
Data Acquisition for Real-time Decision-making
under Freshness Constraints

Shaohan Hu∗, Shuochao Yao∗, Haiming Jin∗, Yiran Zhao∗, Yitao Hu†, Xiaochen Liu†,
Nooreddin Naghibolhosseini‡, Shen Li∗, Akash Kapoor∗, William Dron§, Lu Su¶,

Amotz Bar-Noy‡, Pedro Szekely†, Ramesh Govindan†, Reginald Hobbs‖, Tarek F. Abdelzaher∗
∗University of Illinois at Urbana-Champaign, †University of Southern California, ‡City University of New York,
§Raytheon BBN Technologies, ¶State University of New York at Buffalo, ‖US Army Research Laboratory

Email: {shu17,syao9,hjin8,zhao97,shenli3,akapoor5,zaher}@illinois.edu, {yitaoh,liu851,ramesh}@usc.edu, pszekely@isi.edu,

{nnaghibolhosseini@gc,amotz@sci.brooklyn}.cuny.edu, wdron@bbn.com, lusu@buffalo.edu, reginald.l.hobbs2.civ@mail.mil

Abstract—The paper describes a novel algorithm for timely
sensor data retrieval in resource-poor environments under fresh-
ness constraints. Consider a civil unrest, national security, or
disaster management scenario, where a dynamic situation evolves
and a decision-maker must decide on a course of action in
view of latest data. Since the situation changes, so is the best
course of action. The scenario offers two interesting constraints.
First, one should be able to successfully compute the course of
action within some appropriate time window, which we call the
decision deadline. Second, at the time the course of action is
computed, the data it is based on must be fresh (i.e., within
some corresponding validity interval). We call it the freshness
constraint. These constraints create an interesting novel problem
of timely data retrieval. We address this problem in resource-
scarce environments, where network resource limitations require
that data objects (e.g., pictures and other sensor measurements
pertinent to the decision) generally remain at the sources. Hence,
one must decide on (i) which objects to retrieve and (ii) in what
order, such that the cost of deciding on a valid course of action
is minimized while meeting data freshness and decision deadline
constraints. Such an algorithm is reported in this paper. The
algorithm is shown in simulation to reduce the cost of data
retrieval compared to a host of baselines that consider time or
resource constraints. It is applied in the context of minimizing
cost of finding unobstructed routes between specified locations
in a disaster zone by retrieving data on the health of individual
route segments.

I. INTRODUCTION

This paper addresses the problem of timely data retrieval in
resource-poor environments under data freshness constraints.
The problem is motivated by disaster response and tactical
mission scenarios, where network resources are severely lim-
ited. We assume that a decision maker must make decisions
on specific courses of action among multiple alternatives. Each
alternative requires that multiple conditions be satisfied for this
alternative to be a valid choice under the circumstances. Hence,
the decision maker must query sources and other sensors to
understand the current conditions and make each decision
accordingly. Had resources been sufficient, this would have
been trivial. However, in resource poor environment, retrieving
the requisite data to evaluate a condition takes time and
consumes some amount of resources (i.e., has cost). Moreover,
conditions change dynamically. Hence, if a decision takes too
long, conditions may change, calling for a re-evaluation of
the course of action, thereby further delaying the decision.
The problem addressed is one of making timely decisions at
minimum cost while satisfying freshness constraints of the
underlying data.

To give a concrete example, consider a disaster man-

agement scenario where an active threat is spreading, while
members of a rescue team must find their way to a set of
destinations that need help. The team leader must decide on a
valid route to each destination such that help can be sent along.
Making the wrong decision will cause back-tracking and delay,
which may jeopardize mission success. The set of alternative
routes to a given destination constitutes the set of alternative
courses of action that the corresponding decision must choose
from. For a given route to be valid, each segment on the route
must be obstruction-free. This creates multiple conditions (one
per segment) that must be jointly satisfied. However, the state
of various road segments is not always available or not always
fresh. Just because a segment was available an hour ago does
not mean it is available now. In a weather-related disaster,
a tree might fall across it, it might get flooded, or a major
accident might render it blocked. Hence, a sufficiently recent
condition for each segment must be retrieved. This requirement
gives rise to data freshness constraints. Different segments
might have different freshness requirements. For example, the
state of segments that are far enough from the threat might
change more slowly than that of segments in harm’s way.
Also, once a segment becomes unavailable, its state persists
for a duration that depends on the type of damage incurred.
Car accidents might clear in hours, but a collapsed building
may block a road for days. The rescue team in question may be
sharing scarce network resources with other teams. Hence, data
pertinent to the aforementioned decisions must be retrieved at
minimum cost.

The paper offers a general formulation to the above prob-
lem. An algorithm is developed that minimizes the cost of
decisions while reducing the chance of timeouts and ensuring
the freshness of data. The algorithms is shown in simulation
to outperform several baselines for data retrieval such as
retrieving the lowest cost object first.

The novelty of this work lies in exploiting the structure
of the decision to significantly reduce data retrieval cost.
There are two aspects to the exploited decision structure. First,
the decision considers alternative courses of action. Hence,
the algorithm has a degree of freedom in deciding which
alternative to evaluate first. For example, an alternative that is
more likely to be valid (and can be evaluated at a lower cost) is
a good start. Second, evaluating an alternative entails retrieval
and evaluation of multiple conditions that must all be satisfied
for the alternative to be deemed a valid course of action. The
algorithm again has a choice, deciding which condition to
evaluate first. In particular, evaluating the most risky condition
first (i.e., the one most likely not to be satisfied) might be better

2015 IEEE Real-Time Systems Symposium

1052-8725/15 $31.00 © 2015 IEEE

DOI 10.1109/RTSS.2015.25

185

2015 IEEE Real-Time Systems Symposium

1052-8725/15 $31.00 © 2015 IEEE

DOI 10.1109/RTSS.2015.25

185

2015 IEEE Real-Time Systems Symposium

1052-8725/15 $31.00 © 2015 IEEE

DOI 10.1109/RTSS.2015.25

185



in that it minimizes effort wasted on evaluating ultimately
invalid alternatives. The above considerations must be balanced
against freshness requirements. Specifically, retrieving data
objects with short freshness intervals first is a bad idea because
by the time all other pieces are retrieved, the freshness intervals
of these objects might expire, forcing repeat retrieval. Instead,
it is better to retrieve data objects with the longest freshness
interval first. The above insights give rise to an optimization
problem solved and evaluated in this paper, demonstrating
promising results.

The rest of this paper is organized as follows. We give over-
all problem description and system design in Section II, and
then present detailed analyses and algorithms in Section III. In
Section IV we describe our implementation of an end-to-end
route planning system. Evaluation of our proposed algorithms
and system is presented in Section V. We survey related work
in Section VI, and finally conclude in Section VII.

II. OVERVIEW

We aim to design a sensing system specifically tailored
for resource constrained dynamic environments, such as disas-
ter response and recovery. Under resource limitations (e.g.,
network bandwidth, node battery power, etc), data stays at
sources, not to needlessly use the network. Only upon explicit
requests do sensors take/share measurements of the environ-
ments and transmit back the sensory data or results. Under
such settings, retrieval of sensor data from sources needs to
be carried out with care such that the minimum amount of
resources is consumed.

