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In recent years, industry and academia have made tremendous 
research attempts to implement quantum computing 
technologies. But quantum computing is still grounded by 
numerous critical barriers, leading to its low accessibility 
and practicality. To overcome this problem, we propose 
an end-to-end framework for mapping computationally 
hard problems on a quantum computer via reduction.

Having dictated classical computing technol-
ogy advances for decades, today, Moore’s law 
has been slowed to a crawl by the limitations of 
physics. In recent years, a significant amount 

of time and resources from the industrial and academic 
communities has been devoted to making quantum 
computing technologies a reality.13 D-Wave systems are 
claimed to be the first commercially available quantum 
computer since 2011.6 They are, however, specifically 
designed for annealing computations14 as opposed to 
being general circuit-model quantum computers,9 which 
would provide general quantum computing capabilities. 

Multiple current efforts are devoted to building the first 
commercially available general circuit-model quan-
tum computers,3,13 with IBM making its latest systems 
publicly available.13

Although there is a wave of quantum computers on the 
horizon, quantum computing is not experiencing the same 
growth. Because quantum computing models behave in 
ways that are so different from their classical computing 
counterparts, much of our understanding of how compu-
tation systems work and how best to design algorithms 
and software programs is rendered unusable.20 Thus, with 
a half-century of research efforts on theoretical quantum 
computing to rely on, there has been a relatively small 
set of quantum algorithms ever discovered. And from a 
software point of view, to be able to comprehend a simple 
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piece of quantum program—let alone 
design and develop sophisticated tool 
stacks—requires a fair amount of back-
ground knowledge on quantum comput-
ing systems, which, in general, cannot be 
assumed for most software engineering 
researchers and practitioners.

Looking at this disparity, we argue 
that it is imperative to bridge this accessi-
bility and practicality gap surround-
ing quantum computing so that soft-
ware engineering researchers and 
practitioners are better prepared to reap 
the benefits when quantum computers 
become increasingly more available and 
powerful. Toward this goal, we propose 
an end-to-end framework for mapping 
computationally hard problems on a gen-
eral circuit-model quantum computer 
via reduction. This focus comes from 
the fact that easier problems are suffi-
ciently handled by classical computers. 
It is, therefore, more meaningful that the 
potential speed-up brought about by 
quantum computers be used for investi-
gating the harder problems.

The key feature of our framework is 
its exploitation of reduction.15 With a 
core quantum solver designed to solve 

a single problem, many other problems 
may potentially benefit from its quan-
tum speed-up by using a reduction wrap-
per around the core quantum solver. 
With this design, we circumvent the 
extreme difficulty of coming up with 
quantum models/encodings for a whole 
array of different problems; finding one 
potentially gives us immediate quantum 

accelerators for all. In particular, during 
the building of our initial prototype sys-
tem, we picked unrestricted Boolean sat-
isfiability (SAT) as the core problem and 
fully implemented our software toolkit 
based on quantum search.12

Our contribution in this article is 
threefold.

1. We propose an end-to-end 
framework for bringing 
the potential power of cir-
cuit-model quantum computers 
to general software researchers 
and practitioners.

2. We use reduction to circumvent 
the difficulty—if not impossi-
bility—of having to model and 
encode each different problem 
on circuit-model quantum 
computers.

3. We provide a fully implemented 
prototype software toolkit, with 
its effectiveness demonstrated.

REDUCTION-BASED 
QUANTUM PIPELINE
In this section, we assume the basic 
knowledge of quantum computing as 

a common ground. We first talk about 
the (im)possibility of finding direct 
quantum solutions to any input prob-
lems and then discuss our proposed 
reduction-based framework.

Direct quantum solutions?
As mentioned previously, our focus has 
been on computationally hard problems 

because the speed-up naturally brought 
about by the intrinsic properties of 
quantum computing makes them an 
intriguing candidate for the point of 
attack. Note that because computa-
tional complexity theory is a much more 
familiar topic to computer scientists in 
general, we will not include a dedicated 
overview for it.

