions. After the algorithm calculates the aggregated deci-
sion for e¢; (line 1), it will update d; by combining “old
information” with “new information”, which is the dif-
ference between each sensor’s decision on ¢; and the
aggregated decision (line 3). With updated d; for each
sensor node (line 5), the algorithm now can update the
reliability for each sensor without revisiting the aggre-
gated decisions on the past events. Although in I-GDA
we update each aggregated decision x; and each sensor
reliability w; only once instead of repeating the updating
until convergence. The sensor reliability w; will still
gradually stabilize as the number of events increases.

204 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO. 1,

Algorithm 2. Incremental GDA

Input: The aggregated decisions for the previous ¢ — 1 events
{x1,%2,...,%—1}, each sensor’s reliability at time ¢t — 1 (i.e., w;),
each sensor’s observation indicator for event ¢; (i.e., a;;), each
sensor’s decision on e; (i.e., d]), and each sensor’s information
regarding the previous ¢ — 1 events d; = 31 ayjl|x; — d!||%;
Output: The class label of event ¢; (i.e., L;);

27:1 agjo;d]

Dt 45
2: for each sensor node s; do
3 dj—dj+ aylpx —]|
4: for each sensor node s; do
5
6

1: Xt —

"
wj — log (%)

: return L; < argmaz;, Ty,

Moreover, in some cases, when the real-time response is
not that important, then we can further improve the efficiency
of the system. For instance, we can group the events in
sequential chunks: {e1,¢2,...,¢,...}, where each chunk ¢
contains the events taking place within the /th time interval.
We then employ the above two-step computation on the event
chunks instead of individual events. This way, we update
reliability of each sensor once for each chunk instead of each
event, so significant computational resources can be saved.

4.8 Parallel GDA

With the proliferation of all kinds of sensing devices, an
explosive increase of sensory data are expected in the near
future. In order to deal with such kind of massive data, we
propose to adopt cloud computing techniques to process
data in parallel. Many parallel programming models have
potential to be applied to the proposed GDA framework.
Among them, one of the most widely used models is the
MapReduce framework [17], which is adopted in this paper.

By implementing the GDA algorithm using the MapRe-
duce framework, we can make our system scalable to large
amount of data. When using the MapReduce framework,
we are allowed to customize two major functions: (1) the
map function that scan the input entries to generate inter-
mediate key/value pairs, and (2) the reduce function that
merges all intermediate pairs associated with the same key.
In the GDA algorithm, both the aggregated decision for
each event and the reliability for each sensor can be calcu-
lated independently, making this algorithm well adaptable
to the MapReduce framework. Next, we will elaborate on
design of our parallel GDA algorithm.

The inputs of our algorithm are decisions for each
event from several sensors, so each decision can be
expressed as the form of three tuple: (7,7, d}), which rep-
resents respectively event ID ¢, sensor ID j and the deci-
sion vector d/ made by sensor s; for event ¢;. We
initialize sensor reliabilities as uniform weights. Then we
iteratively update aggregated decisions and sensor reli-
abilities until convergence. Each round of iteration is
implemented by two MapReduce jobs:

o Updating Aggregated Decision. The aggregated deci-

K J

. . E - ajoid;
sion is updated as follows: x; «— Z&———. Clearly,

} :jzl ij@j

this computation step can be executed

JANUARY 2018

independently for each event, making it easy to par-
allelize. Specifically, each mapper processes the
input tuple (i, j, d!) and forward it to reducers in the
form of key/value pairs, in which the key is the
event ID ¢ and the value is the rest. After shuffled by
Hadoop, all decisions associated with the same event
e; are forwarded to the same reducer, where they are
used to derive Xx;, as the pseudo code in Algorithm 3
summarizes. After the MapReduce job, the aggre-
gated decision can be directly collected from the out-
put of the Reduce function.

o Updating reliability. For each sensor s;, we update its

2 Z;laimxf-—d{nz)

S a2)7
which the total error of each sensor s; ie,
S, aijlIxi — d/|]?, can be calculated independently.
Under MapReduce framework, each mapper pro-
cesses the input tuple (7, j,d/) and calculates partial
decision error of d/, i.e., ||x; — d/||°. The result is then
associated with the sensor ID j and sent to reducers.
The reducers then sum up these partial errors and
get total error for each sensor. The pseudo code is
summarized in Algorithm 4. After the MapReduce
job, we derive sensor reliabilities according to the
formula shown in line 8.

reliability as w; < log (

5 PERFORMANCE EVALUATION

In this section, we report experimental results on both syn-
thetic data and a set of realistic audio recordings. We dis-
cuss the experimental setup in Section 5.1. Then, we
compare GDA with the naive majority voting scheme as
well as state-of-the-art truth discovery and data fusion
approaches in Section 5.2. Finally, the performance of incre-
mental GDA and parallel GDA are discussed in Sections 5.3
and 5.4 respectively.

Algorithm 3. MapReduce for Updating Aggregated
Decision

Input: Individual decisions d{ of sensor j for event i, and
reliability w; for each sensor j;
Output: Aggregated decision x; for each event i;

1: function Mar (Key id, Value v)
(ij.d]) — v
3 EMIT(, (j, d))
4: function Repuce (Key 4, Value[] v)
T |
6: sum-decision « >\ w;-d]
7.
8
9

1
sum-weight — 377 w;
x; — sum_decision/sum_weight
EMIT(, x;)

5.1 Experiment Settings

For comparison purposes, we include four baseline meth-
ods in the experiment. The first two baselines take the dis-
crete decision information as input:

e Majority Voting. It counts the votes for each class, and
picks the one with the highest vote count.

e EM TruthFinder. It is a state-of-the-art truth discovery
approach [5], which uses Expectation Maximization

JIANG ETAL.: TOWARDS QUALITY AWARE INFORMATION INTEGRATION IN DISTRIBUTED SENSING SYSTEMS 205

(EM) algorithm to jointly optimize the correctness of
the claims made by a group of sources and the reli-
ability of these sources.

