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Abstract—This paper complements the large body of social
sensing literature by developing means for augmenting sens-
ing data with inference results that “fill-in” missing pieces.
Unlike trend-extrapolation methods, we focus on prediction in
disaster scenarios where disruptive trend changes occur. A set
of prediction heuristics (and a standard trend extrapolation
algorithm) are compared that use either predominantly-spatial
or predominantly-temporal correlations for data extrapolation
purposes. The evaluation shows that none of them do well
consistently. This is because monitored system state, in the
aftermath of disasters, alternates between periods of relative
calm and periods of disruptive change (e.g., aftershocks). A good
prediction algorithm, therefore, needs to intelligently combine
time-based data extrapolation during periods of calm, and spatial
data extrapolation during periods of change. The paper develops
such an algorithm. The algorithm is tested using data collected
during the New York City crisis in the aftermath of Hurricane
Sandy in November 2012. Results show that consistently good
predictions are achieved. The work is unique in addressing the
bi-modal nature of damage propagation in complex systems
subjected to stress, and offers a simple solution to the problem.

I. INTRODUCTION

This paper addresses the problem of data extrapolation in
participatory sensing applications, in the face of disruptive pat-
tern changes, such as those that occur during natural disasters.
We consider cases where resource limitations or accessibility
constraints prevent attainment of full real-time coverage of the
measured data space, hence calling for data extrapolation.

Many participatory sensing applications were investigated
in recent years [1]–[6]. In participatory sensing, sources
measure application-related state at locations of interest then
usually report it at a later time (e.g., when they encounter
a WiFi access point a few hours later). Hence, at any given
time, the latest state of some points of interest may be
unknown. Incomplete real-time coverage may also arise due
to scarcity of sensing resources. For example, volunteers in a
disaster-response application may survey and report locations
of damage. If there are fewer volunteers than damage locations,
the state of some of these locations will not be immediately
reported. In such scenarios, one question is: can we infer the
missing data?

Many time-series data extrapolation approaches are based
on the assumption that past trends are predictive of future
values. These approaches do not do well when disruptive
changes occur. For example, a history of no traffic congestion
on main highways of some city does not offer a good traffic

predictor if a natural disaster causes a mass evacuation. An
alternative recourse is to consider only spatial correlations. For
example, certain city streets tend to get flooded together after
heavy rain (e.g., because they are at the same low elevation),
and certain blocks tend to run out of power together after a
thunderstorm (e.g., because they share the same power lines).
Understanding such correlations can thus help infer state at
some locations from state at others when disruptive changes
(such as a flood or a power outage) occur.

In this paper, we show that system state in post-disaster
scenarios alternates between periods of calm (when the past is
a good predictor of the future) and periods of sudden change,
as new parts of the infrastructure are damaged (e.g., due to
aftershocks) or repaired. Hence, data extrapolation algorithms
that rely predominantly on spatial correlations or predomi-
nantly on temporal correlations tend not to work consistently
well, as the relative importance weights of temporal versus
spatial correlations change significantly between periods of
calm and periods of change. Instead, we show that such
algorithms must switch intelligently between two extrapolation
modes with different emphasis on temporal versus spatial
correlations.

Of special interest is the case where correlations needed
for extrapolation are themselves not known in advance, but
are rather learned on the fly. The need for joint learning
and extrapolation distinguishes this paper from some existing
work [7]–[9] that predicts missing sensor values assuming a
previously known correlation structure between sensors, or a
known temporal pattern.

We apply the results to an example case study of a New
York City crisis in the aftermath of Hurricane Sandy. Many
gas stations, pharmacies, and grocery stores around New York
City were closed after the hurricane, resulting in severe supply
shortage that lasted several days. The outages were correlated,
since different stores shared suppliers or power. Our study
shows the degree to which extrapolation could infer gas, food,
and medical supply availability during the crisis in the absence
of complete and fresh information.

The remainder of this paper is organized as follows. We
present the general system design and illustrate prediction
challenges in Section II. A new algorithm that addresses
these challenges via appropriate switching between spatial
and temporal extrapolation is presented in Section III. An
evaluation is presented in Section IV. Section V reviews related
work. We conclude the paper in Section VI.
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II. SYSTEM MODEL

We consider a model of participatory sensing applications
in which the reported state is binary. It is desired to obtain
the state of several points of interest (PoIs). A central collec-
tion node (e.g., the command center) collects the state from
participants who make observations and report them later.

