
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 1 9 © 2 0 1 9 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y J U N E 2 0 1 9 47

COVER FEATURE QUANTUM REALISM

Shaohan Hu, Peng Liu, Chun-Fu (Richard) Chen, Marco Pistoia, and Jay Gambetta, IBM Thomas J. Watson
Research Center

In recent years, industry and academia have made tremendous
research attempts to implement quantum computing
technologies. But quantum computing is still grounded by
numerous critical barriers, leading to its low accessibility
and practicality. To overcome this problem, we propose
an end-to-end framework for mapping computationally
hard problems on a quantum computer via reduction.

Having dictated classical computing technol-
ogy advances for decades, today, Moore’s law
has been slowed to a crawl by the limitations of
physics. In recent years, a significant amount

of time and resources from the industrial and academic
communities has been devoted to making quantum
computing technologies a reality.13 D-Wave systems are
claimed to be the first commercially available quantum
computer since 2011.6 They are, however, specifically
designed for annealing computations14 as opposed to
being general circuit-model quantum computers,9 which
would provide general quantum computing capabilities.

Multiple current efforts are devoted to building the first
commercially available general circuit-model quan-
tum computers,3,13 with IBM making its latest systems
publicly available.13

Although there is a wave of quantum computers on the
horizon, quantum computing is not experiencing the same
growth. Because quantum computing models behave in
ways that are so different from their classical computing
counterparts, much of our understanding of how compu-
tation systems work and how best to design algorithms
and software programs is rendered unusable.20 Thus, with
a half-century of research efforts on theoretical quantum
computing to rely on, there has been a relatively small
set of quantum algorithms ever discovered. And from a
software point of view, to be able to comprehend a simple

Reduction-Based Problem
Mapping for Quantum
Computing

Digital Object Identifier 10.1109/MC.2019.2909709
Date of publication: 4 June 2019

48 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

QUANTUM REALISM

piece of quantum program—let alone
design and develop sophisticated tool
stacks—requires a fair amount of back-
ground knowledge on quantum comput-
ing systems, which, in general, cannot be
assumed for most software engineering
researchers and practitioners.

Looking at this disparity, we argue
that it is imperative to bridge this accessi-
bility and practicality gap surround-
ing quantum computing so that soft-
ware engineering researchers and
practitioners are better prepared to reap
the benefits when quantum computers
become increasingly more available and
powerful. Toward this goal, we propose
an end-to-end framework for mapping
computationally hard problems on a gen-
eral circuit-model quantum computer
via reduction. This focus comes from
the fact that easier problems are suffi-
ciently handled by classical computers.
It is, therefore, more meaningful that the
potential speed-up brought about by
quantum computers be used for investi-
gating the harder problems.

The key feature of our framework is
its exploitation of reduction.15 With a
core quantum solver designed to solve

a single problem, many other problems
may potentially benefit from its quan-
tum speed-up by using a reduction wrap-
per around the core quantum solver.
With this design, we circumvent the
extreme difficulty of coming up with
quantum models/encodings for a whole
array of different problems; finding one
potentially gives us immediate quantum

accelerators for all. In particular, during
the building of our initial prototype sys-
tem, we picked unrestricted Boolean sat-
isfiability (SAT) as the core problem and
fully implemented our software toolkit
based on quantum search.12

Our contribution in this article is
threefold.

1. We propose an end-to-end
framework for bringing
the potential power of cir-
cuit-model quantum computers
to general software researchers
and practitioners.

2. We use reduction to circumvent
the difficulty—if not impossi-
bility—of having to model and
encode each different problem
on circuit-model quantum
computers.

3. We provide a fully implemented
prototype software toolkit, with
its effectiveness demonstrated.

REDUCTION-BASED
QUANTUM PIPELINE
In this section, we assume the basic
knowledge of quantum computing as

a common ground. We first talk about
the (im)possibility of finding direct
quantum solutions to any input prob-
lems and then discuss our proposed
reduction-based framework.

Direct quantum solutions?
As mentioned previously, our focus has
been on computationally hard problems

because the speed-up naturally brought
about by the intrinsic properties of
quantum computing makes them an
intriguing candidate for the point of
attack. Note that because computa-
tional complexity theory is a much more
familiar topic to computer scientists in
general, we will not include a dedicated
overview for it.

After surveying quantum comput-
ing literature as well as communicat-
ing with quantum physicists, we feel
that the biggest barrier preventing the
software engineering and/or general
computer science communities from
having already deployed vast quantum
computing systems, or implementing
comprehensive software tool sets for
solving classically hard problems, is that
programming quantum computers is
hard. This belief is evidenced by the
following assertions:

1. The direct programming of
general-purpose quantum com-
puters requires a fair amount
of background knowledge on
quantum computing, which is
not something that can be realis-
tically expected from most soft-
ware engineering professionals
or computer scientists today.

2. It is not yet clear how best to
encode in quantum computing
data structures that are most
commonly used in classical
computing, such as a general
graph, a doubly linked list, and
so on. This greatly adds to the
difficulties related to directly
programming a quantum com-
puter to solve problems mod-
eled after the practical scenar-
ios to which we are accustomed.