For each individual sensor decision, we feed these two
baselines with the class label that has the highest confidence
in the decision vector.

The other two baselines are representative data fusion
schemes [11], [12], [13], [14] that also take advantage of con-
fidence levels of individual sensors when integrating their
decisions:

e Product-Rule Fusion. Under our problem setting, it
is equivalent to multiplying the decision probabil-
ities over the sensors and labeling the event with
the class corresponding to the largest probability
product

n
L; — arg max]11 . ®)

e Sum-Rule Fusion. It behaves exactly the same as the
product rule fusion, except that summation is used
instead of multiplication

n
L; — arg max Z d),. 9

=1
As can be seen, if normalized by dividing each
sum by n, the sum rule fusion is equivalent to simply
averaging the decision probability vectors on each
event and labeling this event corresponding to the
class with the highest probability in the averaged

decision vector.

Algorithm 4. MapReduce for Updating Reliability

Input: Individual decisions df of sensor s; for event e;, and
aggregated decision x; for each event ¢;;
Output: Reliability w; for each sensor s;;
1: function Mar (Key id, Value v)

(17] ’ d{) v .
decision_error — ||x; — d!|*
EMIT(y, decision_error)
: function Repuck (Key j, Value[] v)

total_error; «— Y i, v;

EMIT(j, total_error;)

total_error;

N

® N>a,w

Both of the above fusion schemes, despite of being able to
deal with continuous confidence probabilities, fail to take
into account the varying sensor reliability.

All the experiments in this section except for the MapRe-
duce experiments are conducted on a Windows machine
with 16 GB of memory and Intel Core i7 processor.

5.2 Experimental Results of GDA

In this section, we first evaluate the performance of GDA on
synthetic data, and then use real audio data to see how the
proposed GDA algorithm works in real-world applications.

5.2.1 Synthetic Data

In this experiment, we simulate a sensing system where a
set of events are observed and monitored by multiple sensor

0.8
£0.6f
g
=
S
<04 - GDA
5V i+ Sum-Rule Fusion
0.2f -%=Product-Rule Fusion
-9~ EM TruthFinder

R L ¥ Majority Voting

34 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of Sensors

(a) Classification Accuracy

-©-GDA
-+ Sum-Rule Fusion
® 0.8, -4=Product-Rule Fusion
g } =6-EM TruthFinder
2 0.6 “# Majority Voting
E
P 0.4
=
=
0.2f

8 9 10 11 12 13 14 5 16 17 18
Number of Sensors
(b) False Positive Rate

bJ==
N
wn b
=)
N

Fig. 3. Classification performance under different sensor numbers on
synthetic data.

nodes. In particular, we randomly generate events of differ-
ent class labels. For simplicity, we assume that each class
contains the same number of events. Then, we generate sen-
sor nodes with uniformly distributed reliability. After that,
we generate decision vector d] through Dirichlet distribu-
tion Dir(e;) [40], where «; is a positive real m;-dimensional

vector with E[d),] = «—m—. In our experiment, all the
k=1 i
dimensions of «; are set to a constant ¢; except for the one

corresponding to the true class label, which is set to another
constant r;;. We let the difference 7;; — ¢; be non-negative
and proportional to the reliability of source j because if a
sensor j has a larger r;;, it is more likely to make correct
decision on event 1.

1) Classification Performance under Varying Number of
Sensors. We first demonstrate the classification performance
under varying number of sensor nodes that observe the
same events. We generate 6 classes with 100 events each,
where the number of observing sensors varies from 3 to 18.
The experiment is repeated 10 times. We report the average
results.

Figs. 3a and 3b show, for all approaches, their classifica-
tion accuracies (the percentage of correctly classified events,
equivalent to true positive rate in this case), and false posi-
tive rates (the percentage of misclassifications of all the
events that are classified to be of a particular class, then
averaged among all classes), respectively. As clearly seen,
our GDA framework outperforms the other approaches
under any number of observing sensors in terms of both
classification accuracy and false positive rate, as the classifi-
cation benefits from accounting for both sensor reliability
and decision confidences. On the other end of the spectrum,
the majority voting yields the worst performance as it disre-
gards useful information (sensor reliability and decision
confidences) that otherwise would be useful for reaching

206 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.1, JANUARY 2018
— = _ 0.5 e-GDA
NS . o Sy, .| = Sum st rusion
e 2 [|~-EM TruthFinder £ (.4l = Product-Rule Fusion
08 V.. 3 0.4 5 Majority Votin & ||<4-EM TruthFinder
g 07 v . % 03 1 g <7 Majority Voting
2 S g
0.6-6-GDA 202 =
& Sum-Rule Fusion = 4
- Product-Rule Fusi
03] o EM TrathFinder | o =
7 Majority Voting J - .E
04 3 4 5 6 7 i 3 4 5 6 7 i =
Number of Classes Number of Classes E
(a) Classification Accuracy (b) False Positive Rate

Fig. 4. Classification performance under different number of classes on
synthetic data.

more accurate final decisions. The EM TruthFinder and data
fusion approaches take only one factor (sensor reliability for
EM TruthFinder, or decision confidences for data fusion)
into consideration when aggregating individual decisions,
therefore they, though outperforming majority voting, still
fall short compared to our GDA approach, which utilizes all
useful information. One other interesting observation is that
all methods show similar performance when the number of
sensors is either very small or quite large (e.g., 3 and 18,
respectively in our experiments). This makes sense because,
on one hand, when the number of sensors that observe the
same events is small, it is hard to improve upon their indi-
vidual poor decisions; On the other hand, as the number of
sensors increases, each event is being observed by more and
more diversified sensor nodes, which are more and more
likely to cancel out each other’s biases and errors, thus
reaching better classification results. When there are a suffi-
ciently large number of observing sensors, even the most
naive approach (e.g., majority voting) can achieve near per-
fect classification accuracy.