Adding to the complexity of the problem, the environment
that is of interest is dynamic at different timescales. For
example, in a politically unstable region, every now and then
roads are taken up by protesters or rioters, preventing safe
passage. As the crowds move around, the traffic blockage
situation evolves with time; road information obtained that is
old may no longer reflect the actual states of the environment.
As another example, an earthquake and its aftershocks can
affect a region differently under different situations: If a
segment of a road gets blocked because it is flooded due
to damage to its sewage system, then perhaps in a day or
two it will get repaired and return to functional status. If a
bridge over a river collapses during the earthquake, then it
might take months before it can be repaired or an new one
constructed. Therefore, data retrieved from remote sources may
have very different freshness characteristics. In carrying out
sensing tasks to help with decision making, we need to take
into consideration such data freshness characteristics in order
to avoid reaching invalid or inconsistent decisions made from
partially stale sensor data.

The goal is then to fetch data from sources in a way
that minimizes system resource consumption while reaching
answers using data items all within their freshness intervals.
In general, a decision-maker’s information need is formed into
a query, which is then translated into requirements for a set
of relevant data objects. A retrieved object can be subjected
to a test that evaluates a condition on the object. For example,
an audio clip from an road acoustic sensor might be used to
determine if there is currently a convoy passing by; an image
of the inside of an emergency shelter can be inspected to
determine if the occupancy is reaching its limit. The goal of
the decision-maker is to find the best course of action. Each

�������	�
����� ��������
����

������������
������

����������

������
�������

���������	�
��

�����

��	
��
��
���	��

����
��������������
��
�����
��������

����
	����
�

�����
����	�
���
�����

��	�������
������	

��	�����
�	�

��
����

��������	����������

Fig. 1: System Design

possible course of action requires multiple conditions to be
evaluated to determine if this course of action is valid. It is
our objective to compute a good data retrieval plan that makes
efficient use of network resources to help choose the right
course of action from sufficiently fresh data.

We use network bandwidth consumption (i.e., the size in
bytes of the retrieved data) as the cost measure for supporting
the decision-making task. We do, however, want to point out
that the algorithms developed in our paper can be used on any
cost metric definition as long as it is additive. For example, in
a scenario where energy is the critical resource, we can easily
redefine the cost metric to optimize energy consumption.

Fig. 1 shows the architecture of our resource constrained
sensing system. Requests from decision makers upon arrival
are converted and encoded to boolean logic expressions, where
the alternative courses of action are represented by a disjunc-
tion (OR) of terms, whereas the conditions that need to be
satisfied for a course of action to be valid are represented by a
conjunction of variables (AND). A directory, called semantic
store is assumed to exist that knows which data source has
what information. Given the menu of available information
objects at different sources, a source selection module [1] is
used to select a suitable source to contact for each needed
object. A data retrieval planner then computes an optimal
retrieval order. The latter module is the focus of this paper.

III. PROBLEM DESCRIPTION & SOLUTION

In this section, we describe the sensing problem and discuss
the detailed algorithms we develop.

A. Problem Description
For ease of discussion, we introduce several key notations

first. In making a decision, let {ai} be the set of alternative
courses of action decided on, and {tij} the set of conditions for
a particular ai to be valid. Each condition tij has cost cij (e.g.
data retrieval bandwidth cost), latency lij (e.g. data retrieval
delay), probability of being satisfied pij , and freshness interval
dij , after which it needs to be reevaluated.

As previously discussed, for a decision maker a deci-
sion is made by choosing one among multiple courses of

186186186



action, each of which consists of multiple conditions that
must simultaneously hold. To evaluate a condition, some data
must be retrieved over the resource-poor network, and in
a timely fashion due to environment dynamics, as different
conditions have corresponding freshness intervals. At the time
the decision is made all underlying data must be fresh, which
means if the retrieval order was O = 〈ti1ti2 . . . tin〉 then the
freshness interval dij of any of the retrieved data item tij is
greater than the sum of the retrieval latencies of the data item
itself and all subsequent ones in the retrieval order:

dij >
n∑

s=j

lis .

Given this setting our goal is then to minimize expected
decision cost.

Sequential processing is generally more cost efficient than
its parallel counterpart, as it can minimize the probability of
unnecessary data fetches caused by parallel retrievals, which
can otherwise be avoided by evaluation short-circuiting in se-
quential processing. Therefore, towards the goal of minimizing
the total cost, we want to plan the evaluation of conditions
in a sequential fashion whenever plausible. However, this
might not always be possible, for example when data items
associated with an request all have rather short freshness
intervals and sequential processing would always lead to old
data items expiring before the whole request can be resolved.
In situations as such, we would need to make our solution
capable of adapting parallel processing s.t. the request can at
least be resolved in time, because otherwise talking about cost
optimization is of little value.

Furthermore, for the post-disaster scenarios we consider,
oftentimes a valid course of action does exist for the decision
making task—for example, when looking for a route for a
medical team to go from location A to B after an earthquake,
many or even most of the candidate routes might be blocked,
but some will be in reasonable condition—the focal point
here is that we want to find a positive resolution as soon as
possible with minimal resource consumption. Having said that,
we make the following observations. i) Making a choice among
multiple courses of action is accomplished by finding a single
valid one, and ii) Once we’ve started verifying the validity of a
particular course of action, there is no reason to turn to another
one before we are finished with the current one (i.e., verified
that either all its conditions hold or at least one fails) under
the goal of minimizing cost.

The above discussions serve as a guideline of how we go
about solving our problem at hand. In order to devise an actual
solution, we need to answer the following questions,

1) Among all courses of action, which one should we
examine first,

2) For verifying the validity of a particular course of action,
how should we plan the evaluation of its conditions, and

3) If sequential processing does not suffice, how should
we employ parallel processing to try to avoid causing
freshness interval violations.

Before diving into the detailed algorithm that answers the
above questions, we give a rough solution sketch here: We first
pick the course of action that has the highest valid probability
per unit (expected) cost. We then schedule its conditions in an

EDF-inspired sequential retrieval order. If verifying them all
in that order does not lead to freshness constraint violation,
we rearrage the order to try to decrease the expected cost;
otherwise, we increase the level of parallel retrievals in order
to try to avoid the freshness deadline violation. If this course
of action is valid, we are done; otherwise we move onto next
best course of action in the request.

B. Algorithms
As our ultimate goal is to minimize the excepted cost

of carrying out a sensing task, we first need to rank all the
alternatives (courses of action) according to their cost effec-
tivenesses, computed as the validity probability per unit cost.
This should feel natural as, for example, the more probable a
candidate route is in good condition and the lower the cost is
for verifying its condition, the sooner we should examine it
for a route finding task.

Prior work [2], [3] from the theory community have shown
that for a particular action ai, the most cost effective processing
order is then computed by always picking first the condition
with the highest probability of short-circuiting its siblings per
unit cost. If we use tiu �t tiv to denote that condition tiu
should precede tiv in the optimal order, we have

tiu �t tiv ⇔
1− piu
ciu

>
1− piv
civ

.