Putting aside the general computer sci-
ence community, in the past half-century

THE KEY FEATURE OF OUR FRAMEWORK
IS ITS EXPLOITATION OF REDUCTION.

 J U N E 2 0 1 9 49

(even from the much more focused
quantum computing research commu-
nity), only a limited set of quantum algo-
rithms have been discovered. Shor said
that one important possible reason why
so few quantum algorithms have been
discovered was that quantum comput-
ers simply behave too differently from
classical machines, so much so that “our
techniques for designing algorithms
and our intuitions for understanding
the process of computation no longer
work,”20 which also echoes the reasons
we have presented thus far.

How to achieve a reduction-
based quantum pipeline
Our goal is to make available, or at least
more accessible, circuit-model quan-
tum computers to the more general
computer science professionals and
researchers. Facing the realities of and
responses from the quantum computing
research community, we, as computer
science researchers, think that our goal
can be reached not from trying to fill the
abyss surrounding quantum comput-
ing by attempting to quickly discover a
new rich set of quantum algorithms but,
rather, from bridging the gaps to the other
side. This enables people with limited
quantum computing backgrounds to tap
into the power of quantum computers.

How do we actually achieve a gen-
eral quantum computing pipeline that
doesn’t still come with the quantum
barrier? From Cook and Karp’s seminal
work on computational complexity,4,15
we know that NP-complete problems
can be reduced to each other in poly-
nomial time. Therefore, if we are able
to program the quantum computer to
find a solution to one particular prob-
lem, we then have a way of applying
quantum speed-ups to all problems. As
shown in Figure 1, at the core sits the
solver, which implements the quantum

algorithm that directly solves some
particular problem S. Then, any gen-
eral problem’s input I is transformed via
polynomial-time reduction to I’, which
the core quantum solution finder S
can directly operate on. Afterward, the
quantum algorithm’s output O’ can be
converted back, depending on how the
initial reduction was carried out, to the
desired output O for the original input.

Given this blueprint, the two ques-
tions that would be asked next are
as follows:

1. Which particular problem
should be picked for the core
quantum solver?

2. How can this particular problem be
solved on a quantum computer?

Before answering these questions,
we would like to refer back to our cur-
rent goal of bridging the gap, rather
than attempting to be the most effi-
cient solution possible. Therefore, our
current design choices (discussed in
this section) focus more on achiev-
ing our desired end-to-end pipeline
with general applicability and acces-
sibility. With our general framework
design in place, the specific choices
of the particular problem for the core
quantum solver and the actual quan-
tum algorithm for the chosen prob-
lem can both be improved upon, as
our (and other) continued explora-
tion efforts uncover more efficient or
optimal candidates.

Back to the two questions mentioned
previously, regarding the specific prob-
lem, we chose an unrestricted Bool-
ean SAT4 for our current design. It
is a well-studied problem for classi-
cal computing, and its formulation
closely relates to Boolean logic. For
finding solutions to SAT problems
using circuit-model quantum comput-
ers, we propose using quantum search
in our end-to-end pipeline, as illus-
trated in Figure 1. Any input problem
is transformed via reduction to a SAT
instance, for which we use quantum
search to find a solution that can then
be transformed back for the original
input according to the reduction.

QUANTUM SEARCH FOR SAT
In this section, we first review how quan-
tum search works and then detail how
it is used to program a circuit-model
quantum computer to find solutions to
SAT problems.

Quantum Grover’s
search algorithm
Here, we present an overview of quan-
tum search, also known as Grover’s
search algorithm. Readers who are famil-
iar with this concept can skip this review
and go directly to the “Quantum Search
Circuit for SAT” section.

Before getting into the details, let’s
first establish what the corresponding
search problem is. The setup for this
search problem is quite straightforward:
we have an unordered collection of

Input I

Polynomial Reduction

Quantum Search
for SATInput I ′ Output O ′

Output O

FIGURE 1. A quantum computing pipeline with a SAT-oriented quantum search core.

50 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

QUANTUM REALISM

N items and are given some binary ora-
cle function f(·) that tells whether an
item meets the search criterion or not.
Specif ically, if we random ly pick
some item i from the collection, f(i) == 1
means that we have a hit, whereas if
f(i) == 0, then we need to keep search-
ing. Obviously, in classical computing,
an average of N / 2 [or Ω(N)] queries to
the oracle function would be needed,
as a single f lookup can check only on
a single item. On a quantum computer,
however, a single f query can have the
effect of checking on multiple items
at once because qubits can be put in
superpositioned states. For example,
if we have =n Nlog2 qubits put into
a uniform superposition, then a single
application of f on them is like check-
ing on all of the N items at once.