2) Classification Performance under Varying Number of
Classes. Next, we look at how GDA's classification perfor-
mance compares to the other approaches with varying num-
ber of classes. The results are shown in Fig. 4. In this
experiment, we assume that each event is observed by 10
different sensors, and each class contains 100 events. The
number of classes ranges from 2 to 8.

Figs. 4a and 4b show the classification accuracies and
false positive rates of all approaches. As seen, our GDA
approach consistently outperforms the other methods
regardless of the number of classes, where the relative effec-
tiveness of all studied approaches remains the same as that
of the previous experiment. This is not surprising, as, still,
the scheme that can take advantage of more information
performs better. Also seen from the figures, it is clear that
all approaches’ classification performance degrades as the
number of classes increases. This is generally expected for
any classification task as the more candidate classes there
are, the more confusion the classification algorithms need to
come through. We do, however, notice that as the number
of classes increases, our GDA’s performance degradation is
slightly slower than the other approaches in general.

3) Sensor Reliability. Using the same setting as the previ-
ous experiment, we now examine how the different
schemes perform in terms of estimating sensor reliability by
comparing the reliability estimation errors of our proposed
GDA framework to that of the other four approaches, under
varying number of classes. In particular, the reliability esti-
mation error is computed as follows. For each individual
sensor node, its ground truth reliability is defined as its

Number of Classes

Fig. 5. Estimation errors of sensor reliability under different number of
classes.

standalone classification accuracy derived from comparing
its individual decisions to the ground truth event labels,
and its estimated reliability under a particular scheme is the
classification accuracy derived from comparing its individ-
ual decisions to the aggregated decision reached by that
scheme. A sensor’s reliability estimation error is thus com-
puted as the relative error between its estimated and
ground truth reliability.

The results are shown in Fig. 5. Similar to previous
experiments’ results, our proposed GDA still consistently
outperforms the others. In particular, we see that the
approaches that take sensor reliability into account when
performing decision aggregations (i.e., GDA and EM Truth-
Finder) achieve better performance than those who do not
(i.e., Data fusion and Majority voting). Also, as the number
of classes becomes larger, the estimation performance of all
approaches gets poorer. Similar to the previous experiment,
a higher number of classes would lengthen the distance
between the aggregated decisions and ground truth event
labels, thus causing more inaccurate sensor reliability esti-
mates. That said, we do, however, still observe that our
GDA scheme shows higher robustness than the other four
methods as the number of classes increases.

Fig. 6 shows the reliability of 10 sensor nodes that
observe the same set of events. For ease of illustration, we
sort the sensor nodes in the increasing order of ground truth
reliability. As can be seen, the ground truth reliability of
these 10 sensor nodes roughly follow a uniform distribu-
tion. In Fig. 6, we also show the reliability estimated by our
GDA as well as the truth discovery schemes. It is clearly
seen that the estimations from our GDA framework follow
more closely to the ground truth.

0.6

S 2
B

Bt
W

Reliability

;, =©-Ground Truth
0. o GDA
-9-EM TruthFinder
1 2 3 4 5 6 7 8 9 10
Sensor ID

Fig. 6. Reliability measures of 10 sensors observing the same set of
events.

JIANG ETAL.: TOWARDS QUALITY AWARE INFORMATION INTEGRATION IN DISTRIBUTED SENSING SYSTEMS 207

Accuracy
Sensor ID

-a-Sum-Rule Fusion
-4 Product-Rule Fusion
3 ~7-Majority Voting
~6-EM Truth Finder

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Number of Reliable Sensors Number of Reliable Sensors

(a) Classification Accuracy (b) Learned reliability

Fig. 7. Classification performance and learned reliability of each sensor
under different number of reliable sensors on synthetic data.

4) Classification Performance under Varying Number of
Reliable Sensors. Furthermore, we investigate how the classi-
fication performance of GDA varies when the number of
reliable sensors increases. In particular, we fix the number
of classes to be 8 and simulate two different types of sen-
sors: reliable sensors (i.e., 7;; = 8¢;) and unreliable sensors
(i.e., 7; = ¢;). Without loss of generality, we sort the sensors
in the descending order of their reliabilities. Then we fix the
total number of sensors as 10 and gradually increase the
number of reliable sensors.

Fig. 7(a) demonstrates the performance of GDA and the
baseline methods. When there is no reliable sensor, none of
the approaches can achieve satisfactory accuracy. When the
number of reliable sensors increases, the accuracy of GDA
improves faster than the baseline approaches because it
takes not only sensor reliability but also decision confiden-
ces into consideration. Fig. 7(b) further shows the reliability
of each sensor learned by GDA. When the number of reli-
able sensors is extremely low, the learned reliabilities of
both reliable sensors and unreliable sensors are low. How-
ever, as long as there are a few reliable sensors, GDA is able
to distinguish reliable sensors (with warmer color) from
unreliable ones (with cooler color), and thus achieve satis-
factory accuracy. This is because unreliable sensors, in prac-
tice, tend to make mistakes randomly and independently.
Therefore, even if the majority of sensors are unreliable, the
mistakes will not significantly bias the aggregated decision
towards a specific wrong class. On the contrary, all the reli-
able sensors consistently make the correct decision with
high possibility. Therefore, the aggregated decision can be
biased towards the correct class with just a few reliable sen-
sors in the system. Since in GDA, sensors that agree with
the aggregated decision will get higher reliabilities, GDA
will further enhance the weights of reliable sensors and
make the reliable sensors lead the aggregated decision. For
this reason, although the truly reliable sensors may not be
assigned high weights when the number of them is
extremely low, the truly unreliable sensors will unlikely be
assigned high weights even if there are many of them.