With the order 〈tio0 , tio1 , tio2 , . . .〉, we can compute ai’s ex-
pected cost as

ci = cio0 + pio0(cio1 + pio1(cio2 + pio2(. . .))),

and its validity probability as

pi =
∏

j

pij .

Therefore, the order of the courses of action is constructed as

ai �a aj ⇔ pi
ci

>
pj
cj

,

similar to the order of conditions, with the only difference of
the short-circuiting probability being the validity probability,
as opposed to the failure probability.

Having established the order 〈ao0, ao1, ao2, . . .〉, we can
then start processing the request by following that order. For a
particular action ai, we want to find out its validity status with
the least cost, but at the same time without violating any of its
component conditions’ freshness constraints. Thus we proceed
as follows. Inspired by EDF, we first order the ai’s conditions
according to their freshness intervals, latest first

tiu �d tiv ⇔ diu > div ,

which we call ai’s Latest Deadline First (LDF) order.

Theorem 1. If LDF order cannot avoid data freshness viola-
tion, no sequential order can.

Proof: We use proof by contradiction. For retrieving all
conditions for some action ai, let’s suppose its LDF order

O = 〈ti1ti2 . . . tin〉
causes data freshness constraint violation(s), i.e., for some
condition tif , its freshness interval is shorter than the sum

187187187



of the retrieval delays of itself and of all subsequent ones in
the LDF order,

dif <
n∑

k=f

lik . (1)

We assume, for contradiction, that there exists a different
(from LDF) sequential order O′ that causes no data freshness
constraint violations. So in O′, tif must not still be the front
of all elements of the set Sf = {tik |f ≤ k ≤ n}, which means
some other tis ∈ Sf must be the new front of Sf in order O′.
Since tis is behind tif in O, so we have

dis < dif . (2)

Chaining the Inequalities (1) and (2) together, we have

dis <

n∑

k=f

lik ,

which means that test tis will miss its freshness deadline in
O′. Contradiction reached.

Now, assuming we were to retrieve all tests’ data items
of this action by following the LDF order, we can check to
see if any freshness constraint violation would’ve occurred by
the end of the retrievals. If not, it means this course of action
can be checked by sequential processing, and we might be
able to further decrease its expected cost; otherwise, it cannot
be checked by sequentially retrieving its data items, and we
will need to add parallel processing in order to decrease the
total retrieval latency and make the action resolvable without
violating any data item’s freshness constraints. We next discuss
each of the two cases in detail.

Algorithm 1 When ai’s LDF order already satisfies freshness
constraints, rearrange the LDF order to minimize the resolution
cost
Input: Action ai’s conditions {tij}, the corresponding costs {cij},
retrieval latencies {lij}, probabilities of being true {pij}, and fresh-
ness intervals {dij}
Output: The retrieval order

1: Qc ← ∅, Qd ← LDF order

2: L← {tij} sorted in descending order of
1−pij
cij

3: while Qd �= ∅ do
4: for tl in L do
5: QH ← Qc + 〈tl〉+Qd \ 〈tl〉
6: if QH meets freshness constraints then
7: Qd ← Qd \ 〈tij 〉
8: Qc ← Qc + 〈tij 〉
9: break

10: end if
11: end for
12: end while
13: return Qc

1) Cost Minimization: If ai’s LDF retrieval order does not
violate any test tij ’s freshness constraint, we can possibly
rearrange it in order to decrease the expected resolution cost.
Note that if ai is valid (i.e. all its conditions are true), we
wouldn’t be able to decrease the cost, as all data items do
need to be retrieved for verifications. However, if it turns out
that ai actually is invalid (i.e., one or more of its conditions
are false), then we want to detect this failure with as little cost

as possible. Therefore, the rearrangement proceeds as follows:
We initialize Qd = LDF order and Qc = ∅. Then we compute
the order L for all of ai’s tests according to their per unit cost

failure probabilities
1−pij

cij
(in descending order). We then pick

L’s first condition tij /∈ Qc and check if the hypothetical order

Qc + 〈tij 〉+Qd \ 〈tij 〉
would violate any freshness constraint (where + denotes
concatenation). If not, we remove tij from the LDF order Qd

Qd = Qd \ 〈tij 〉,
and append it to the end of Qc

Qc = Qc + 〈tij 〉.
We terminate when Qd == ∅. This whole process essentially
tries to make failures appear as soon as possible (in the sense
that least amount of cost has been incurred) if there is a
failure, without violating any freshness deadline. The algorithm
pseudo-code is shown in Alg. 1.

The computational complexity is dominated by the nested
loops and the check for freshness constraint violations for each
test, of order O(n3) where n = |ai|.

Algorithm 2 When an action’s LDF order does not meet
freshness constraint, transform the LDF order to add parallel
retrievals in order to eliminate constraint violations
Input: Action ai’s conditions {tij}, the corresponding costs {cij},
retrieval latencies {lij}, probabilities of being true {pij}, and fresh-
ness intervals {dij}
Output: The retrieval order

1: Qd ← LDF order, Sp ← ∅
2: while |Qd| > 0 do
3: te ← end element of Qd

4: Qd ← Qd \ 〈te〉
5: Sp ← Sp ∪ {te}
6: if Qd + Sp meets freshness constraints then
7: return Qd + Sp

8: end if
9: end while

10: return NULL

2) Freshness Constraint Violation Avoidance: On the other
hand, if ai’s LDF retrieval order does violate some condition
tij ’s freshness constraint, then we want to add parallelism to
the sequential order to try to eliminate the violation. Keeping
the parallelism at the end is beneficial in terms of preventing
cost from unnecessary increase as any failed condition before
the end will still be able to short-circuit the paralleled one.
It is quite straightforward to carry out the transformation: We
prepare queue Qd = LDF order and set Sp = ∅. We take Qd’s
end condition tij and check if the order

Qd \ 〈tij 〉+ Sp ∪ {tij}
would violate any freshness deadline, where all data items in
the set are to be retrieved in parallel. If yes, we remove tij
from Qd

Qd = Qd \ 〈tij 〉,
and add it to Sp

Sp = Sp ∪ {tij},

188188188



and move on to the new end item in Qd and continue the
process; otherwise, we terminate the transformation as we have
successfully eliminated the freshness constraint violation. The
algorithm pseudo-code is shown in Alg. 2.

The computational complexity is dominated by the for-loop
and the check for freshness constraint violations, of the order
O(n2) where n = |ai|.