After surveying quantum comput-
ing literature as well as communicat-
ing with quantum physicists, we feel 
that the biggest barrier preventing the 
software engineering and/or general 
computer science communities from 
having already deployed vast quantum 
computing systems, or implementing 
comprehensive software tool sets for 
solving classically hard problems, is that 
programming quantum computers is 
hard. This belief is evidenced by the 
following assertions: 

1. The direct programming of 
general-purpose quantum com-
puters requires a fair amount 
of background knowledge on 
quantum computing, which is 
not something that can be realis-
tically expected from most soft-
ware engineering professionals 
or computer scientists today.

2. It is not yet clear how best to 
encode in quantum computing 
data structures that are most 
commonly used in classical 
computing, such as a general 
graph, a doubly linked list, and 
so on. This greatly adds to the 
difficulties related to directly 
programming a quantum com-
puter to solve problems mod-
eled after the practical scenar-
ios to which we are accustomed.

Putting aside the general computer sci-
ence community, in the past half-century 

THE KEY FEATURE OF OUR FRAMEWORK 
IS ITS EXPLOITATION OF REDUCTION.
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(even from the much more focused 
quantum computing research commu-
nity), only a limited set of quantum algo-
rithms have been discovered. Shor said 
that one important possible reason why 
so few quantum algorithms have been 
discovered was that quantum comput-
ers simply behave too differently from 
classical machines, so much so that “our 
techniques for designing algorithms 
and our intuitions for understanding 
the process of computation no longer 
work,”20 which also echoes the reasons 
we have presented thus far.

How to achieve a reduction-
based quantum pipeline
Our goal is to make available, or at least 
more accessible, circuit-model quan-
tum computers to the more general 
computer science professionals and 
researchers. Facing the realities of and 
responses from the quantum computing 
research community, we, as computer 
science researchers, think that our goal 
can be reached not from trying to fill the 
abyss surrounding quantum comput-
ing by attempting to quickly discover a 
new rich set of quantum algorithms but, 
rather, from bridging the gaps to the other 
side. This enables people with limited 
quantum computing backgrounds to tap 
into the power of quantum computers.

How do we actually achieve a gen-
eral quantum computing pipeline that 
doesn’t still come with the quantum 
barrier? From Cook and Karp’s seminal 
work on computational complexity,4,15 
we know that NP-complete problems 
can be reduced to each other in poly-
nomial time. Therefore, if we are able 
to program the quantum computer to 
find a solution to one particular prob-
lem, we then have a way of applying 
quantum speed-ups to all problems. As 
shown in Figure 1, at the core sits the 
solver, which implements the quantum 

algorithm that directly solves some 
particular problem S. Then, any gen-
eral problem’s input I is transformed via 
polynomial-time reduction to I’, which 
the core quantum solution finder S 
can directly operate on. Afterward, the 
quantum algorithm’s output O’ can be 
converted back, depending on how the 
initial reduction was carried out, to the 
desired output O for the original input.

Given this blueprint, the two ques-
tions that would be asked next are  
as follows:

1. Which particular problem 
should be picked for the core 
quantum solver?

2. How can this particular problem be 
solved on a quantum computer?

Before answering these questions, 
we would like to refer back to our cur-
rent goal of bridging the gap, rather 
than attempting to be the most effi-
cient solution possible. Therefore, our 
current design choices (discussed in 
this section) focus more on achiev-
ing our desired end-to-end pipeline 
with general applicability and acces-
sibility. With our general framework 
design in place, the specific choices 
of the particular problem for the core 
quantum solver and the actual quan-
tum algorithm for the chosen prob-
lem can both be improved upon, as 
our (and other) continued explora-
tion efforts uncover more efficient or 
optimal candidates.