5) Convergence. Next up, we demonstrate the convergence
of GDA. Specifically in the experiment we have 600 events
equally distributed under 6 classes, where each event is
observed by 10 different sensor nodes.

Fig. 8 shows the evolution of the objective value (Eqn. (1))
of P, which denotes the weighted summation of the distan-
ces between individual decisions and the aggregated deci-
sion. According to the GDA algorithm, the objective value is
initialized based on randomly selected aggregated decisions
and the resultant sensor reliability. In the subsequent itera-
tions of the algorithm, the objective value is progressively

1060

Objective Value

1000 -

980 3

960

1 23 456 7 8 9101112131415
Iteration

Fig. 8. Convergence.

reduced by optimizing the aggregated decisions and the
sensor reliability alternatively. As shown in Fig. 8, the objec-
tive value converges quickly within just a few iterations.

6) Complexity. Lastly, we look at GDA’s computational
complexity. We demonstrate that GDA’s running time is
linear with respect to the number of events under practical
settings where, in particular, events are equally distributed
under 6 classes with each event being observed by 10 differ-
ent sensor nodes.

Fig. 9 shows the running time of GDA under different
input sizes (i.e., the number of events in each class). As seen,
GDA displays linear complexity with respect to the number
of events. To further demonstrate this, we compute Pearson’s
correlation coefficient, a commonly used metric for testing
linear relationship between variables. The coefficient ranges
between —1 and 1, and the closeritis to 1 (or —1), the stronger
the variables are positively (or negatively) linearly correlated.
In our experiment, the Pearson’s correlation coefficient for
running time and the number of events is 0.985, indicating
strong positive linear correlation.

5.2.2 Audio Data

We next shift our attention from synthetic data to realistic
audio data, using which we examine the classification perfor-
mance of our GDA framework as well as the aforementioned
baseline approaches except the product rule fusion scheme.
The product rule fusion scheme suffers when sources give
confident but conflicting decision vectors. For example, if two
sensors come up with the decision vectors like (0, 1,0) and
(0.8,0,0.2) for a particular event, then the resulted vector
product would be (0,0,0) no matter what decision vectors
other sensors may provide, resulting in an undecidable L;.
We found that such cases occur frequently with the real audio
data, and thus exclude this baseline from this experiment.

1

0.8

0.6

0.4

Running Time (s)

0.2

50 150 250 350 450 550 650 750 850 950
Number of Events

Fig. 9. Running time.

208 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29,

e
>

0.9[-e-GDA

‘@ Sum-Rule Fusion
~0-EM TruthFinder
0.8/ = Majority Votin;

s
in
a9

e
by

Accuracy
°
3

°

b

&

e
W S
5

False Positive Rate
=
P

e
>

b
@

S
B
7]

S

S
s

6 7 8 9 10
Number of Sensors

(b) False Positive Rate

IS
o
EN
<
%
e
s
o
-
@

Number of Sensors

(a) Classification Accuracy

Fig. 10. Classification performance under different number of sensors on
realistic audio data.

The audio clips we use in this experiment include the
sounds of a tank moving, a helicopter flying, and a machine
gun firing, corresponding to 3 different classes. We cut the
audio clips into pieces with equal time duration, and make
a copy for each sensor node. We then add random noise to
the sounds received by sensor nodes with various SNRs
(Signal-to-Noise Ratios). Next, we extract the MFCC (Mel-
Frequency Cepstral Coefficients) features from each audio
clip, and feed them as the input to the classification algo-
rithms. In this experiment, we choose random forest as indi-
vidual sensor node’s local classifier. Random forest is a
decision tree based classification algorithm that trains multi-
ple decision trees simultaneously and has them vote for the
final classification decision. Random forest can output both
decision probability vectors and discrete labels (derived
from decision probability vectors) that are fed to different
approaches under evaluation.

The classification result with varying number of sensor
nodes is shown in Fig. 10, which, as seen, is quite similar to
that of the experiment on synthetic data shown in Fig. 3.
The curves, however, are not as smooth, due to the random-
ness in the audio sounds themselves. Nevertheless, we can
still observe the same general performance trends as dis-
played in the previous experiment.

Fig. 11 shows the classification performance of studied
approaches under varying training data availability levels.
We see that the general relative classification effectiveness
of all approaches remains the same as all previous experi-
ments, with our GDA framework consistently yielding the
best performance. Also, the figure shows that, for all
approaches, higher training data availability lead to better
classification performance, as expected.

5.3 Experimental Results of Incremental GDA

In this section, we use the aforementioned audio data to
compare the performance of incremental GDA (I-GDA) and
GDA algorithms. Table 3 summarizes the performance of

-©-GDA

‘& Sum-Rule Fusion|
~9-EM TruthFinder
 Majority Voting

--GDA
0.85 {|.-& Sum-Rule Fusion| 0.5

0.8 =6-EM TruthFinder
7 Majority Voting

0.4

Accuracy

S G G SR
)

False Positive Rate

g T
S v

Syl

0‘454 8 12 16 20 24 28 32 36 40 0'24 8

Percentage of Training Data (%)
(a) Classification Accuracy

12 16 20 24 28 32 36 40
Percentage of Training Data (%)

(b) False Positive Rate

Fig. 11. Classification performance under varying training data availabil-
ity levels on realistic audio data.