Rather than discussing mathe-
matical formulations, we use simple
diagrams to illustrate how quantum
search works. Similar to many other
quantum algorithms, quantum search
starts by first putting all qubits into
uniform superpositions using the
quantum Hadamard gates; this process
grants the same amplitude for all possi-
ble states, including the target, as illus-
trated in Figure 2(a), where all of the
bars represent the amplitudes of every
item in the collection, with the dark one
indicating the search target. Obviously,

if measurements are taken at this stage,
any item has an equal probability—
computed as the square of the ampli-
tude—of being the outcome.

The oracle is then evaluated on the
uniform superposition to mark the
target by flipping its amplitude, while
leaving all nontargets untouched. This
is visualized in Figure 2(b), which
shows the target’s amplitude picking
up a negative sign (flipped). If measure-
ments are taken at this stage, it is, how-
ever, still the case that all of the items
have equal probabilities of being the
outcome because the negative sign of
the target’s amplitude will be squared
away when computing its probability.
But we observe that the target’s flipped
amplitude slightly brings down the
mean of all amplitudes, as indicated by
the dashed line in Figure 2(b).

The next step of quantum search is
the application of what is known as the
diffusion operation, which takes the mir-
ror reflections of all amplitudes about
their mean. As shown in Figure 2(c), the
dashed bar outlines indicate the origi-
nal amplitudes after the oracle marking
from Figure 2(b), and the solid bars rep-
resent the resulting amplitudes after
the diffusion’s reflection-about-mean
operation. Because the nontargets,
which are the majority, were closer to
the mean than the target was, their

amplitudes were decreased slightly
after the reflection. Conversely, the tar-
get’s amplitude was much farther away
from the mean, so after reflection, it
increased by a greater amount. There-
fore, the net effect of the reflection is
that the target’s amplitude was ampli-
fied while the nontargets’ amplitude
was shrunk.

This reflection process can also be
illustrated by a toy numerical example.
For instance, suppose we have five
equal numbers with a single “oddball”
that has a negative sign, i.e., 1, 1, 1, 1,
and −1.

If we take the inverses (or mirror
reflections) of all five numbers about
their mean, i.e., 3/5, they become 1/5,
1/5, 1/5, 1/5, and 11/5 where 1/5 =
(3/5) × 2 − 1 and 11/5 = (3/5) × 2 − 1.
Because the mean is closer to the major-
ity, inversion about the mean increases
the magnitude of the “oddball” by a big
margin, while simultaneously shrink-
ing the magnitudes of others (the
majority), exactly what Grover’s diffu-
sion operation does, i.e., to amplify the
amplitude of the marked target state.

Coming back to our quantum algo-
rithm discussion, in terms of actually
realizing the diffusion operation, the
corresponding unitary matrix Mn is

= −× ×M I A2 ,n 2 2 2 2n n n n

(a) (b) (c)

Mean Mean

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

FIGURE 2. A simple illustration of how a quantum search works. (a) During initialization. (b) After oracle marking. (c) After diffusion operation.

 J U N E 2 0 1 9 51

where ×A2 2n n is a ×2 2n n matrix filled
with 1 / 2 ,n or more concisely,

=× ×A 11
2 ,n2 2 2 2n n n n

if we use ×12 2n n to denote the ×2 2n n
matrix filled with all ones. Therefore,
we have

!

!

" " # "
!

=

− − −

− − −

− − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

M

1 2
2

2
2

2
2

2
2 1 2

2
2

2

2
2

2
2 1 2

2

.n

n n n

n n n

n n n

With the diffusion matrix Mn, we
can work out that an N-dimensional
(N = 2n) state vector v(N, i) with tar-
get index i, after a single iteration of
Mn . v(N, i), would have an amplitude
ratio between its nontarget and target
(i.e., the ith) elements being (− N + 4)/
(− 3N + 4). We can also see that nontar-
get elements’ amplitudes vanish when
N = 4, and as N grows, the ith element’s
amplitude asymptotically approaches
three times that of nontarget elements’
amplitudes. It is also worth pointing
out that flipping the sign of Mn does
not affect the amplification effect, i.e.,
the matrix − Mn also suffices.

With the oracle marking and dif-
fusion operations, quantum search is
then carried out by repeated applica-
tions of these two steps. But how many
iterations should be carried out? It
is shown that O N() (or (2)n(/2)O will
suffice.12 Compared to its classical
counterpart, this brings a quadratic
speed-up and is also proven to be opti-
mal. So with proper polynomial-time
reduction operations, our proposed quan-
tum pipeline can still maintain its com-
putational advantage.

In practice, the number of targets
is usually, if not always, unknown

beforehand. Therefore, the exact num-
ber of iterations cannot be determined
in advance. In this case, the search
can be carried out in an incremental
fashion, starting with a single iter-
ation and increasing the number
of iterations during each successive
round. For any particular round, the
search result is verified against the
classical version of the oracle (which
can be done in polynomial time) to
determine whether a true target has
been found. If it has, then we return
the found target and terminate the
search; otherwise, the next round
with an increased number of itera-
tions is carried out. If the precom-
puted maximum number of iterations
is reached with no targets found, we
can terminate the search and claim
that no targets exist.

Quantum search circuit for SAT
With an understanding of how quan-
tum search works, we can now discuss
how to construct a SAT solver for quan-
tum computers.