Back to the two questions mentioned 
previously, regarding the specific prob-
lem, we chose an unrestricted Bool-
ean SAT4 for our current design. It 
is a well-studied problem for classi-
cal computing, and its formulation 
closely relates to Boolean logic. For 
finding solutions to SAT problems 
using circuit-model quantum comput-
ers, we propose using quantum search 
in our end-to-end pipeline, as illus-
trated in Figure 1. Any input problem 
is transformed via reduction to a SAT 
instance, for which we use quantum 
search to find a solution that can then 
be transformed back for the original 
input according to the reduction.

QUANTUM SEARCH FOR SAT
In this section, we first review how quan-
tum search works and then detail how 
it is used to program a circuit-model 
quantum computer to find solutions to 
SAT problems.

Quantum Grover’s 
search algorithm
Here, we present an overview of quan-
tum search, also known as Grover’s 
search algorithm. Readers who are famil-
iar with this concept can skip this review 
and go directly to the “Quantum Search 
Circuit for SAT” section.

Before getting into the details, let’s 
first establish what the corresponding 
search problem is. The setup for this 
search problem is quite straightforward: 
we have an unordered collection of 

Input I

Polynomial Reduction

Quantum Search
for SATInput I ′ Output O ′

Output O

FIGURE 1. A quantum computing pipeline with a SAT-oriented quantum search core.
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N items and are given some binary ora-
cle function f(·)  that tells whether an 
item meets the search criterion or not. 
Specif ically, if we random ly pick 
some item i from the collection, f(i) == 1  
means that we have a hit, whereas if 
f(i) == 0, then we need to keep search-
ing. Obviously, in classical computing, 
an average of N / 2 [or Ω(N)] queries to 
the oracle function would be needed, 
as a single f lookup can check only on 
a single item. On a quantum computer, 
however, a single f query can have the 
effect of checking on multiple items 
at once because qubits can be put in 
superpositioned states. For example, 
if we have =n Nlog2  qubits put into 
a uniform superposition, then a single 
application of f on them is like check-
ing on all of the N items at once.

Rather than discussing mathe-
matical formulations, we use simple 
diagrams to illustrate how quantum 
search works. Similar to many other 
quantum algorithms, quantum search 
starts by first putting all qubits into 
uniform superpositions using the 
quantum Hadamard gates; this process 
grants the same amplitude for all possi-
ble states, including the target, as illus-
trated in Figure 2(a), where all of the 
bars represent the amplitudes of every 
item in the collection, with the dark one 
indicating the search target. Obviously, 

if measurements are taken at this stage, 
any item has an equal probability—
computed as the square of the ampli-
tude—of being the outcome.

The oracle is then evaluated on the 
uniform superposition to mark the 
target by flipping its amplitude, while 
leaving all nontargets untouched. This 
is visualized in Figure 2(b), which 
shows the target’s amplitude picking 
up a negative sign (flipped). If measure-
ments are taken at this stage, it is, how-
ever, still the case that all of the items 
have equal probabilities of being the 
outcome because the negative sign of 
the target’s amplitude will be squared 
away when computing its probability. 
But we observe that the target’s flipped 
amplitude slightly brings down the 
mean of all amplitudes, as indicated by 
the dashed line in Figure 2(b).

The next step of quantum search is 
the application of what is known as the 
diffusion operation, which takes the mir-
ror reflections of all amplitudes about 
their mean. As shown in Figure 2(c), the 
dashed bar outlines indicate the origi-
nal amplitudes after the oracle marking 
from Figure 2(b), and the solid bars rep-
resent the resulting amplitudes after 
the diffusion’s reflection-about-mean 
operation. Because the nontargets, 
which are the majority, were closer to 
the mean than the target was, their 

amplitudes were decreased slightly 
after the reflection. Conversely, the tar-
get’s amplitude was much farther away 
from the mean, so after reflection, it 
increased by a greater amount. There-
fore, the net effect of the reflection is 
that the target’s amplitude was ampli-
fied while the nontargets’ amplitude 
was shrunk.