Algorithm 3 vLDF — Resolution algorithm for answering a
sensing request

Input: The courses of action {ai}, and each ai’s conditions {tij }, the

corresponding costs {cij }, retrieval latencies {lij }, and success probabilities

{pij }, and freshness interval {dij }
Output: Request resolution result

1: La ← {ai} sorted in descending order of
pi
ci

, #fail ← 0
2: for ai in La do
3: Qc ← ∅, Qd ← LDF order, Sp ← ∅
4: L← {tij } sorted in descending order of

1−pij
cij

5: while Qd �= ∅ do
6: for tl in L do
7: Td ← Qc +Qd’s degree of freshness violations
8: QH ← Qc + 〈tl〉+Qd \ 〈tl〉
9: TH ← QH ’s degree of freshness violations

10: if TH ≤ Td then
11: Qd ← Qd \ 〈tij 〉, Qc ← Qc + 〈tij 〉
12: break
13: end if
14: end for
15: end while
16: while |Qc| > 0 do
17: te ← end element of Qc

18: Qc ← Qc \ 〈te〉, Sp ← Sp ∪ {te}
19: if Qc + Sp meets freshness deadlines then
20: Proceed with resolving ai by following Qc + Sp

21: if ai succeeds then
22: return ai as an successful result
23: else
24: #fail ← #fail + 1
25: break
26: end if
27: end if
28: end while
29: end for
30: if #fail == |La| then
31: return request resolves to failure
32: else
33: signal freshness deadline violation unavoidable
34: end if

Finally, in designing a solution that handles both the cost
minimization and deadline violation avoidance, we combine
the above two techniques into an unified algorithm. The basic
idea is as follows: First we carry out cost-saving rearrangement
to the LDF order as much as possible, given that i) if there was
no freshness constraint violations before, we do not introduce
one now, and ii) if there were, we do not worsen the violation
degree (e.g., if there was a deadline miss by 3 minutes,
we cannot carry out order rearrangement that increases the
miss to 4 minutes). After the rearrangement, we carry out
parallel transformation at the end of the retrieval order just
as previously described. We collect all above discussions and
present the complete sensing algorithm in Alg. 3. We call our
algorithm Variational Latest Deadline First (vLDF).

Given our separate complexity analyses for Alg. 1 and 2, it
is easy to see that our unified algorithm Alg. 3 runs in O(mn3)
time, where m is the number of alternative courses of action
in the request, and n the number of conditions in an action.

IV. IMPLEMENTATION

In order to test our system in a realistic setting, we
implement a route planning system that targets post-disaster
scenarios, for disaster response teams. In our normal everyday
life, we can easily use Google Maps to compute routes
by specifying source and destination locations. But after a
natural disaster, routes returned by Google Maps or any other
traditional route planning service might not suffice as roads
might be blocked or damaged, and the entire environment is
dynamic, with various aspects changing over time (e.g., bridges
might collapse, roads might get flooded or blocked, people
might setup temporary camps and move around). Therefore,
verifications (e.g. visually via pictures taken of the roads) are
needed to make sure if a route is in reasonable condition for
vehicles to pass, and they need to be carried out in a timely
fashion s.t. results do not become stale as the environment
changes. The emergency networks set up by first responder
teams are likely of very low bandwidth, and are shared by
multiple response teams (e.g. infrastructure, medical, etc), thus
it is key no single request exhausts the network resource.

Our post-disaster route planing system consists of the
following components,

• Router: We use open-source router code Gosmore [4] to
compute routes on Open Street Map [5] data. We modify
the Gosmore code so that it computes, for specified source
and destination locations, any number of candidate routes
the user desires.

• Meta Store: A database that hosts the meta data (location,
time, size, etc) of pictures taken by remote camera phones.
Note that due to goal of minimizing network resource
consumption, photos themselves stay on the phones, and
only meta data are sent to the central semantic store. For
fast indexing and searching, we use ElasticSearch engine
[6], one of the most popular enterprise search engines, as
the back-end.

• Camera Pipeline: The subsystem that takes care of picture
taking and meta data extraction on the remote phones,
meta data transmission to the meta store, and sending
the actual images upon explicit requests. We use the
Medusa/MediaScope systems [7], [8] for this component.

• Source Selector: A road segment can potentially have
multiple pictures that can be retrieved for checking its
condition. In order to minimize the transmission cost, we
perform source selection computation [1] to reduce the
set of relevant pictures.

• Request Resolver: The component that uses our algo-
rithms discussed in Section. III as the underlying engine
to plan for optimal request resolution strategies.

• User Interface: A web interface where a user can specify
the source and destination locations (by either clicking
on the map, or using natural language, which would then
go through an NLP processor for location name extrac-
tion, and Google geocoding [9] for conversion to lat-
lon coordinates), provide human judgments to retrieved
images (by specifying if they reflect road segments being
in good or bad conditions), and see the final routing result.
AJAX is used to pass information between the client web
front-end and the server back-end algorithms for iterative
interactions and updates.

Upon receiving the source-destination input, the system

189189189



Fig. 2: Screenshot of the web front-end interface of our
implemented route planning system.

computes multiple (>10) candidate routes and extracts all the
unique road segments of all the routes. For each road segment,
a geo-polygon is computed and then used to query the semantic
store for matched meta data. The source selection module then
stripes the set of all relevant meta data down to a minimal-
cost set that still covers all the relevant road segments. With
this set of meta data, our algorithm computes the optimal
retrieval order, and iteratively carries out image retrieval and
order update according to user input to resolve the routing
request. A screenshot of the system finding a good route for
a user specified source-destination location pair is shown in
Fig. 2. The car icons indicate the locations where images have
been retrieved and approved by the user; the result route is
highlighted by the blue polyline on the map.

V. EVALUATION

We take two complementing approaches in evaluating our
proposed solutions. On one hand we design and carry out
extensive simulations that explore how various problem and
system aspects affect the behavior of our proposed algorithm.
On the other hand we specify concrete application scenarios
and demonstrate the effectiveness of our algorithm and system
through actual resolutions of route finding requests.

We compare our algorithm (vLDF) to the following three
baseline methods in the evaluation.

• Lowest Cost Source First (LCF) — Data retrievals follow
the request’s data items’ costs, in ascending order.

• Short-circuiting Benefit (SCB) — Data retrieval order is
computed according to the short-circuiting benefit (i.e.,
short-circuit probability per unit cost), as described by
Casanova et al. [3].

• Probability based Prediction (PbP) — We assign to each
test a predicted value based on its success probability
(i.e., v(tij ) = �pij

≥0.5). Then each action ai’s value is

computed according to its conditions’ predicted values:
v(ai) =

∏
j v(tij ). ai’s cost is then the sum of its

conditions’ costs if v(ai) == 1, and the smallest cost
of its 0-valued conditions otherwise. The actual retrieval
order is as follows, all 1-valued actions are ordered before
0-valued ones; actions of the same predicted value are
ordered according to their predicted costs (ascending); for
a 1-valued action, its conditions are ordered according
to their costs (ascending); for a 0-valued action, all its
0-valued conditions are placed before 1-valued ones,
and conditions of the same value are ordered according
to their costs (ascending). After the retrieval of each

data item, the request and the retrieval order is updated
according to the actual value newly fetched.

As none of the above baseline methods take into consider-
ation data freshness, so upon encountering data expiry, they
simply refetch the data if their respective updated retrieval
orders dictate so. We set each request to timeout when its
lapse has exceeded the sum of all its data items’ freshness
deadlines, as a way to prevent infinite expiry-refetch loops.