A SAT problem is a Boolean feasi-
bility test on a logic expression. Our
plan is to use quantum search to find
satisfying variable assignments, for
which a brute-force search on classi-
cal computers takes Ω(2)n lookups
for an input problem with n variables,
whereas quantum search should find
an assignment under (2)n(/2)O . Since
quantum search consists of two steps,
marking and diffusion, for the remain-
der of this section, we will discuss how
to implement 1) the marking operation
and 2) the diffusion operation.

Oracle-marking implementation
Recall from the “Quantum Grover’s
Search Algorithm” section that the
marking operation is completely deter-
mined by the Boolean oracle function f,

which takes as input a single quantum
state and spits out whether or not the
state is a search target. This fits nicely
with our intended logic SAT setting—
actually, we can just make f the logic
expression itself, and each of the 2n
possible states naturally corresponds
to a particular assignment to the n Bool-
ean variables.

With this convenient direct map-
ping between the SAT problems and
oracle functions, we then need to work
out the details of how to realize Bool-
ean logic expressions. This means
that we must be able to represent the
Boolean logic operations NOT ¬, OR ∨,
and AND ∧ on a circuit-model quan-
tum computer.

A NOT ¬ operator would just flip
between the 〉| 0 and 〉| 1 states or,
more generally, the α β〉+ 〉| 0 | 1 and
β α〉+ 〉| 0 | 1 states to account for quan-
tum superpositions; this is exactly what
the quantum Pauli-X gate does. There-
fore, we have the ¬ operator covered. For
the OR ∨ operator, because De Morgan’s
law tells us that ∨ ⇔ ¬ ¬ ∧ ¬v v v v(),1 2 1 2
we can simply transform all ∨ opera-
tions into ∧ operations with the help of
¬, which we previously figured out how
to do quantumly.

In essence, we need a quantum gate
capable of carrying out the logic AND ∧
operation. Inspired by the 3-qubit Tof-
foli gate (commonly denoted as CCX),
which flips the state of the last qubit
(〉 ↔ 〉| 0 | 1) if the first two input control
qubits are both 〉| 1 , if we make the first
two qubits 〉q| 0 and 〉q| 1 hold the prob-
lem variables and introduce an ancillary
(helper) 〉 = 〉q| | 02 as the last qubit, then
after the Toffoli operation, 〉q| 2 will be
in the state representing the AND of 〉q| 0
and 〉q| .1 However, this is only one part of
the picture because only two variables
can be ANDed together in this way, and in
general, we must handle the case where

52 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

QUANTUM REALISM

an arbitrarily large number of variables
are ANDed together. For this we use
the multiple-control Toffoli (MCT) gate,
which is an extension to the traditional
3-qubit Toffoli and is capable of handling
an arbitrary number of control inputs.

An n-qubit MCT gate’s equivalent
matrix is just a ×2 2n n identity matrix
with the 2 × 2 block at the bottom right
corner rotated in-plane by π / 2 as

MCT
I 0 0

0
0

0 1
1 0

.n
(2 2) (2 2)n n

=
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

− × −

In terms of the actual implementation
of MCT, the textbook strategy18 is to
chain together multiple Toffoli gates
in a V shape, where the left arm grad-
ually computes and accumulates the
intermediate result, and the right arm
uncomputes to clean up all the ancil-
lary qubits. Other strategies also exist,
each with their own strengths and lim-
itations. The choice should be made by
taking into consideration the number
of available ancillary qubits, the desired
quantum circuit depths, the underlying
hardware qubit connectivity, and so on.
With all the tools in our quantum arse-
nal, we have successfully constructed
our desired oracle-marking operation.

Grover diffusion implementation
Recall from the “Quantum Grover’s
Search Algorithm” section that the dif-
fusion operation is equivalent to the
matrix = −× ×M I A2 .n 2 2 2 2n n n n Therefore,
we must establish how to realize this uni-
tary operation on a quantum computer.

With a slight abuse of notation, we
use the symbols for the single-qubit
Hadamard H and Pauli X and Z gates
paired with subscripts n to indicate
their n-qubit analogs.

 › Hn: The n-qubit Hadamard trans-
formation, which is simply an

n-fold Kronecker product of the
single-qubit Hadamard transfor-
mation. in terms of matrices,

= ⊗ =H H,n i
n

1

which is of the size ×2 2n n. Also,
Hn has the recurrence property of

=
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥+H

H H
H H

1
2

.k
k k

k k
1

 › Xn: Similar to Hn, this denotes
the n-fold Kronecker product
of the single-qubit Pauli-X
transformation

= ⊗ =X X.n i
n

1

 Therefore, for any number n of
qubits, Xn is simply a ×2 2n n iden-
tity matrix rotated in-plane by
π / 2 (i.e., the antidiagonal is filled
with 1 and 0 everywhere else).