This reflection process can also be 
illustrated by a toy numerical example. 
For instance, suppose we have five 
equal numbers with a single “oddball” 
that has a negative sign, i.e., 1, 1, 1, 1, 
and  −1.

If we take the inverses (or mirror 
reflections) of all five numbers about 
their mean, i.e., 3/5, they become 1/5, 
1/5, 1/5, 1/5, and 11/5 where 1/5 =  
(3/5) × 2 − 1 and 11/5 = (3/5) × 2 − 1. 
Because the mean is closer to the major-
ity, inversion about the mean increases 
the magnitude of the “oddball” by a big 
margin, while simultaneously shrink-
ing the magnitudes of others (the 
majority), exactly what Grover’s diffu-
sion operation does, i.e., to amplify the 
amplitude of the marked target state.

Coming back to our quantum algo-
rithm discussion, in terms of actually 
realizing the diffusion operation, the 
corresponding unitary matrix Mn is

= −× ×M I A2 ,n 2 2 2 2n n n n
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FIGURE 2. A simple illustration of how a quantum search works. (a) During initialization. (b) After oracle marking. (c) After diffusion operation.
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where ×A2 2n n is a ×2 2n n matrix filled 
with 1 / 2 ,n  or more concisely,

=× ×A 11
2 ,n2 2 2 2n n n n

if we use ×12 2n n  to denote the ×2 2n n 
matrix filled with all ones. Therefore, 
we have
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With the diffusion matrix Mn, we 
can work out that an N-dimensional 
(N  =  2n) state vector v(N,  i) with tar-
get index i, after a single iteration of 
Mn . v(N,  i), would have an amplitude 
ratio between its nontarget and target 
(i.e., the ith) elements being (− N + 4)/
(− 3N + 4). We can also see that nontar-
get elements’ amplitudes vanish when 
N = 4, and as N grows, the ith element’s 
amplitude asymptotically approaches 
three times that of nontarget elements’ 
amplitudes. It is also worth pointing 
out that flipping the sign of Mn does 
not affect the amplification effect, i.e., 
the matrix − Mn also suffices.

With the oracle marking and dif-
fusion operations, quantum search is 
then carried out by repeated applica-
tions of these two steps. But how many 
iterations should be carried out? It 
is shown that O N( ) (or (2 )n( /2)O  will 
suffice.12 Compared to its classical 
counterpart, this brings a quadratic 
speed-up and is also proven to be opti-
mal. So with proper polynomial-time 
reduction operations, our proposed quan-
tum pipeline can still maintain its com-
putational advantage.

In practice, the number of targets 
is usually, if not always, unknown 

beforehand. Therefore, the exact num-
ber of iterations cannot be determined 
in advance. In this case, the search 
can be carried out in an incremental 
fashion, starting with a single iter-
ation and increasing the number 
of iterations during each successive 
round. For any particular round, the 
search result is verified against the 
classical version of the oracle (which 
can be done in polynomial time) to 
determine whether a true target has 
been found. If it has, then we return 
the found target and terminate the 
search; otherwise, the next round 
with an increased number of itera-
tions is carried out. If the precom-
puted maximum number of iterations 
is reached with no targets found, we 
can terminate the search and claim 
that no targets exist.

Quantum search circuit for SAT
With an understanding of how quan-
tum search works, we can now discuss 
how to construct a SAT solver for quan-
tum computers.

A SAT problem is a Boolean feasi-
bility test on a logic expression. Our 
plan is to use quantum search to find 
satisfying variable assignments, for 
which a brute-force search on classi-
cal computers takes Ω(2 )n  lookups 
for an input problem with n variables, 
whereas quantum search should find 
an assignment under (2 )n( /2)O . Since 
quantum search consists of two steps, 
marking and diffusion, for the remain-
der of this section, we will discuss how 
to implement 1) the marking operation 
and 2) the diffusion operation.