NO. 1, JANUARY 2018
=GDA _ TABLE 3
M TrathFinder GDA versus I-GDA
< Majority Voting
Method Accuracy Time (s)
GDA 0.7291 0.7520
I-GDA 0.7123 0.1740

GDA and I-GDA in terms of classification accuracy and run-
ning time. We can observe that although the accuracy of I-
GDA is slightly lower than that of GDA, it has much better
running time than GDA.

In addition, it is also necessary to study the convergence
of I-GDA algorithm. Assuming that events come sequen-
tially at constant speed (i.e., one event for each timestamp),
we first show the convergence of sensor reliabilities in
Fig. 12a. It can be seen that all sensors reach a stable weight
value when sufficient events have been accumulated. In
order to further compare sensor reliabilities derived by
GDA and I-GDA (at timestamp 1, 10, 20), we normalize the
reliability of each sensor to the interval [0, 1] through divid-
ing it by the largest weight. The result in Fig. 12b shows that
although I-GDA deviates from GDA on sensor reliability
estimation at the beginning (i.e., at timestamp 1), their esti-
mates are getting closer over time and finally (i.e., at time-
stamp 20) become almost the same.

5.4 Experimental Results of Parallel GDA

In this section, we evaluate the performance of our pro-
posed parallel GDA (i.e., P-GDA) with regard to differ-
ent sizes of synthetic data set and different scales of
MapReduce system. In order to get a large-scale data set,
we generate synthetic datasets with large sensor number
and event number. All of our experiments are conducted
on a 15-node Amazon EMR cluster. Each node is an ml.
large node with 2 vCPU and 7.5 GB of memory. Java

Sensor Reliability

Timestamp
(a) Convergence

1
%=]-GDA at Timestamp 1
< I-GDA at Timestamp 10

::T 0.8 .0 [-GDA at Timestamp 20|
= -8-GDA

E 0.6f

=

N

= 0.4,5.... X x
z 0.2

Sensor ID
(b) I-GDA v.s. GDA

Fig. 12. Convergence of sensor reliability.

JIANG ETAL.: TOWARDS QUALITY AWARE INFORMATION INTEGRATION IN DISTRIBUTED SENSING SYSTEMS 209

1500 1500
—-GDA
=8-P-GDA with 2 Reducers
~#=P-GDA with 30 Reducers|
% 1000 5 £ 1000 _ %
E -7 £ 2
= - - = -
E -2 S .7
E - E R
S s00 S s00 _-
& ~ =
§ M
0 0
0.4 0.6 0.8 1 12 14 1.6 0.4 0.6 0.8 1 12 14 1.6
Number of Events x10* Number of Sensors x10*

(a) w.r.t. Number of Events (b) w.r.t. Number of Sensors

Fig. 13. Running time w.r.t number of events and sensors.

version 1.7.0_71 and Hadoop version 2.5.1 are used for
the MapReduce system.

1) Performance under Varying Size of Data Set. To measure
how much longer P-GDA takes on a given system when the
data set becomes m times larger, we vary the size of data set
by varying either the number of events or the number of
sensors. The results are demonstrated in Fig. 13a and
Fig. 13b.

In Fig. 13a, we vary event number from 4,000 to 16,000
while fixing the sensor number at 10,000. Correspondingly, in
Fig. 13b, we vary sensor number from 4,000 to 16,000 while
fixing the event number at 10,000. Thus, in these experiments
the input data size ranges from 0.9 GB to 3.5 GB. For both
experiments, we plot the running time of P-GDA with 2 and
30 Reducers and compare them with the GDA algorithm. It is
not hard to find out that the running time of P-GDA grows
much slower than that of the GDA as the number of events or
sensors grows. Meanwhile, through calculating Pearson’s cor-
relation coefficient for each experiment in Table 4, we find that
P-GDA remains GDA'’s property that running time increases
nearly in linear with the size of data. The growth rate of run-
ning time, represented as slope of the line, decreases as the
number of Reducers increases.

2) Performance under Varying Scale of MapReduce System.
Next, we further evaluate how much the proposed paral-
lel GDA can accelerate the GDA algorithm on MapReduce
system with different scales. In the experiment, we keep
the number of observations unchanged (10%), and then
increase the scale of MapReduce system. In Hadoop,
Mapper number is automatically driven by the number of
input splits [41] and only Reducer number can be custom-
ized. So we increase the scale of MapReduce system by
increasing Reducer number from 1 to 30. The results are
reported in Fig. 14, from which we can see that the
decrease of running time is quick at the beginning, but
slows down gradually.