A. Algorithm Behaviors
We first introduce our simulation settings, and then go

through each of the set of experiments.

We experiment with the scenario involving data items of
2 different freshness deadline levels, tight and relaxed, and
set a ratio parameter (tights’ percentage, from 40% to 100%,
default at 70%) to vary the mixture of the 2 types of data
items. We experiment with different numbers of alternative
courses of action per request (from 4 to 10, default at 8),
and different numbers of conditions per action (from 4 to 10,
default at 6), indicating the complexity of each alternative for
the application requests. All data items’ sizes range from 2 MB
to 5 MB (default at 3450 KB)1. Due to our target post-disaster
setting, we experiment with limited network bandwidths from
3.5 KBps to 6.5 KBps (default at 5 KBps), simulating a
slow emergency network set up by first responder teams2.
Conditions’ average success probabilities range from 45% to
95% (default at 75%).

Regarding general network topologies, rather than com-
mitting to a particular structure, we use a single parameter α
to indicate the network’s common bottleneck ratios, which is
defined as follows: When performing concurrent retrieval of
multiple data items, the α portion of each item’s transmission
time will be spent in a bottleneck, where different data items
would queue up and transmit in sequential order; the 1 − α
portions, on the other hand, proceed in parallel, thus the total
delay incurred by those portions are just the maximum among
all data items being concurrently fetched. We experiment with
α ranging from 0 to 100% (default to 50%). In terms of
each data item’s individual transmission delay, because of the
fluctuations caused by various internal and external factors,
predicted transmission delay will never be perfectly accurate.
Thus for simulating the actual transmission delay in a noisy
network, we add a Gaussian noise to the predicted value, with
the mean ranging between ±3 minutes (default at 0-mean) and
standard deviation 0 to 6 minutes (default at 1).

We carry out our simulation experiments by tuning one
parameter at a time and fixing all the rest to their default values.
We use two metrics for performance measures:

• Request Resolution Ratio — The percentage of the num-
ber of resolved requests over the total number of requests
attempted (1000 randomly generated for each parameter
setting). The higher the resolution ratio is, the better.

• Retrieval Cost Ratio — The percentage of the total cost
of all retrieved data items over the total cost of all relevant
data items, averaged over all resolved requests from the
1000 runs. The lower the cost ratio is, the better.

1These sizes roughly correspond to image sizes of today’s mobile phones.
2These bandwidths roughly correspond to that of military ad-hoc commu-

nication networks under similar settings.

190190190



4 5 6 7 8 9 10
0

20

40

60

80

100

Number of Courses of Action

R
eq

ue
st

 R
es

ol
ut

io
n 

R
at

e 
(%

)

 

 

vLDF
 SCB
 PbP
 LCF

(a) Request resolution ratio

4 5 6 7 8 9 10
0

50

100

150

Number of Courses of Action

R
et

ri
ev

al
 C

os
t 

R
at

io
 (

%
)

 

 

vLDF
 SCB
 PbP
 LCF

(b) Retrieval cost ratio
Fig. 3: # Courses of action per request

4 5 6 7 8 9 10
0

20

40

60

80

100

Number of Conditions per Action

R
eq

ue
st

 R
es

ol
ut

io
n 

R
at

e 
(%

)

 

 

vLDF
 SCB
 PbP
 LCF

(a) Request resolution ratio

4 5 6 7 8 9 10
0

50

100

150

200

Number of Conditions per Action
R

et
ri

ev
al

 C
os

t 
R

at
io

 (
%

)
 

 

vLDF
 SCB
 PbP
 LCF

(b) Retrieval cost ratio
Fig. 4: # Conditions per action

40 50 60 70 80 90 100
0

20

40

60

80

100

Ratio of Fast−Changing Data Items (%)

R
eq

ue
st

 R
es

ol
ut

io
n 

R
at

e 
(%

)

 

 

vLDF
 SCB
 PbP
 LCF

(a) Request resolution ratio

40 50 60 70 80 90 100
0

50

100

150

Ratio of Fast−Changing Data Items (%)

R
et

ri
ev

al
 C

os
t 

R
at

io
 (

%
)

 

 

vLDF
 SCB
 PbP
 LCF

(b) Retrieval cost ratio
Fig. 5: Fast-changing data portion

We first look at how the number of courses of action within
a request affects data retrieval algorithms’ behaviors. This in
practice corresponds to the number of different alternatives
an application request can be satisfied. Take the post-disaster
route planning scenario as an example, we can easily draw
parallels between actions ⇔ routes, and conditions ⇔ road
segments. We experiment with 4 to 10 actions per request, and
show results in Fig. 3. As seen in Fig. 3a our vLDF scheme
achieves the highest request resolution ratios compared to the
baseline methods. The SCB (short-circuiting benefit) and PbP
(probability based prediction) show very similar performance
(which is the case through all simulation experiments), while
the simplest LCF (least cost first) scheme achieves the worst
performance (which also is the case through all simulation ex-
periments). This general performance comparison is reasonable
because our vLDF scheme considers success probability, cost,
and freshness deadlines; SCB and PbP both fail to take into
consideration the freshness deadlines; and LCF only looks at
the costs. We see that LCF’s retrieval cost ratios are normally
beyond 100%; this is because it needs to deal with data items’
expiries and carry out refetches, thus greatly increasing the
network resource consumption. We also observe the trend of
more courses of action lead to lower retrieval cost ratios, as
more actions can get short-circuited by a succeeding one.

We next look at how the number of conditions per action
(which can be a measure of the complexity of each request’s
resolution alternative is) affects performance of the various
schemes. Results are shown in Fig. 4. As seen, having more
conditions to check for each resolution alternative makes it
harder for all schemes to resolves requests, evidenced by the
declining resolution rates. But our vLDF scheme shows the
slowest dipping trend. On the other hand, for the requests
vLDF is able to resolve, the retrieval cost ratio is not affected
much, compared the the other methods who clearly need to
consume more network bandwidth for their query resolutions.

As previously discussed, we have conditions generally
belonging to two different categories, namely slow changing
and fast changing. Therefore, we also experiment with how the
mixture ratio of the two categories affects the behaviors of all
the approaches. The results are shown in Fig. 5. As seen, as the
proportion of fast-changing data items increases, all schemes

gradually show degraded performance, as it is generally harder
to resolve requests in time without data freshness violation
when we have to deal with more objects that intrinsically
changes states fast.

Since our vLDF algorithm, as well as the PbP and SCB
baselines, exploits conditions’ logic relations, it would be
interesting to see how the performance of each of the scheme is
affected by different success probability settings. For sensing
tasks, we can think of these probabilities as representing a
measure of how good of a prior knowledge we already have
of the target environment: good and clear knowledge (e.g.,
probabilities close to 100% certainty) would lead to algorithms
more often making the correct guesses and picking the more
optimal data items to retrieve to short-circuit other data items;
on the other hand if the prior knowledge is ambiguous (e.g.,
probabilities close to 50%), algorithms will make more wrong
guesses. Our simulation results are shown in Fig. 6. The trend
of change is rather subtle, but is still visible: generally the
closer all conditions’ success probabilities are to certainty
(i.e., 100%), the higher percentage of requests that can be
resolved. This is because as the success probabilities become
more certain, all schemes (except for LCF) make the right
guesses more frequently, and thus resolve the requests more
efficiently. For the case of LCF, the slight increasing resolution
ratio comes from the fact that higher certainty (for success)
leads to sooner valid course of action being found. Given the
above discussion on request resolution ratio, the retrieval cost
ratio results shown in Fig. 6b should be clear as well.