Oracle-marking implementation
Recall from the “Quantum Grover’s 
Search Algorithm” section that the 
marking operation is completely deter-
mined by the Boolean oracle function f, 

which takes as input a single quantum 
state and spits out whether or not the 
state is a search target. This fits nicely 
with our intended logic SAT setting—
actually, we can just make f the logic 
expression itself, and each of the 2n 
possible states naturally corresponds 
to a particular assignment to the n Bool-
ean variables.

With this convenient direct map-
ping between the SAT problems and 
oracle functions, we then need to work 
out the details of how to realize Bool-
ean logic expressions. This means 
that we must be able to represent the 
Boolean logic operations NOT ¬, OR ∨,  
and AND ∧ on a circuit-model quan-
tum computer.

A NOT ¬ operator would just flip 
between the 〉| 0  and 〉| 1  states or, 
more generally, the α β〉+ 〉| 0 | 1  and 
β α〉+ 〉| 0 | 1  states to account for quan-
tum superpositions; this is exactly what 
the quantum Pauli-X gate does. There-
fore, we have the ¬ operator covered. For 
the OR ∨ operator, because De Morgan’s 
law tells us that ∨ ⇔ ¬ ¬ ∧ ¬v v v v( ),1 2 1 2  
we can simply transform all ∨ opera-
tions into ∧ operations with the help of 
¬, which we previously figured out how 
to do quantumly.

In essence, we need a quantum gate 
capable of carrying out the logic AND ∧ 
operation. Inspired by the 3-qubit Tof-
foli gate (commonly denoted as CCX), 
which flips the state of the last qubit  
( 〉 ↔ 〉| 0 | 1 ) if the first two input control 
qubits are both 〉| 1 , if we make the first 
two qubits 〉q| 0  and 〉q| 1  hold the prob-
lem variables and introduce an ancillary 
(helper) 〉 = 〉q| | 02  as the last qubit, then 
after the Toffoli operation, 〉q| 2  will be 
in the state representing the AND of 〉q| 0  
and 〉q| .1  However, this is only one part of 
the picture because only two variables 
can be ANDed together in this way, and in 
general, we must handle the case where 
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an arbitrarily large number of variables 
are ANDed together. For this we use 
the multiple-control Toffoli (MCT) gate, 
which is an extension to the traditional 
3-qubit Toffoli and is capable of handling 
an arbitrary number of control inputs.

An n-qubit MCT gate’s equivalent 
matrix is just a ×2 2n n identity matrix 
with the 2 × 2 block at the bottom right 
corner rotated in-plane by π / 2 as

MCT
I 0 0

0
0

0 1
1 0

.n
(2 2) (2 2)n n

=
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

− × −

In terms of the actual implementation 
of MCT, the textbook strategy18 is to 
chain together multiple Toffoli gates 
in a V shape, where the left arm grad-
ually computes and accumulates the 
intermediate result, and the right arm 
uncomputes to clean up all the ancil-
lary qubits. Other strategies also exist, 
each with their own strengths and lim-
itations. The choice should be made by 
taking into consideration the number 
of available ancillary qubits, the desired 
quantum circuit depths, the underlying 
hardware qubit connectivity, and so on. 
With all the tools in our quantum arse-
nal, we have successfully constructed 
our desired oracle-marking operation.

Grover diffusion implementation
Recall from the “Quantum Grover’s 
Search Algorithm” section that the dif-
fusion operation is equivalent to the 
matrix = −× ×M I A2 .n 2 2 2 2n n n n  Therefore, 
we must establish how to realize this uni-
tary operation on a quantum computer.

With a slight abuse of notation, we 
use the symbols for the single-qubit 
Hadamard H and Pauli X and Z gates 
paired with subscripts n to indicate 
their n-qubit analogs.

