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ABSTRACT
Quantum computing has increasingly drawn interest and invest-
ments from the academic, industrial, and governmental research
communities worldwide. Among quantum algorithms, Quantum
Search is important for its quadratic speedup over its classical-
computing counterpart. A key ingredient in its implementation is
the Multi-Control Toffoli (MCT) gate, which creates a Boolean prod-
uct of control variables and XORs it into the target. On an idealized
quantum computer, all-to-all connectivity would eliminate the need
to use SWAP gates to communicate information. This is, however,
not affordable in the current Noisy Intermediate-Scale Quantum
(NISQ) computing era. In this work, we discuss how to efficiently
implement MCT gates on 2D Square Lattices (2DSL), suitable for
superconducting circuits, by taking advantage of relative-phase Tof-
foli gates and H-tree layouts to drastically reduce resulting circuits’
depths and the amount of SWAPping required.
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1 INTRODUCTION
Today’s quantum computing technology is in what is known as
Noisy Intermediate-Scale Quantum (or NISQ) computing regime
[6], characterized by the following two facts: (i) Gates have lim-
ited fidelity, and (ii) The qubits in the computing device can only
stay coherent for a limited time, outside of which any information
stored in the qubits is destroyed by noise. Therefore, when design-
ing quantum circuits for NISQ devices, it is of crucial importance
that the circuits remain small and shallow. In existing prototype
quantum computers, hardware connectivity is often limited. As a
result, implementations of quantum algorithms that involve arbi-
trary interactions among qubits require the use of quantum SWAP
gates or the alike (e.g., teleportation, but teleportation can be more
difficult as it requires technology mating) to bring distant qubits
together to enable the desired interactions, thereby increasing the
number of gates used as well as the circuit depth.

Quantum Search, also known as Grover’s algorithm [2], is a well-
known quantum technique for unordered searches. It introduces a
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quadratic speedup over the best classical strategy. In constructing
circuits for Quantum Search, a key component is the Multi-Control
Toffoli (MCT) gate, which takes as input n control qubits and a sin-
gle target qubit, and flips the target state (|0⟩ 7→ |1⟩ and |1⟩ 7→ |0⟩)
iff all controls are in the |1⟩ state. MCT gates are used in Grover’s
iterative controlling sequence, and also to generate the oracle. The
MCT implementation relies on its decomposition into physically
implementable single-qubit gates and two-qubit Controlled-NOT
gates, which create pairwise entangling interactions among the
control qubits and the target. It is not hard to imagine that on a
NISQ processor, the aforementioned pairwise entangling interac-
tions may not be readily available unless additional operations are
introduced to SWAP qubit states around. Thus, without care, the im-
plementation of quantum search might lead to circuits with heavy
gate-count overheads and high depths, rendering them impractical.

In this work, we provide a strategy for implementing MCT gates
in 2D Square Lattice (2DSL), in such a way that the resulting circuits
stay shallow and require little to no SWAPping. We decompose n-
control MCT into traditional (also commonly denoted as ccx ) and
relative-phase Toffoli gates [4], and take advantage of H-tree [3]
layout for qubit placement. Preliminary results show that, compared
to the state-of-the-art baseline method [1], our proposed technique
leads to drastic reduction in the circuit depth while relying on a
small, if any, SWAP overhead, thus expanding the applicability of
Quantum Search on NISQ devices.

2 METHODOLOGY
In this section, we discuss how the key components of our design
fit together to implement shallow quantum circuits.

2.1 H-Tree Topology
The textbook method of implementing MCT is to decompose it into
traditional 2-control Toffoli gates arranged in a V shape [5]; the left
arm, with the help of ancillae, gradually builds up partial products
and the right arm uncomputes the ancillae. Though straightforward,
this approach produces MCT circuits with inefficient depths. In our
design, we employ the H-tree layout over the divide-and-conquer
approach to implement MCT gates.

An example H-tree is shown in Fig. 1, which is known
for efficiently laying out a balanced binary tree in 2DSL.

Figure 1: Example H-Tree

This fits perfectly with the decomposition of
MCT into Toffoli gates—for each line segment,
if we place two qubits a,b at its endpoints and
a single qubit c at its midpoint, we can then
place a Toffoli gate ccx(a,b, c) on this line seg-
ment. We make the following observations:
(i) The actual controls of the MCT correspond
to the leaf nodes in the H-tree; (ii) The target



of the MCT will be held by the qubit at the center; (iii) All the
other nodes are ancillae; and (iv) At higher fractal levels, where a
line segment’s midpoint is not immediately next to the endpoints,
SWAPs or series of CNOTs (also denoted as cx ) operations may be
required to bring in the endpoints.

Because of the binary-tree structure, any subtree can be evalu-
ated independently, enabling parallel execution and lowering circuit
depth from linear V-shape to logarithmic. Although this logarith-
mic depth becomes square-root depth in 2DSL, the improvement
from linear to square-root depth is significant.