Next up, we experiment with varying requests’ data item
sizes as well as the network bandwidth, and examine how
the various schemes’ performance changes. Results are shown
in Fig. 7 and 8. As can be seen, the two sets of Figures
appear to be mirror images of each other. This makes sense
as both of them directly influence the retrieval delays during
request resolutions; and the retrieval delays directly affect
the various schemes’ behaviors. Increasing data item sizes
therefore has a similar effect as decreasing network bandwidth.
Let’s focus our attention on the network bandwidth experiment
result as shown in Fig. 8: Higher transmission speed lead
to more requests being resolved and at the same time less
network resource consumed. With more resource available on

191191191



50 60 70 80 90
0

20

40

60

80

100

Average Condition Success Probability (%)

R
eq

ue
st

 R
es

ol
ut

io
n 

R
at

e 
(%

)

 

 

vLDF
 SCB
 PbP
 LCF

(a) Request resolution ratio

50 60 70 80 90
0

50

100

150

Average Condition Success Probability (%)

R
et

ri
ev

al
 C

os
t 

R
at

io
 (

%
)

 

 

vLDF
 SCB
 PbP
 LCF

(b) Retrieval cost ratio
Fig. 6: Prob. of conditions being true

2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

100

Average Data Item Size (KB)

R
eq

ue
st

 R
es

ol
ut

io
n 

R
at

e 
(%

)

 

 

vLDF
 SCB
 PbP
 LCF

(a) Request resolution ratio

2000 2500 3000 3500 4000 4500 5000
0

50

100

150

Average Data Item Size (KB)

R
et

ri
ev

al
 C

os
t 

R
at

io
 (

%
)

 

 

vLDF
 SCB
 PbP
 LCF

(b) Retrieval cost ratio
Fig. 7: Average data size

3.5 4 4.5 5 5.5 6 6.5
0

20

40

60

80

100

Network Bandwidth (KBps)

R
eq

ue
st

 R
es

ol
ut

io
n 

R
at

e 
(%

)

 

 

vLDF
 SCB
 PbP
 LCF

(a) Request resolution ratio

3.5 4 4.5 5 5.5 6 6.5
0

50

100

150

Network Bandwidth (KBps)

R
et

ri
ev

al
 C

os
t 

R
at

io
 (

%
)

 

 

vLDF
 SCB
 PbP
 LCF

(b) Retrieval cost ratio
Fig. 8: Network bandwidth

the network, requests tend to get resolved faster with less
freshness violations. Thus the retrieval cost ratios generally
decreases for all schemes, except for the LCF approach, which
shows fluctuating (but still all poor) performance.

For the general network topology, we use the parameter
α to indicate the level of shared bottleneck in the network,
as also previously discussed when we introduce experiment
settings. Basically, a higher α value indicates an more severe
bottleneck shared by all nodes within the network; parallel data
retrievals from nodes will be queued up to become sequential
processing more severely. Results are shown in Fig. 9. Since all
three baseline methods have no way of incorporating parallel
retrievals, changing α value has no obvious effect on them.
For our scheme vLDF on the other hand, a trend of decreasing
proportion of requests being resolved can be observed as the
level of shared network bottleneck increases. But even then,
we still see a clear advantage margin of our algorithm over
any other baseline methods. We can also see a slight hint of
increase in the network resource consumption of our algorithm
from Fig. 9b.

Lastly, we look at how network fluctuations (as represented
by Gaussian noise added onto estimated transmission delays)
affect the performance of the various algorithms. This set
of experiments are interesting because network transmission
delays need to be estimated through the running of our vLDF
algorithm: If the actual transmission takes longer to finish than
what’s estimated, we expect performance degradation; on the
other hand if the transmission finishes sooner than expected,
then data retrieval plan computed by vLDF would have been
too conservative, in the sense that too much caution would have
been taken to prevent freshness deadline violations, and cost
minimization could have been carried out more aggressively.
These intuitions are confirmed by results shown in Fig. 10:
the advantage margin of vLDF over SCB and PbP are at its
largest when the mean of the network fluctuation is at 0, and
shrinks if the mean moves to both the negative and positive
directions. The general trend that underestimating transmission
time (positive fluctuation mean) leads to poorer performance
is understandable, as longer actual transmission time will lead
to more data freshness violations and thus potentially more
request resolution timeouts and more data refetches.

In addition to the mean, we also experiment with various
levels of network fluctuation standard deviations. Results are
shown in Fig. 11. We can observe for our vLDF algorithm that,
as the standard deviation increases, the proportion of requests
that can get resolved decreases and the retrieval cost ratio
slightly increases. These are reasonable because of the higher
level of unexpectedness of the network transmission delays
caused by the larger standard deviations. All other baseline
methods do not show clear trend of changes, because the mean
of the fluctuation is set at 0 for this set of experiments, thus
positive and negative effects tend to cancel out over time.

B. Route Finding Application
After rather abstract simulation experiments, we now look

at a few concrete instances of the route planning application
running using our implemented system. As it is difficult to
find actual post-disaster scenarios to test our systems in, we
take the following steps as a way to emulate the disaster
settings: We imagine a chaotic environment in the Urbana-
Champaign IL region. We crawl Google Maps Street View im-
ages, and Instagram’s Urbana-Champaign traffic accidents and
road blocks images (all geotagged). We insert all image meta
data to the meta store, and use the Emane/Shim [10] network
simulator to intercept all image requests (where link bandwidth
is set at 5KBps). Each image’s probability of showing a road
segment of being in good condition is set to be reversely
proportional to the road segment’s speed limit (accidents tend
to happen on high speed roads rather than residential roads).
Freshness intervals are also set reversely proportional to speed
limit, as whatever abnormalities on higher speed roads tend to
get cleared more quickly. We experiment with two different
underlying data retrieval algorithms: our vLDF, and the PbP
baseline. The end to end query resolution image retrieval cost
and latency comparisons are shown in Table I. As seen, vLDF
consistently over-performs the baseline. Fig. 12 shows the
actual route finding results from a particular run. The PbP
scheme tests Route I and II first before testing Route III, where
our algorithm vLDF selects Route III to check first.