 › Zn: A ×2 2n n identity matrix,
with the bottom-right element
flipped from 1 to −1, i.e.,

Z
I 0 0

0
0

1 0
0 1

.n
(2 2) (2 2)n n

=
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

− × −

Unlike the previous two equa-
tions, Zn cannot be obtained
by taking the n-fold Kronecker
product of the single-qubit Pau-
li-Z transformation. However,
compared to MCTn toward the
end of the “Oracle-Marking
Implementation” section, we
see that Zn differs from it only
in the bottom-right 2 × 2 block,
which for MCTn is an X and
Zn is a Z. Because we have the
relation

= −⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥ −⎡

⎣⎢
⎤
⎦⎥

= −⎡
⎣⎢

⎤
⎦⎥ =

HXH

Z

1
2

1 1
1 1

0 1
1 0 1

2

1 1
1 1

1 0
0 1 ,

linking together X and Z through
H, we can therefore construct
an n-qubit Zn by sandwiching
an n-qubit MCTn transformation
between two single-qubit Had-
amard transformations on the
last qubit. More precisely,

= ⊗ ⊗

 × ⊗ ⊗
=
−

=
−

Z I H
MCT I H

[()]
[()],

n i
n

n i
n

1
1

1
1

where I is simply the 2 × 2 identity
matrix.

With such a setup, using induc-
tion and simple matrix algebra, the
general n-qubit Grover diffusion oper-
ator = −× ×M I A2n 2 2 2 2n n n n can be con-
structed as =M H X Z X H .n n n n n n

With both the oracle marking and
the diffusion operator fully specified
and implemented, we can construct a
quantum search circuit for finding sat-
isfying solutions to SAT problems on
general circuit-model quantum com-
puters, which, paired with classical
reduction, gives us the general quan-
tum computing pipeline.

IMPLEMENTATION
To validate our proposed pipeline, we
implemented an end-to-end proto-
type of our proposed quantum solution
pipeline using Qiskit1 with the follow-
ing modules:

 › A SAT quantum circuit generator:
This is the core component that
takes as input an unrestricted
SAT problem formulation, whose
Boolean logic expression can be in
any arbitrary format, and automat-
ically generates its corresponding

 J U N E 2 0 1 9 53

quantum circuit by following
the construction described in the
“Quantum Search for SAT” section.

 › A problem parser: This is an exten-
sible wrapper around the core
SAT quantum circuit generator;
it defines an abstract interface for
reducing other problems to SAT.
Currently, for proof of concept,
we provide the implementations
for 3-coloring problems as well
as pseudo-Boolean constraints
problems. The capabilities of
reducing other problems to SAT
can be easily added by subclass-
ing the abstract interface.

 › A back-end quantum processor: We
use the quantum back ends pro-
vided by Qiskit, including IBM’s
publicly available general cir-
cuit-model quantum computer13
as well as multiple different
simulators.

EVALUATION
For evaluation purposes, in this section
we show several example runs to demon-
strate the usage of our software toolkit to
map various problems. For each example,
we first show the input problem formula-
tion, followed by the quantum code auto-
matically generated by our toolkit, and
finally the quantum execution results if
the current quantum processor back end
is powerful enough to run the code.

Let us first look at an example run
with a toy SAT input string, “(w ̂ x) & !
(y ˆ z) & (x & y & z),” involving Boolean
variables w, x, y, and z, and the AND,
XOR, and NOT operations. It is obvious
that the satisfying assignment is (w, x,
y, z) = (False, True, True, True).

With this toy SAT problem, the gen-
erated quantum code in OpenQASM
format5 is shown in “Listing 1: Gener-
ated SAT OpenQASM Quantum Code.”
Lines 3–7 declare the needed quantum

LISTING 1: GENERATED SAT
OpenQASM QUANTUM CODE
 1. OPENQASM 2.0;
 2. include ”qelib1.inc”;
 3. qreg v[4];
 4. qreg o[1];
 5. qreg c[4];
 6. qreg a[2];
 7. creg m[4];
 8. h v[0];
 9. h v[1];
10. h v[2];
11. h v[3];
12. x o[0];
13. h o[0];
14. x c[0];
15. x v[1];
16. cx v[1],c[0];
17. x v[1];
18. x c[1];
19. x v[2];
20. cx v[2],c[1];
21. x v[2];
22. x c[2];
23. x v[3];
24. cx v[3],c[2];
25. x v[3];
26. x c[3];
27. ccx v[0],v[1],c[3];
28. ccx c[0],c[1],a[0];
29. ccx c[2],a[0],a[1];
30. ccx c[3],a[1],o[0];
31. ccx c[2],a[0],a[1];
32. ccx c[0],c[1],a[0];
33. x c[0];
34. x v[1];
35. cx v[1],c[0];
36. x v[1];

37. x c[1];
38. x v[2];
39. cx v[2],c[1];
40. x v[2];
41. x c[2];
42. x v[3];
43. cx v[3],c[2];
44. x v[3];
45. x c[3];
46. ccx v[0],v[1],c[3];
47. h v[3];
48. h v[2];
49. h v[1];
50. h v[0];
51. x v[0];
52. x v[1];
53. x v[2];
54. x v[3];
55. h v[3];
56. ccx v[0],v[1],a[0];
57. ccx v[2],a[0],v[3];
58. ccx v[0],v[1],a[0];
59. h v[3];
60. x v[0];
61. x v[1];
62. x v[2];
63. x v[3];
64. h v[0];
65. h v[1];
66. h v[2];
67. h v[3];
68. measure v[0] -> m[0];
69. measure v[1] -> m[1];
70. measure v[2] -> m[2];
71. measure v[3] -> m[3];

54 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

QUANTUM REALISM

and classical registers. In particular:
o holds the qubit for oracle output, v
holds the qubits corresponding to the
actual problem variables, the qubits in
c and a are ancillae for intermediate
results, and m holds classical bits for
the final measurement of v.