2.2 Relative-phase Toffolis
We utilize relative-phase Toffoli gates [4] when computing inter-
mediate products. Indeed, only the final Toffoli gate that targets
the center qubit needs to be a regular true Toffoli; all others can be
implemented up to a relative phase.

ctrl-1 T † T

ctrl-2 T † T T † T

target H T † T T H

Figure 2: Regular Toffoli

Figs. 2 and 3 introduce the implementations of both the
regular and relative-phase Toffoli gates, respectively. As seen,

ctrl-1

ctrl-2

target H T T † T T † H

Figure 3: Relative-phase Toffoli [4]

both implementations involve
2-qubit interactions only be-
tween the control and the tar-
get, which aligns with our in-
tention of midpoint-endpoint

interactions only in the H-tree. As relative-phase Toffoli gates use
significantly lower number of CNOT gates (3 vs 10), they are much
more efficient to implement.

ctrl-1

ctrl-2

ctrl-3

target H T T † H T T † T T † H T T † H

Figure 4: Relative Phase Toffoli with 3 Controls [4]

In addition to the 2-control relative-phase Toffoli (which we
denote as rccx ), a 3-control version (or rcccx ) also exists, as shown
in Fig. 4. With rcccx , we have the opportunity to add extra controls
to existing H-tree layouts without having to grow the size of the
underlying tree. To illustrate this point, Listing 1 shows the H-tree
layout for implementing an MCT with 4 controls—the C’s, T, and
the A’s correspond to the controls, target, and ancillae, respectively.
The two A’s first serve as the targets of two parallel rccx gates, and
then the controls for the final ccx that targets T.

Listing 1: 4 ctrls

C-A-C

|

T

|

C-A-C

Listing 2: 6 ctrls

C-A-C C

| |

A---T---A

| |

C-A-C C

Listing 3: 6 ctrls w/ rcccx

C C

| |

C-A-T-A-C

| |

C C

Given the 4-control MCT, if we wanted to create a 6-control
MCT, we could either strictly follow the H-tree layout to grow the
fractal structure, say, to its right, as shown in Listing 2, or turn each
of the two rccx gates into rcccx and attach two additional C’s to the
A’s, as illustrated in Listing 3 (note the 90° rotation from Listing 1
for ease of presentation). The benefit of doing this is twofold: we
decrease the depth and reduce the footprint of the implementation.

3 RESULTS
We next apply the techniques developed in Section 2 to construct
circuits implementing MCT gates in 2DSL for various numbers of
controls. Listings 4 through 9 report the layouts. Interestingly, and
perhaps unexpectedly, MCTs with up to 12 controls can be imple-
mented in 2DSL with minimized depth and without needing SWAPs.
Listing 4:
7 ctrls

C

|

A-C C

| |

A-T-A-C

| |

A-C C

|

C

Listing 5:
8 ctrls

C

|

C-A C

| |

C-A-T-A-C

| |

C-A C

|

C

Listing 6:
9 ctrls

C

|

C-A-C C

| |

A-T-A-C

| |

C-A-C C

|

C

Listing 7:
10 ctrls

C C

| |

C-A-C A-C

| |

A-T-A

| |

C-A C-A-C

| |

C C

Listing 8:
11 ctrls

C C

| |

C-A-C A-C

| |

A-T-A-C

| |

C-A C-A-C

| |

C C

Listing 9:
12 ctrls

C C

| |

C-A-C A-C

| |

C-A-T-A-C

| |

C-A C-A-C

| |

C C

Below, we report the results for MCT circuit-depth comparisons
on a 5×5 2DSL. For baseline, we employ the textbook linear V-shape
structure and the 6-CNOT Toffoli implementation [5]. All qubits
are placed on the 2DSL in a top-to-bottom and left-to-right manner.
All MCT circuits are generated and transpiled using Qiskit [1]. All
circuits are unrolled to the basisu1,u2,u3, and cx gates, and depths
are counted with cx gates only. We use Qiskit’s StochasticSwap
mapper to map each unrolled circuit to the 2DSL topology, repeated
for 100 trials. As follows from Fig. 5, our method leads to circuit
depths that are only a fraction of those in the baseline.
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Figure 5: MCT Circuit Depths Comparisons

4 CONCLUSION & DISCUSSION
In this work, we discussed how to combine relative-phase Toffoli
gates with H-tree layout to construct efficient MCT circuits for
NISQ devices with 2DSL architecture. The results show drastic
improvement over the baseline.

Since Quantum Search heavily relies on the MCT gates and ad-
mits further opportunities for optimization—for example, the oracle
structure can be exploited such that MCTs’ partial products can be
reused before fully uncomputing them—our proposed technique
shows promise for additional reductions.
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