VI. RELATED WORK

The recent proliferation of increasingly capable and af-
fordable sensing devices has given rise to a broad spectrum

192192192



0 20 40 60 80 100
0

20

40

60

80

100

Network Common Bottleneck Ratio (%)

R
eq

ue
st

 R
es

ol
ut

io
n 

R
at

e 
(%

)

 

 

vLDF
 SCB
 PbP
 LCF

(a) Request resolution ratio

0 20 40 60 80 100
0

50

100

150

200

Network Common Bottleneck Ratio (%)

R
et

ri
ev

al
 C

os
t 

R
at

io
 (

%
)

 

 

vLDF
 SCB
 PbP
 LCF

(b) Retrieval cost ratio
Fig. 9: Network common bottleneck ratio

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Network Transmission Delay Fluctuation − Mean

R
eq

ue
st

 R
es

ol
ut

io
n 

R
at

e 
(%

)

 

 

vLDF
 SCB
 PbP
 LCF

(a) Request resolution ratio

−3 −2 −1 0 1 2 3
0

50

100

150

Network Transmission Delay Fluctuation − Mean

R
et

ri
ev

al
 C

os
t 

R
at

io
 (

%
)

 

 

vLDF
 SCB
 PbP
 LCF

(b) Retrieval cost ratio
Fig. 10: Network delay noise mean

0 1 2 3 4 5 6
0

20

40

60

80

100

Network Transmission Delay Fluctuation − Std

R
eq

ue
st

 R
es

ol
ut

io
n 

R
at

e 
(%

)

 

 

vLDF
 SCB
 PbP
 LCF

(a) Request resolution ratio

0 1 2 3 4 5 6
0

50

100

150

Network Transmission Delay Fluctuation − Std

R
et

ri
ev

al
 C

os
t 

R
at

io
 (

%
)

 

 

vLDF
 SCB
 PbP
 LCF

(b) Retrieval cost ratio
Fig. 11: Network delay noise variance

Route I

Route II

Route III

Fig. 12: Screenshot of the web front-end interface of our
implemented route planning system as used to perform route

planning task between a specified source-destination location pair

vLDF Cost (KB) PbP Cost (KB) vLDF Time (s) PbP Time (s)

516 685 164 255

343 598 150 206

319 485 160 248

506 1093 165 372

524 1042 175 206

TABLE I: Results from 5 runs route planning

of sensing systems [11]–[18]. For example, BikeNet [11] is
a sensor network for bikers to share data and map regions.
CarTel [12] is a mobile sensing system for automobiles, where
data can be collected, processed, and visualized. Coric et
al. [13] design a crowdsensing system that helps to identify
legal parking spaces. MaWi [14] is an indoor localization
system with improved accuracy. Hu et al. [17] design and
implement the SmartRoad system that takes advantage of
vehicular sensing data to automatically detect and recognize
traffic lights and stop signs. Given the richness of distributed
sensing systems, various techniques [19]–[24] have been pro-
posed for data clean-up and fact-finding.

A major challenge in the design of distributed sensing sys-
tems stem from the constraint of system resources. Significant
studies have thus been conducted to tackle this problem. For
example, Breadcrumb [25] is an automatic and reliable sensor
network for the firefighting situations. In the SensorFly [26]
project, low cost mobile sensing devices are utilized to build
an indoor emergency response system. PhotoNet [27] provides
a post-disaster picture collection and delivery service for

situation awareness purpose. The sensing system proposed in
this paper complements prior work by exploring the logic
relations among sensory data to improve the communication
efficiency of the system.

The problem of communication efficiency has also been
studied in some existing work. For example, time-series pre-
diction techniques are used to reduce communication burden
without compromising user-specified accuracy requirements in
wireless sensor networks [28]. Regression models are used
to estimate predictability and redundancy relationships among
sensors for efficient sensor retrievals [29]. MediaScope [8]
is a mobile sensing system with various algorithms designed
to help with timely retrievals of remote media contents (e.g.
photos on participants’ phones) upon requests of multiple
types (nearest-neighbor, spanners, etc). Gu et al. [30] design
inference-based algorithms for data extrapolation for disaster
response applications. Minerva [31] and Information Fun-
nel [32] explore data prioritization techniques based on re-
dundancy or similarity measures for information maximization.
Data aggregation techniques are also studied to reduce network
transmission and improve classification tasks’ accuracies [33]–
[35]. Different from the above work, our system is designed
to deal with the sensing scenarios where data items bear not
only logic relations but also freshness deadlines.

The optimization of boolean predicate evaluation, as a
theory problem, has been studied extensively. Greiner et al. [2]
analyze and give theoretical results for the various subspaces
of the general PAOTR (probabilistic and-or tree resolution)
problem. Luby et al. [36] propose a set of tools for analyzing
the probability an and-or tree evaluates to true. Casanova et
al. [3] give various heuristic-based algorithms for the general
NP-hard PAOTR problem and show performance compar-
isons. While borrowing some ideas from the above theoretical
studies, our work also goes beyond them to consider much
more practical problem settings including concurrent requests,
deadline constraints, and the existence of partial retrieval sets.

Similar to this paper, some recent work, such as Car-
log [37], ACE [38], and Hu et al. [39], also studied the opti-
mization techniques for query request. Specifically, Carlog ex-
plores latency optimization for vehicular sensing applications,
ACE aims at energy efficiency for continuous mobile sensing

193193193



applications, and and Hu et al. focus on cost optimization
under query-specific deadline constraints. However, none of
them takes into consideration the deadlines of data items which
are of practical importance in many sensing applications. In
contrast, in this paper we proposed a generalized framework
that leverages the logic relations among sensors to optimize the
utilization of system resources under the deadline constraints
of both query and sensory data. Bearing these advantageous
properties, the proposed system can be applied to the full
spectrum of application domains.

VII. CONCLUSIONS

In this paper we target resource constrained dynamic
environments (e.g. post disaster) and develop data retrieval
algorithms for crowd-sensing applications. By incorporating
classic results from the real-time community, and at the
same time exploiting logical dependencies among data items,
our algorithms offer considerable reduction in the underlying
network bandwidth consumption, while at the same time
respecting the timeliness requirement under the environment
dynamics. Results from extensive simulations show that our
algorithms outperform several baselines by significant margins.
We also implement a post-disaster route finding system and
demonstrate the advantage of our algorithms through realistic
application scenarios.

ACKNOWLEDGMENT

Research reported in this paper was sponsored by the Army
Research Laboratory and was accomplished under Cooperative
Agreement W911NF-09-2-0053, DTRA grant HDTRA1-10-1-
0120, and NSF grants NSF CNS 13-29886, NSF CNS 13-
45266, and NSF CNS 13-20209. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] A. Bar-Noy, M. P. Johnson, N. Naghibolhosseini, D. Rawitz, and
S. Shamoun, “The price of incorrectly aggregating coverage values in
sensor selection,” in DCoSS, 2015.

[2] R. Greiner, R. Hayward, M. Jankowska, and M. Molloy, “Finding
optimal satisficing strategies for and-or trees,” Artificial Intelligence,
vol. 170, no. 1, pp. 19–58, 2006.

[3] H. Casanova, L. Lim, Y. Robert, F. Vivien, and D. Zaidouni, “Cost-
optimal execution of boolean query trees with shared streams,” in
IPDPS, 2014.

[4] Gosmore, “http://wiki.openstreetmap.org/wiki/Gosmore,” 2015.
[5] OpenStreetMap, “http://www.openstreetmap.org,” 2015.
[6] ElasticSearch, “https://www.elastic.co,” 2015.
[7] M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan, “Medusa: A

programming framework for crowd-sensing applications,” in MobiSys,
2012.