Lines 8–11 put the variable qubits
in uniform superposition. Lines 12–46
implement the oracle marking. Lines

47–67 carry out the diffusion opera-
tion. Finally, the variable qubits are
measured as expressed in lines 68–71.
The equivalent quantum circuit is de -
picted in Figure 3. H, X, and M repre-
sent the Hadamard gate, Pauli-X gate,
and measurements, respectively.

Please note that, as opposed to the
O N() repetitions mentioned in the
“Quantum Search for SAT” section, we

carried out only a single iteration of
marking and diffusion. We take 1,024
shots on the simulator and collect the
measurement statistics, as shown in
Figure 4. The prominent measurement
outcome, when reading from right to
left, gives the assignments for the vari-
ables w, x, y, and z. And it agrees with
our expected satisfying solution, i.e.,
(False, True, True, True).

v[0]

v[1]

v[2]

v[3]

o[0]

c[0]

c[1]

c[2]

c[3]

a[0]

a[1]

X H

H

H

H

H

X

X X

X

X X

X

X X

X

X

X X

X

X X

X

X X

X

H

H

H

H X

X

X

X H H

X

X

X

X

H

H

H

H

M

M

M

M

FIGURE 3. The generated quantum circuit for a small SAT. H, X, and M represent the Hadamard gate, Pauli-X gate, and measurements,
respectively.

0.45

0.3

0.15

0

0.
03

3

0.
03

5

0.
03

7

0.
02

6

0.
03

4

0.
04

4

0.
03

2

0.
03

6

0.
04

1

0.
04

8

0.
03

3

0.
03

0

0.
03

3

0.
03

5

0.
03

4

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

0.467

P
ro

ba
bi

lit
ie

s

FIGURE 4. The execution measurement results for the Toy SAT.

LISTING 2:
AN EXAMPLE
3-COLORING
PROBLEM
INSTANCE
1. p edge 3 3
2. e 1 2
3. e 1 3
4. e 2 3

 J U N E 2 0 1 9 55

Next, to demonstrate problem mapping via reduction,
we show an example run on a small 3-coloring problem
input. 3-coloring is the decision problem of whether or
not a graph’s nodes can be colored using only three colors
without any edge connecting two nodes of the same color.
The input formulation of the 3-coloring problem instance
is shown in “Listing 2: An Example 3-Coloring Problem
Instance.” Line 1 specifies that this problem formulation
file lists the edges for a graph containing three nodes and
three edges. Lines 2–4 list the node pairs for each of the
three edges.

Due to space limitations, we omit listing the gen-
erated OpenQASM code and show only the generated
quantum circuit, as shown in Figure 5.

Note that the shown quantum circuit directly solves
the SAT reduction of the supplied 3-coloring problem.
The reduction under the hood is straightforward: for
each edge e connecting node pair (d1 and d2), we intro-
duce the following variables: R G B, , andd d d1 1 1

 and
R G B, , and ,d d d2 2 2

 representing the binary status of
whether each of the nodes, i.e., d dand ,1 2 is of the colors
red, green, or blue. Then, the 3-coloring problem can be
easily encoded as a SAT. For example, “the two neighbor
nodes (d1 and d2) cannot both be red” can be encoded as
¬ ∨ ¬R R ;d d1 2

 and “node d2 must be of some color” is repre-
sented as ∨ ∨R G B .d d d2 2 2

 The SAT reduction is the collec-
tive conjunction of all the disjunctive clauses from all of
these constraints on all of the edges and all of the nodes.

RELATED WORK
On the classical computing side, we are motivated
by seminal works from Cook4 and Karp.15 We are
also actively exploring additional transformation and
translation routes to make our framework more inclu-
sive for different types of problems, e.g., converting
integer programs or other constrained problems to
SAT problems.16

On the other hand, the detailed design and con-
struction of our proposed core quantum solver have
been inspired by the various pioneering work from
t he quant um computing research communit y,
especially the quantum Grover’s search algorithm12,
which we were able to dissect and tailor to fit our
particular setting.