6 CONCLUSION

In this paper we take a closer look at the decision aggre-
gation problem in distributed sensing systems. Though
some efforts have been made towards this problem, the
resulting approaches suffer from the limitation of only

TABLE 4
Pearson Correlation Coefficient for Events and Sensors

Experiment for Events for Sensors
GDA 0.9976 0.9993
P-GDA with 2 Reducers 0.9975 0.9993
P-GDA with 30 Reducers 0.9552 0.9360

=©-100000000 Observations

800 -
q
600

400 |

Running Time(s)

200

1 5 10 15 20 25 30
Number of Reducers

Fig. 14. Running time w.rt number of reducers.

examining discrete decisions from individual sensor
nodes. As a way to avoid high energy cost and network
overhead potentially caused by excessively transmitting
raw data from sensor nodes, we receive from sensors
only decision vectors. Our proposed generalized decision
aggregation framework can handle this form of input by
thoroughly accounting for and intelligently taking advan-
tage of the decision confidence and reliability of each sen-
sor. In this paper, two extensions of the basic GDA
framework, Incremental GDA (I-GDA) and parallel GDA
(P-GDA) are developed to deal with streaming data and
large-scale data respectively. Through extensive experi-
ments using both synthetic and realistic data, we validate
that 1) the GDA framework consistently achieve higher
final decision accuracy over the state of the art
approaches, 2) the I-GDA algorithm has higher efficiency
than GDA with slight accuracy loss, and 3) the P-GDA
algorithm is well scalable to large-scale data. We believe
the proposed GDA framework and its extensions bear
superior generalizability and flexibility, and thus are suit-
able for a broad spectrum of sensing scenarios.

ACKNOWLEDGMENTS

This work was sponsored in part by US National Science
Foundation under grant CNS-1566374, CNS-1652503, 1IS-
1319973, 11S-1553411.

REFERENCES

[11 J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techni-
ques, 3rd ed. San Mateo, CA, USA: Morgan Kaufmann, 2011.

[2] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-
Hill, 1997.

[3] L. Su, Y. Yang, B. Ding, J. Gao, T. Abdelzaher, and]J. Han,
“Hierarchical aggregate classification with limited supervision for
data reduction in wireless sensor networks,” in Proc. 9th ACM
Conf. Embedded Netw. Sensor Syst., 2011, pp. 40-53.

[4] L. Su, et al., “Quality of information based data selection and
transmission in wireless sensor networks,” in Proc. Real-Time Syst.
Symp., 2012, pp. 327-338.

[5] D.Wang, L. Kaplan, H. Le, and T. Abdelzaher, “On truth discov-
ery in social sensing: A maximum likelihood estimation
approach,” in Proc. ACM/IEEE 11th Int. Conf. Inform. Process. Sen-
sor Netw., 2012, pp. 233-244.

[6] S. Wang, D. Wang, L. Su, L. Kaplan, and T. Abdelzaher,
“Towards cyber-physical systems in social spaces: The data
reliability challenge,” in Proc. IEEE Real-Time Syst. Symp., 2014,
pp- 74-85.

[71 S. Wang, et al., “Scalable social sensing of interdependent phe-
nomena,” in Proc. 14th Int. Conf. Inform. Process. Sensor Netw., 2015,
pp- 202-213.

[8] F.Ma, et al., “Faitcrowd: Fine grained truth discovery for crowd-
sourced data aggregation,” in Proc. 21th ACM SIGKDD Int. Conf.
Know. Discovery Data Mining, 2015, pp. 745-754.

210

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO. 1,

S. Yao, et al., “Recursive ground truth estimator for social data
streams,” in Proc. 15th ACM/IEEE Int. Conf. Inf. Process. Sensor
Netw., 2016, pp. 1-12.

S. Yao, et al.,, “On source dependency models for reliable social
sensing: Algorithms and fundamental error bounds,” in Proc.
IEEE 36th Int. Conf. Distrib. Comput. Syst., 2016, pp. 467-476.

J. Kittler, M. Hatef, R. P. Duin, and J. Matas, “On combining classi-
fiers,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3, pp. 226—
239, Mar. 1998.

R. R. Brooks, P. Ramanathan, and A. M. Sayeed, “Distributed tar-
get classification and tracking in sensor networks,” Proc. IEEE,
vol. 91, no. 8, pp. 1163-1171, Aug. 2003.

L. M. Kaplan, S. Chakraborty, and C. Bisdikian, “Fusion of classi-
fiers: A subjective logic perspective,” in Proc. Aerospace Conf.,
2012, pp. 1-13.

H. Wen, Z. Xiao, A. C. Symington, A. Markham, and N. Trigoni,
“Comparison of accuracy estimation approaches for sensor
networks,” in Proc. IEEE Int. Conf. Distrib. Comput. Sensor Syst.,
2013, pp. 28-35.

G. Xing, R. Tan, B. Liu, J]. Wang, X. Jia, and C.-W. Yi, “Data fusion
improves the coverage of wireless sensor networks,” in Proc. 15th
Annu. Int. Conf. Mobile Comput. Netw., 2009, pp. 157-168.

R. Tan, G. Xing, Z. Yuan, X. Liu, and J. Yao, “System-level calibra-
tion for fusion-based wireless sensor networks,” in Proc. 31st IEEE
Real-Time Syst. Symp., 2010, pp. 215-224.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.
A. Mainwaring, D. Culler,]. Polastre, R. Szewczyk, and
J. Anderson, “Wireless sensor networks for habitat monitoring,”
in Proc. 1st ACM Int. Workshop Wireless Sensor Netw. Appl., 2002,
pp. 88-97.

Y. Guo, P. Corke, G. Poulton, T. Wark, G. Bishop-Hurley, and
D. Swain, “Animal behaviour understanding using wireless sen-
sor networks,” in Proc. 31st IEEE Conf. Local Comput. Netw., 2006,
pp. 607-614.

J. Cai, D. Ee, B. Pham, P. Roe, and J. Zhang, “Sensor network for
the monitoring of ecosystem: Bird species recognition,” in Proc.
3rd Int. Conf. Intell. Sensors, Sensor Netw. Inf., 2007, pp. 293-298.

W. Hu, V. N. Tran, N. Bulusu, C. T. Chou, S. Jha, and A. Taylor,
“The design and evaluation of a hybrid sensor network for cane-
toad monitoring,” in Proc. 4th Int. Symp. Inf. Process. Sensor Netw.,
2005, pp. 503-508.