[8] Y. Jiang, X. Xu, P. Terlecky, T. Abdelzaher, A. Bar-Noy, and R. Govin-
dan, “Mediascope: Selective on-demand media retrieval from mobile
devices,” in IPSN, 2013.

[9] Google Maps Geocoding API, “https://developers.google.com/maps/
documentation/geocoding/,” 2015.

[10] W. Dron, A. Leung, J. Hancock, M. Aguirre, Thapa, and R. Walsh,
“Core shim design document,” in NS-CTA Technical Report, 2014.

[11] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn,
and A. T. Campbell, “Bikenet: A mobile sensing system for cyclist
experience mapping,” TOSN, vol. 6, no. 1, p. 6, 2009.

[12] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu,
E. Shih, H. Balakrishnan, and S. Madden, “Cartel: A distributed mobile
sensor computing system,” in SenSys, 2006.

[13] V. Coric and M. Gruteser, “Crowdsensing maps of on-street parking
spaces,” in IEEE DCOSS, 2013.

[14] C. Zhang, J. Luo, and J. Wu, “A dual-sensor enabled indoor localization
system with crowdsensing spot survey,” in IEEE DCOSS, 2014.

[15] S. Hu, L. Su, H. Liu, H. Wang, and T. F. Abdelzaher, “Smartroad: a
crowd-sourced traffic regulator detection and identification system,” in
IPSN, 2013.

[16] S. Hu, H. Liu, L. Su, H. Wang, T. F. Abdelzaher, P. Hui, W. Zheng,
Z. Xie, J. Stankovic et al., “Towards automatic phone-to-phone com-
munication for vehicular networking applications,” in INFOCOM, 2014
Proceedings IEEE. IEEE, 2014, pp. 1752–1760.

[17] S. Hu, L. Su, H. Liu, H. Wang, and T. F. Abdelzaher, “Smartroad:
Smartphone-based crowd sensing for traffic regulator detection and
identification,” ACM Transactions on Sensor Networks (TOSN), vol. 11,
no. 4, pp. 55:1–55:27, Jul. 2015.

[18] S. Hu, L. Su, S. Li, S. Wang, C. Pan, S. Gu, T. Amin, H. Liu, S. Nath,
R. R. Choudhury, and T. Abdelzaher, “Experiences with enav: A low-
power vehicular navigation system,” in UbiComp. ACM, 2015.

[19] D. Wang, L. Kaplan, H. Le, and T. Abdelzaher, “On truth discovery in
social sensing: A maximum likelihood estimation approach,” in IPSN,
2012.

[20] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han, “Resolving conflicts in
heterogeneous data by truth discovery and source reliability estimation,”
in SIGMOD, 2014.

[21] S. Wang, D. Wang, L. Su, L. Kaplan, and T. F. Abdelzaher, “Towards
cyber-physical systems in social spaces: The data reliability challenge,”
in RTSS. IEEE, 2014, pp. 74–85.

[22] C. Meng, W. Jiang, Y. Li, J. Gao, L. Su, H. Ding, and Y. Cheng, “Truth
discovery on crowd sensing of correlated entities,” in SenSys, 2015.

[23] C. Miao, W. Jiang, L. Su, Y. Li, S. Guo, Z. Qin, H. Xiao, J. Gao, and
K. Ren, “Cloud-enabled privacy-preserving truth discovery in crowd
sensing systems,” in SenSys, 2015.

[24] S. Wang, L. Su, S. Li, S. Hu, T. Amin, H. Wang, S. Yao, L. Kaplan, and
T. Abdelzaher, “Scalable social sensing of interdependent phenomena,”
in IPSN, 2015.

[25] H. Liu, J. Li, Z. Xie, S. Lin, K. Whitehouse, J. A. Stankovic, and
D. Siu, “Automatic and robust breadcrumb system deployment for
indoor firefighter applications,” in MobiSys, 2010.

[26] A. Purohit, Z. Sun, F. Mokaya, and P. Zhang, “Sensorfly: Controlled-
mobile sensing platform for indoor emergency response applications,”
in IPSN, 2011.

[27] M. Y. S. Uddin, H. Wang, F. Saremi, G.-J. Qi, T. Abdelzaher, and
T. Huang, “Photonet: a similarity-aware picture delivery service for
situation awareness,” in RTSS, 2011.

[28] Y.-A. L. Borgne, S. Santini, and G. Bontempi, “Adaptive model se-
lection for time series prediction in wireless sensor networks,” Signal
Processing, vol. 87, no. 12, pp. 3010 – 3020, 2007.

[29] C. C. Aggarwal, A. Bar-Noy, and S. Shamoun, “On sensor selection in
linked information networks,” in DCoSS, 2011.

[30] S. Gu, C. Pan, H. Liu, S. Li, S. Hu, L. Su, S. Wang, D. Wang, T. Amin,
R. Govindan et al., “Data extrapolation in social sensing for disaster
response,” in DCoSS, 2014.

[31] S. Wang, S. Hu, S. Li, H. Liu, M. Y. S. Uddin, and T. Abdelzaher,
“Minerva: Information-centric programming for social sensing,” in
ICCCN, 2013.

[32] S. Wang, T. Abdelzaher, S. Gajendran, A. Herga, S. Kulkarni, S. Li,
H. Liu, C. Suresh, A. Sreenath, H. Wang et al., “The information funnel:
Exploiting named data for information-maximizing data collection,” in
DCoSS, 2014.

[33] L. Su, J. Gao, Y. Yang, T. F. Abdelzaher, B. Ding, and J. Han,
“Hierarchical aggregate classification with limited supervision for data
reduction in wireless sensor networks,” in SenSys, 2011.

[34] L. Su, S. Hu, S. Li, F. Liang, J. Gao, T. F. Abdelzaher, and J. Han,
“Quality of information based data selection and transmission in wire-
less sensor networks.” in RTSS, 2012, pp. 327–338.

[35] L. Su, Q. Li, S. Hu, S. Wang, J. Gao, H. Liu, T. F. Abdelzaher, J. Han,
X. Liu, Y. Gao et al., “Generalized decision aggregation in distributed
sensing systems,” in RTSS, 2014.

[36] M. G. Luby, M. Mitzenmacher, and M. A. Shokrollahi, “Analysis of
random processes via and-or tree evaluation,” in SODA, 1998.

[37] Y. Jiang, H. Qiu, M. McCartney, W. G. J. Halfond, F. Bai, D. Grimm,
and R. Govindan, “Carlog: A platform for flexible and efficient auto-
motive sensing,” in SenSys, 2014.

[38] S. Nath, “Ace: Exploiting correlation for energy-efficient and continuous
context sensing,” in MobiSys, 2012.

[39] S. Hu, S. Li, S. Yao, L. Su, R. Govindan, R. Hobbs, and T. Abdelza-
her, “On exploiting logical dependencies for minimizing additive cost
metrics in resource-limited crowdsensing,” in DCoSS, 2015.

194194194