Aside from the various well-known quantum algo-
rithms such as quantum search, other, more recent,
approximation quantum computing models have also va

r[
0]

va
r[

1]

va
r[

2]

va
r[

3]

va
r[

4]

va
r[

5]

va
r[

6]

va
r[

7]

va
r[

8]

va
r[

9]

co
nj

[0
]

co
nj

[1
]

co
nj

[2
]

co
nj

[3
]

co
nj

[4
]

co
nj

[5
]

co
nj

[6
]

co
nj

[7
]

co
nj

[8
]

co
nj

[9
]

co
nj

[1
0]

co
nj

[1
1]

co
nj

[1
2]

co
nj

[1
3]

co
nj

[1
4]

co
nj

[1
5]

co
nj

[1
6]

co
nj

[1
7]

co
nj

[1
8]

co
nj

[1
9]

co
nj

[2
0]

an
ci

[0
]

an
ci

[1
]

an
ci

[2
]

an
ci

[3
]

an
ci

[4
]

an
ci

[5
]

an
ci

[6
]

an
ci

[7
]

an
ci

[8
]

an
ci

[9
]

an
ci

[1
0]

an
ci

[1
1]

an
ci

[1
2]

an
ci

[1
3]

an
ci

[1
4]

an
ci

[1
5]

an
ci

[1
6]

an
ci

[1
7]

an
ci

[1
8]

H H H H H H H H H X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

H H H H H H H H H

X X X X X X X X X X

H
H

X X X X X X X X X X

H H H H H H H H H H

M M M M M M M M M

FI
GU

RE
 5

. A
 g

en
er

at
ed

 q
ua

nt
um

 c
irc

ui
t f

or
 th

e
3

-c
ol

or
in

g
pr

ob
le

m
.

56 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

QUANTUM REALISM

been explored, including adiabatic com-
puting10 and quantum annealing.8 Quan-
tum solutions to various constraint
satisfaction problems17 have also been
studied. Conversion-based approaches
have been examined in the context of a
quantum annealer, with various efforts
toward converting different problems
to D-Wave’s QUBO formats, including
binary constraint satisfaction prob-
lems2, Prolog programs19, and NP-hard
graph problems.7

Using quantum search to solve
NP-complete problems has also been
studied.11 Here, the focus is on the
theoretical side only, targeting prob-
lems with known bounds on recursive
decomposition solutions. In our work,

we target a design to enable quantum
accessibility through reductions, pro-
viding an immediate realization on
general circuit-model quantum com-
puters with a fully implemented tool-
kit. Our proposed framework builds
on top of this work and focuses more
on providing an accessible end-to-end
framework.

In this article, we tackle the low
accessibility and practicality prob-
lem of quantum computing by pro-

posing an end-to-end framework for
mapping computationally hard prob-
lems for general circuit-model quan-
tum computers. Our framework takes

advantage of reductions, and there-
fore, does not require quantum-specific
modeling and encoding techniques
for different problems. We implement
a complete prototype system with
unrestricted Boolean SAT as the core
problem and use quantum Grover’s
search to find satisfying solutions. The
effectiveness of our system is demon-
strated through workflows on differ-
ent-sized/-typed problems, including
actual execution results. With our
novel framework, software engineer-
ing researchers as well as practitioners
are able to tap into the power of the
general circuit-model quantum com-
puters without having prior knowl-
edge of quantum computing.

REFERENCES
 1. G. Aleksandrowicz et al., “Qiskit: An

open-source framework for quantum
computing,” Accessed on: Mar. 16,
2019. [Online]. Available: http://dx
.doi.org/10.5281/zenodo.2562110

 2. Z. Bian, F. Chudak, W. Macready,
A. Roy, R. Sebastiani, and S. Varotti,
“Solving SAT and MaxSAT with a
quantum annealer: Foundations and
a preliminary report,” in Proc. Int.
Symp. Frontiers of Combining Systems,
2017, pp. 153–171.

 3. T. Commissariat, “Google gains new
ground on universal quantum com-
puter,” Physics World, June 10, 2016.
[Online]. Available: https://phys
icsworld.com/a/google-gains-new-

ground-on-universal-quantum-
computer/

 4. S. A. Cook, “The complexity of theo-
rem-proving procedures,” in Proc. 3rd
Annu. ACM Symp. Theory of Comput-
ing, 1971, pp. 151–158.

 5. A. W. Cross, L. S. Bishop, J. A. Smolin,
and J. M. Gambetta, “Open quantum
assembly language.” 2017. [Online].
Available: https://arxiv.org/abs/1707
.03429

 6. D-Wave Systems Inc. Accessed on:
Mar. 21, 2019. [Online]. Available:
https://www.dwavesys.com/

 7. GitHub, Inc., “Dwavesystems/dwave_
networkx.” Accessed on: Mar. 16,
2019. [Online]. Available: https://
github.com/dwavesystems/dwave_
networkx

 8. A. Das and B. K. Chakrabarti, Quan-
tum Annealing and Related Optimi-
zation Methods. New York: Springer-
Verlag, 2005.

 9. D Deutsch. “Quantum theory, the
church-turing principle and the uni-
versal quantum computer,” Proc. R.
Soc. Lond. A, Math. Phys. Eng. Sci., vol.
400, pp. 97–117. June 1985.