 › Hn: The n-qubit Hadamard trans-
formation, which is simply an 

n-fold Kronecker product of the 
single-qubit Hadamard transfor-
mation. in terms of matrices,

= ⊗ =H H,n i
n

1

which is of the size ×2 2n n. Also, 
Hn has the recurrence property of

=
−

⎡
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 › Xn: Similar to Hn, this denotes 
the n-fold Kronecker product 
of the single-qubit Pauli-X 
transformation

= ⊗ =X X.n i
n

1

 Therefore, for any number n of 
qubits, Xn is simply a ×2 2n n iden-
tity matrix rotated in-plane by 
π / 2 (i.e., the antidiagonal is filled 
with 1 and 0 everywhere else).

 › Zn: A ×2 2n n identity matrix, 
with the bottom-right element 
flipped from 1 to −1, i.e.,

Z
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0
0

1 0
0 1
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=
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

− × −

Unlike the previous two equa-
tions, Zn cannot be obtained 
by taking the n-fold Kronecker 
product of the single-qubit Pau-
li-Z transformation. However, 
compared to MCTn toward the 
end of the “Oracle-Marking 
Implementation” section, we 
see that Zn differs from it only 
in the bottom-right 2 × 2 block, 
which for MCTn is an X and 
Zn is a Z. Because we have the 
relation

= −⎡
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linking together X and Z through 
H, we can therefore construct 
an n-qubit Zn by sandwiching 
an n-qubit MCTn transformation 
between two single-qubit Had-
amard transformations on the 
last qubit. More precisely,

= ⊗ ⊗

   × ⊗ ⊗
=
−

=
−

Z I H
MCT I H

[( ) ]
[( ) ],

n i
n

n i
n

1
1

1
1

where I is simply the 2 × 2 identity 
matrix.

With such a setup, using induc-
tion and simple matrix algebra, the 
general n-qubit Grover diffusion oper-
ator = −× ×M I A2n 2 2 2 2n n n n  can be con-
structed as =M H X Z X H .n n n n n n

With both the oracle marking and 
the diffusion operator fully specified 
and implemented, we can construct a 
quantum search circuit for finding sat-
isfying solutions to SAT problems on 
general circuit-model quantum com-
puters, which, paired with classical 
reduction, gives us the general quan-
tum computing pipeline.

IMPLEMENTATION
To validate our proposed pipeline, we 
implemented an end-to-end proto-
type of our proposed quantum solution 
pipeline using Qiskit1 with the follow-
ing modules:

 › A SAT quantum circuit generator: 
This is the core component that 
takes as input an unrestricted 
SAT problem formulation, whose 
Boolean logic expression can be in 
any arbitrary format, and automat-
ically generates its corresponding 
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quantum circuit by following 
the construction described in the 
“Quantum Search for SAT” section.

 › A problem parser: This is an exten-
sible wrapper around the core 
SAT quantum circuit generator; 
it defines an abstract interface for 
reducing other problems to SAT. 
Currently, for proof of concept, 
we provide the implementations 
for 3-coloring problems as well 
as pseudo-Boolean constraints 
problems. The capabilities of 
reducing other problems to SAT 
can be easily added by subclass-
ing the abstract interface.

 › A back-end quantum processor: We 
use the quantum back ends pro-
vided by Qiskit, including IBM’s 
publicly available general cir-
cuit-model quantum computer13 
as well as multiple different 
simulators.

EVALUATION
For evaluation purposes, in this section 
we show several example runs to demon-
strate the usage of our software toolkit to 
map various problems. For each example, 
we first show the input problem formula-
tion, followed by the quantum code auto-
matically generated by our toolkit, and 
finally the quantum execution results if 
the current quantum processor back end 
is powerful enough to run the code.

Let us first look at an example run 
with a toy SAT input string, “(w ̂  x) & !  
(y ˆ z) & (x & y & z),” involving Boolean 
variables w, x, y, and z, and the AND, 
XOR, and NOT operations. It is obvious 
that the satisfying assignment is (w, x, 
y, z) = (False, True, True, True).