L. Gu, et al., “Lightweight detection and classification for wireless
sensor networks in realistic environments,” in Proc. 3rd Int. Conf.
Embedded Netw. Sensor Syst., 2005, pp. 205-217.

R. R. Brooks, P. Ramanathan, and A. M. Sayeed, “Distributed tar-
get classification and tracking in sensor networks,” Proce. IEEE,
vol. 91, no. 8, pp. 1163-1171, Aug. 2003.

X. Cheng, J. Xu, J. Pei, and]. Liu, “Hierarchical distributed data
classification in wireless sensor networks,” in Proc. IEEE 6th Int.
Conf. Mobile Adhoc Sensor Syst., 2009, pp. 10-19.

E. M. Tapia, S. S. Intille, and K. Larson, “Activity recognition in
the home using simple and ubiquitous sensors,” in Proc. Int. Conf.
Pervasive Comput., 2004, pp. 158-175.

K. Lorincz, et al., “Mercury: A wearable sensor network platform
for high-fidelity motion analysis,” in Proc. 7th ACM Conf. Embed-
ded Netw. Sensor Syst., 2009, pp. 183-196.

Z.Zeng, S. Yu, W. Shin, and J. C. Hou, “PAS: A Wireless-Enabled,
Cell-Phone-Incorporated Personal Assistant System for Indepen-
dent and Assisted Living,” in Proc. 28th Int. Conf. Distrib. Comput.
Syst., 2008, pp. 233-242.

S. Hu, L. Su, H. Liu, H. Wang, and T. Abdelzaher, “Smartroad: A
crowd-sourced traffic regulator detection and identification sys-
tem,” in Proc. ACM/IEEE Int. Conf. Inf. Proc. Sensor Netw., 2013,
pp.- 331-332.

X.Yin, J. Han, and P. S. Yu, “Truth discovery with multiple con-
flicting information providers on the web,” in Proc. 13th ACM
SIGKDD Int. Conference Knowl. Discovery Data Mining, 2007,
pp- 1048-1052.

X. Yin, J. Han, and P. S. Yu, “Truth discovery with multiple con-
flicting information providers on the web,” IEEE Trans. Knowl.
Data Eng., vol. 20, no. 6, pp. 796-808, Jun. 2008.

Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han, “Resolving con-
flicts in heterogeneous data by truth discovery and source reliabil-
ity estimation,” in Proc. ACM SIGMOD Int. Conf. Manag. Data,
2014, pp. 1187-1198.

[32]

[33]

[34]

[35]

[36]

[371]

[38]

[39]

[40]

[41]

JANUARY 2018

Y. Li, et al.,, “Conflicts to harmony: A framework for resolving
conflicts in heterogeneous data by truth discovery,” IEEE Trans.
Knowl. Data Eng., vol. 28, no. 8, pp. 1986-1999, Aug. 2016.

S. M. Michael, M. J. Franklin, J. Hellerstein, and W. Hong, “Tag: A
tiny aggregation service for ad-hoc sensor networks,” in Proc. 5th
Symp. Operating Syst. Des. Implementation, 2002, pp. 131-146.

B. Krishnamachari, D. Estrin, and S. B. Wicker, “The impact of
data aggregation in wireless sensor networks,” in Proc. 22nd Int.
Conf. Distrib. Comput. Syst., 2002, pp. 575-578.

P. K. Varshney, Distributed Detection and Data Fusion. New York,
NY, USA: Springer, 1997.

T. Clouqueur, K. K. Saluja, and P. Ramanathan, “Fault tolerance in
collaborative sensor networks for target detection,” IEEE Trans.
Comput., vol. 53, no. 3, pp. 320-333, Mar. 2004.

M. Ding, D. Chen, K. Xing, and X. Cheng, “Localized fault-tolerant
event boundary detection in sensor networks,” in Proc. IEEE 24th
Annu. Joint Conf. IEEE Comput. Commun. Soc. 2005, pp. 902-913.

L. Su, et al., “Generalized decision aggregation in distributed
sensing systems,” in Proc. IEEE Real-Time Syst. Symp., 2014, pp. 1-
10.

D. P. Bertsekas, Nonlinear Programming. Belmont, MA, USA:
Athena Scientific, 1995.

Wikipedia, “Dirichlet distribution,” (2017). [Online]. Available:
https:/ /en.wikipedia.org/wiki/Dirichlet_distribution

Apache, “Partitioning your job into maps and reduces,” (2014).
[Online]. Available: http://wiki.apache.org/hadoop/HowMany
MapsAndReduces

Wenjun Jiang received the BS and MS degrees
from the Department of Computer Science and
Engineering, Tsinghua University, China. He
is working toward the PhD degree in the Depart-
ment of Computer Science and Engineering
from SUNY Buffalo. His research interests
include big data, distributed sensing system,
and crowdsourcing.

Chenglin Miao received the BS degree from the
School of Computer and Information, Hefei Uni-
versity of Technology and the MS degree from
the School of Computer Science and Technology,
University of Science and Technology of China.
He is working toward the PhD degree in the
Department of Computer Science and Engineer-
ing from SUNY Buffalo. His research interests
include crowd and social sensing systems, data
mining, security, and privacy.

Lu Su reveived the PhD degree in computer sci-
ence and the MS degree in statistics from the
University of lllinois at Urbana-Champaign, in
2013 and 2012, respectively. He is an assistant
professor in the Department of Computer Sci-
ence and Engineering with SUNY Buffalo. His
research focuses on the general areas of cyber-
physical systems, wireless and sensor networks,
and mobile computing. He has also worked with
IBM T. J. Watson Research Center and National
Center for Supercomputing Applications. He is a
member of the ACM and the IEEE.