 10. E. Farhi, J. Goldstone, S. Gutmann,
J. Lapan, A. Lundgren, and D.
Preda, “A quantum adiabatic evo-
lution algorithm applied to ran-
dom instances of an NP-complete
problem,” Science, vol. 292, no. 5516,
pp. 472–475, 2001.

 11. M. Fürer, “Solving NP-complete
problems with quantum search,” in
LATIN 2008: Theoretical Informatics,
(Lecture Notes in Computer Science,
vol. 4957), E. S. Laber, C. Bornstein,
L. T. Nogueira, and L. Faria, Eds.
Berlin, Germany: Springer, 2008,
pp. 784–792.

 12. L. K. Grover, “A fast quantum
mechanical algorithm for database
search,” in Proc. 28th Annu. ACM Symp.
Theory of Computing, 1996, pp. 212–219.

OUR FRAMEWORK TAKES ADVANTAGE
OF REDUCTIONS, AND THEREFORE,

DOES NOT REQUIRE QUANTUM-SPECIFIC
MODELING AND ENCODING TECHNIQUES

FOR DIFFERENT PROBLEMS.

 J U N E 2 0 1 9 57

 13. IBM, “IBM Q.” Accessed on: Mar. 21,
2019. [Online]. Available: https://
www.research.ibm.com/ibm-q/

 14. M. W. Johnson, et al., “Quantum
annealing with manufactured
spins,” Nature, vol. 473, no. 7346,
pp. 194–198, 2011.

 15. R. M. Karp, “Reducibility among
combinatorial problems,” in Com-
plexity of Computer Computations,
(The IBM Research Symposia Series),
R. E. Miller, J. W. Thatcher, and J. D.
Bohlinger, Eds. Boston: Springer,
1972, pp. 85–103.

 16. R. Li, D. Zhou, and D. Du, “Satis-
fiability and integer programming

as complementary tools,” in
Proc. 2004 Asia and South Pacific
Design Automation Conf., 2004,
pp. 879–882.

 17. S. Mandrà, G. G. Guerreschi, and A.
Aspuru-Guzik, “Faster than classi-
cal quantum algorithm for dense
formulas of exact satisfiability and
occupation problems,” New J. Phys.,
vol. 18, no. 7, pp. 073003, 2016.

 18. M. A. Nielsen and I. Chuang,
Quantum Computation and Quan-
tum Information: 10th Anniversary
Edition. Cambridge, U.K.: Cam-
bridge Univ. Press, 2010. doi:
10.1017/CBO9780511976667.

 19. S. Pakin, “Performing fully parallel
constraint logic programming on a
quantum annealer,” Theory Practice
Logic Programming, vol. 18, no. 5–6,
pp. 928–949, 2018.

 20. P. W. Shor, “Why haven’t more quan-
tum algorithms been found?” J. ACM,
vol. 50, no. 1, pp. 87–90, 2003.

ABOUT THE AUTHORS
SHAOHAN HU is a research staff member at the IBM Thomas J. Watson Research Center. His research interests include quan-
tum computing, cyberphysical systems, mobile ubiquitous computing, crowd and social sensing, big data analytics, and cloud
computing. Hu received a Ph.D. in computer science from the University of Illinois at Urbana-Champaign. He is a Member of the
IEEE. Contact him at shaohan.hu@ibm.com.

PENG LIU is a research staff member at the IBM Thomas J. Watson Research Center. He has published extensively in several
areas of computer science, including compiler theory, artificial intelligence, static and dynamic program analysis, security, and
quantum computing. Liu received a Ph.D. in computer science from the Hong Kong University of Science and Technology. Con-
tact him at liup@us.ibm.com.

CHUN-FU (RICHARD) CHEN is a senior software engineer at the IBM Thomas J. Watson Research Center. His research inter-
ests include quantum computing for chemistry, machine learning, and optimization, as well as computer vision and graph
computing. Chen received an M.S. in electrical engineering from National Cheng Kung University. He is a Member of the IEEE
and ACM. Contact him at chenrich@us.ibm.com.

MARCO PISTOIA is a distinguished research staff member and senior manager at the IBM Thomas J. Watson Research Center. His
research interests include linear algebra, invariant theory, and quantum computing. Pistoia received a Ph.D. in mathematics from
New York University. For his publications, he received four Association for Computing Machinery distinguished paper awards and
one IEEE honorable mention. Contact him at pistoia@us.ibm.com.

JAY GAMBETTA is the IBM Global lead of quantum theory, applications, and software at the IBM Thomas J. Watson
Research Center. His research interests include quantum information science. Gambetta received a Ph.D. (Hons.) in physics
from Griffith University. He is a Senior Member of the IEEE and fellow of IBM and the American Physical Society. Contact
him at jay.gambetta@us.ibm.com.

Access all your IEEE Computer Society
subscriptions at

computer.org
/mysubscriptions

	C1
	C2
	1
	3
	4
	6
	9
	11
	12
	13
	18
	27
	38
	47
	58
	68
	73
	77
	78
	82
	87
	88
	93
	94
	C3
	C4