With this toy SAT problem, the gen-
erated quantum code in OpenQASM 
format5 is shown in “Listing 1: Gener-
ated SAT OpenQASM Quantum Code.” 
Lines 3–7 declare the needed quantum 

LISTING 1: GENERATED SAT 
OpenQASM QUANTUM CODE
 1. OPENQASM 2.0;
 2. include ”qelib1.inc”;
 3. qreg v[4];
 4. qreg o[1];
 5. qreg c[4];
 6. qreg a[2];
 7. creg m[4];
 8. h v[0];
 9. h v[1];
10. h v[2];
11. h v[3];
12. x o[0];
13. h o[0];
14. x c[0];
15. x v[1];
16. cx v[1],c[0];
17. x v[1];
18. x c[1];
19. x v[2];
20. cx v[2],c[1];
21. x v[2];
22. x c[2];
23. x v[3];
24. cx v[3],c[2];
25. x v[3];
26. x c[3];
27. ccx v[0],v[1],c[3];
28. ccx c[0],c[1],a[0];
29. ccx c[2],a[0],a[1];
30. ccx c[3],a[1],o[0];
31. ccx c[2],a[0],a[1];
32. ccx c[0],c[1],a[0];
33. x c[0];
34. x v[1];
35. cx v[1],c[0];
36. x v[1];

37. x c[1];
38. x v[2];
39. cx v[2],c[1];
40. x v[2];
41. x c[2];
42. x v[3];
43. cx v[3],c[2];
44. x v[3];
45. x c[3];
46. ccx v[0],v[1],c[3];
47. h v[3];
48. h v[2];
49. h v[1];
50. h v[0];
51. x v[0];
52. x v[1];
53. x v[2];
54. x v[3];
55. h v[3];
56. ccx v[0],v[1],a[0];
57. ccx v[2],a[0],v[3];
58. ccx v[0],v[1],a[0];
59. h v[3];
60. x v[0];
61. x v[1];
62. x v[2];
63. x v[3];
64. h v[0];
65. h v[1];
66. h v[2];
67. h v[3];
68. measure v[0] -> m[0];
69. measure v[1] -> m[1];
70. measure v[2] -> m[2];
71. measure v[3] -> m[3];
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and classical registers. In particular: 
o holds the qubit for oracle output, v 
holds the qubits corresponding to the 
actual problem variables, the qubits in 
c and a are ancillae for intermediate 
results, and m holds classical bits for 
the final measurement of v.

Lines 8–11 put the variable qubits 
in uniform superposition. Lines 12–46 
implement the oracle marking. Lines 

47–67 carry out the diffusion opera-
tion. Finally, the variable qubits are 
measured as expressed in lines 68–71. 
The equivalent quantum circuit is de -
picted in Figure 3. H, X, and M repre-
sent the Hadamard gate, Pauli-X gate, 
and measurements, respectively.

Please note that, as opposed to the 
O N( )  repetitions mentioned in the 
“Quantum Search for SAT” section, we 

carried out only a single iteration of 
marking and diffusion. We take 1,024 
shots on the simulator and collect the 
measurement statistics, as shown in 
Figure 4. The prominent measurement 
outcome, when reading from right to 
left, gives the assignments for the vari-
ables w, x, y, and z. And it agrees with 
our expected satisfying solution, i.e., 
(False, True, True, True).
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FIGURE 3. The generated quantum circuit for a small SAT. H, X, and M represent the Hadamard gate, Pauli-X gate, and measurements, 
respectively.
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FIGURE 4. The execution measurement results for the Toy SAT.