Qi Li received the BS degree in mathematics
from Xidian University and the MS degree in
statistics from the University of Illinois, Urbana-
Champaign, in 2010 and 2012, respectively.
She is currently working toward the PhD
degree in the Department of Computer Science
and Engineering, SUNY Buffalo. Her research
interests include truth discovery, data aggrega-
tion, and crowdsourcing.

https://en.wikipedia.org/wiki/Dirichlet_distribution
http://wiki.apache.org/hadoop/HowManyMapsAndReduces
http://wiki.apache.org/hadoop/HowManyMapsAndReduces

JIANG ETAL.: TOWARDS QUALITY AWARE INFORMATION INTEGRATION IN DISTRIBUTED SENSING SYSTEMS 211

Shaohan Hu reveived the MS degree from the
Department of Computer Science, Dartmouth
College. He is working toward the PhD degree
and research assistant at the Department of
Computer Science, University of lllinois, Urbana-
Champaign. His main research interests lie in
designing and building mobile sensing and com-
puting systems.

Shiguang Wang is working toward the
PhD degree in Computer Science Department,
University of lllinois, Urbana-Champaign. His
research mainly focuses on the algorithm design
and system study in social sensing.

Jing Gao received the PhD degree in Computer
Science Department, University of lllinois,
Urbana-Champaign, in 2011, and subsequently
joined SUNY Buffalo, in 2012. She is an assistant
professor in the Department of Computer Sci-
ence and Engineering, SUNY Buffalo. She is
broadly interested in data and information analy-
sis with a focus on truth discovery, information
integration, ensemble methods, mining data
streams, transfer learning, and anomaly detec-
tion. She is a member of the IEEE.

Hengchang Liu received the PhD degree from
the University of Virginia, in 2011, under Profes-
sor John Stankovic. He is an assistant professor
with USTC. His research interests mainly include
cyber-physical systems, mobile systems, named
data networking, and wireless (sensor) networks.

Tarek F. Abdelzaher received the PhD degree
from the University of Michigan, Ann Arbor, in
1999, under professor Kang Shin. He is a profes-
sor and Willett faculty scholar in the Department
of Computer Science, University of lllinois,
Urbana-Champaign. He was an assistant profes-
sor with the University of Virginia from August
1999 to August 2005. He then joined the Univer-
sity of lllinois, Urbana-Champaign as an associ-
ate professor with tenure, where he became full
professor in 2011. His interests lie primarily in
systems, including operating systems, networking, sensor networks, dis-
tributed systems, and embedded realtime systems. He is especially
interested in developing theory, architectural support, and computing
abstractions for predictability in software systems, motivated by the
increasing software complexity and the growing sources of non-deter-
minism. Applications range from sensor networks to large-scale server
farms, and from transportation systems to medicine.

Jiawei Han is Abel Bliss professor in the Depart-
ment of Computer Science, the University of
lllinois. He has been researching into data min-
ing, information network analysis, and database
systems, with more than 500 publications. He
received the ACM SIGKDD Innovation Award
(2004), the IEEE Computer Society Technical
Achievement Award (2005), and the IEEE W.
Wallace McDowell Award (2009). His book Data
Mining: Concepts and Techniques (Morgan Kauf-
mann) has been used worldwide as a textbook.
He is a fellow of the ACM and the IEEE.

Xue Liu received the BS degree in mathematics
and MS degree in automatic control both from
Tsinghua University, China, and the PhD degree in
computer science from the University of lllinois,
Urbana-Champaign, in 2006. He is an associate
professor and William Dawson scholar in the
School of Computer Science, McGill University,
Montreal, QC, Canada. He was also the Samuel
R. Thompson associate professor in the Univer-
sity of Nebraska-Lincoln and HP Labs in Palo Alto,
California. His research interests include com-
puter networks and communications, smart grid, real-time and embedded
systems, cyber-physical systems, data centers, and software reliability.
He has been granted one US patent and filed four other US patents, and
published more than 150 research papers in major peer-reviewed interna-
tional journals and conference proceedings, including the Year 2008 Best
Paper Award from the /IEEE Transactions on Industrial Informatics, and
the First Place Best Paper Award of the ACM Conference on Wireless
Network Security (WiSec 2011). He is a member of the ACM.

Yan Gao received the PhD degree in computer
science from the University of lllinois, Urbana-
Champaign. Now he is senior software engineer
with Linkedin, where he works on back-end serv-
ices for big Linkedin profile data. Before joined
Linkedin, he has worked with Accenture Tech
Labs from 2011-2015, where he focused on big
data platform, intelligent transportation systems,
and temporal-spatial data monetization.

Lance M. Kaplan received the BS(distinction)
degree from Duke University, Durham, North Car-
olina, in 1989 and the MS and PhD degrees from
the University of Southern California,
Los Angeles, in 1991 and 1994, respectively,
all in electrical engineering. Currently, he is a
researcher in the Networked Sensing and Fusion
branch of the U.S Army Research Laboratory
(ARL). He serves as editor-In-chief for the IEEE
Transactions on Aerospace and Electronic Sys-
tems (AES) and as VP of Conferences for the
International Society of Information Fusion (ISIF). Previously, he served
on the Board of Governors of the IEEE AES Society (2008-2013) and on
the board of directors of ISIF (2012-2014). He is a three time recipient of
the Clark Atlanta University Electrical Engineering Instructional Excel-
lence Award from 1999-2001. He is a fellow of the ARL. His current
research interests include signal and image processing, information/
data fusion, network science, and resource management.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