LISTING 2: 
AN EXAMPLE 
3-COLORING 
PROBLEM 
INSTANCE
1. p edge 3 3
2. e 1 2
3. e 1 3
4. e 2 3
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Next, to demonstrate problem mapping via reduction, 
we show an example run on a small 3-coloring problem 
input. 3-coloring is the decision problem of whether or 
not a graph’s nodes can be colored using only three colors 
without any edge connecting two nodes of the same color. 
The input formulation of the 3-coloring problem instance 
is shown in “Listing 2: An Example 3-Coloring Problem 
Instance.” Line 1 specifies that this problem formulation 
file lists the edges for a graph containing three nodes and 
three edges. Lines 2–4 list the node pairs for each of the 
three edges.

Due to space limitations, we omit listing the gen-
erated OpenQASM code and show only the generated 
quantum circuit, as shown in Figure 5.

Note that the shown quantum circuit directly solves 
the SAT reduction of the supplied 3-coloring problem. 
The reduction under the hood is straightforward: for 
each edge e connecting node pair (d1 and d2), we intro-
duce the following variables: R G B, , andd d d1 1 1

 and 
R G B, , and ,d d d2 2 2

 representing the binary status of 
whether each of the nodes, i.e., d dand   ,1 2  is of the colors 
red, green, or blue. Then, the 3-coloring problem can be 
easily encoded as a SAT. For example, “the two neighbor 
nodes (d1 and d2) cannot both be red” can be encoded as 
¬ ∨ ¬R R ;d d1 2

 and “node d2 must be of some color” is repre-
sented as ∨ ∨R G B .d d d2 2 2

 The SAT reduction is the collec-
tive conjunction of all the disjunctive clauses from all of 
these constraints on all of the edges and all of the nodes.

RELATED WORK
On the classical computing side, we are motivated 
by seminal works from Cook4 and Karp.15 We are 
also actively exploring additional transformation and 
translation routes to make our framework more inclu-
sive for different types of problems, e.g., converting 
integer programs or other constrained problems to 
SAT problems.16

On the other hand, the detailed design and con-
struction of our proposed core quantum solver have 
been inspired by the various pioneering work from 
t he quant um computing research communit y, 
especially the quantum Grover’s search algorithm12, 
which we were able to dissect and tailor to fit our 
particular setting.

Aside from the various well-known quantum algo-
rithms such as quantum search, other, more recent, 
approximation quantum computing models have also va
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been explored, including adiabatic com-
puting10 and quantum annealing.8 Quan-
tum solutions to various constraint 
satisfaction problems17 have also been 
studied. Conversion-based approaches 
have been examined in the context of a 
quantum annealer, with various efforts 
toward converting different problems 
to D-Wave’s QUBO formats, including 
binary constraint satisfaction prob-
lems2, Prolog programs19, and NP-hard 
graph problems.7

Using quantum search to solve 
NP-complete problems has also been 
studied.11 Here, the focus is on the 
theoretical side only, targeting prob-
lems with known bounds on recursive 
decomposition solutions. In our work, 

we target a design to enable quantum 
accessibility through reductions, pro-
viding an immediate realization on 
general circuit-model quantum com-
puters with a fully implemented tool-
kit. Our proposed framework builds 
on top of this work and focuses more 
on providing an accessible end-to-end 
framework.

In this article, we tackle the low 
accessibility and practicality prob-
lem of quantum computing by pro-

posing an end-to-end framework for 
mapping computationally hard prob-
lems for general circuit-model quan-
tum computers. Our framework takes 

advantage of reductions, and there-
fore, does not require quantum-specific 
modeling and encoding techniques 
for different problems. We implement 
a complete prototype system with 
unrestricted Boolean SAT as the core 
problem and use quantum Grover’s 
search to find satisfying solutions. The 
effectiveness of our system is demon-
strated through workflows on differ-
ent-sized/-typed problems, including 
actual execution results. With our 
novel framework, software engineer-
ing researchers as well as practitioners 
are able to tap into the power of the 
general circuit-model quantum com-
puters without having prior knowl-
edge of quantum computing. 
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