The time when participants report their observations may
vary. Measurements that are older than some threshold, are
deemed stale. Hence, at any given time, there may be “blind
points” in the PoI map generated by participants, where fresh
information is not available. The challenge is to infer the
missing state automatically and accurately.

The main contribution of this work lies in addressing the
extrapolation problem in scenarios consistent with disaster
response. Two main challenges characterize those scenarios:

• Disruptive change: By definition, disasters are unique dis-
ruptive events that invalidate normal data trends, making
prediction based on historical (time-series) trends largely
incorrect.

• Scarcity of training data: Since disasters are rare and
generally unique, there is very little training data that one
can rely on. To understand the worst case, we restrict the
prediction algorithm to use only training data available
from the current disaster itself. This scarcity of data
severely limits the complexity of prediction models that
can be used.

We consider applications where today’s information mat-
ters the most and people prefer undertaking some actions based
on best-effort guessing to obtaining exact data at a certain
delay. For example, in the case of finding gas stations around
New York City that are operational after hurricane Sandy, if
one needed to fill up their car now, yesterday’s gas availability
would be of less use. The challenge is therefore to infer the
current missing PoI state.

We assume that old (and hence potentially stale) informa-
tion on PoI state is available. For example, in disaster response
scenarios, volunteers might physically report back to the
command center daily, which makes yesterday’s information
available at the center. We call the maximum reporting latency,
a cycle. Hence, by definition, the backend server knows the
state of all PoI sites in previous cycles, but has only partial
information in the current cycle. This assumption simplifies
our algorithmic treatment. It can easily be relaxed allowing for
information gaps in previous cycles as well, since such gaps
can always be filled in using the same extrapolation algorithm,
applied to past state.

A. Problem Statement and Solution Challenges

More formally, our participatory sensing system can be
characterized by a weighted graph G = (V,E), |V | = n,
|E| = m, where the node set V represents the n PoIs. We
assume that set V is known and remains unchanged. The link
set E represents the correlations among PoIs.

One way to compute links E, is to apply the Kendall’s
Tau statistical method [10] to estimate correlations. More con-
cretely, assume two PoIs, x and y, have data (x1, x2, · · · , xn)
and (y1, y2, · · · , yn). The Kendall’s Tau correlation coefficient,
denoted by KT (x, y), can be represented as:

KT (x, y) = 1− 1

n

n∑

i=1

XOR(xi, yi) (1)

Each edge (x, y) between PoI nodes x and y has a weight,
wxy = KT (x, y), representing the correlation value. The link
set E may be reduced by setting a predefined threshold such
that only links with correlations higher than the threshold are
retained.

The extrapolation algorithm takes partial state of PoI sites
in the current cycle, historical data of PoI sites in previous
cycles, and the relationships (i.e., edges) learned so far as
inputs. It then infers the current state of missing PoI sites.

As argued above, scarcity of training data renders complex
prediction models, such as ARIMA and various data mining
models [11], ineffective. For example, on the 4th day of a
disaster, we have only 3 past training points, which might be
fewer than the number of parameters in some models. This
means that our prediction model would have to be very simple.
Indeed a contribution of this work lies in arriving at a very
simple model that works well with little data, as opposed
to beating the current mature state of the art in time-series
prediction from large data sets.

We first consider several obvious simple heuristics that can
be used for extrapolation. To illustrate the impact of insuffi-
cient training data, we also consider ARIMA [11], a standard
(and powerful) time series analysis method for non-stationary
processes, commonly used in complex forecasting tasks, such
as forcasting financial systems [12]. The performance of these
solutions will determine whether or not a new extrapolation
approach is needed.

• Random: It is the most trivial baseline in which the status
of missing sites is guessed at random. It shows what
happens when no intelligence is used in guessing.

• BestProxy: It uses the Kendall’s Tau method to find actual
pairwise (spatial) correlations between PoIs and predicts
missing state based on the state of the best neighbor (i.e.,
the PoI that has the largest correlation with the one being
predicted). It is an example of exploiting local spatial
correlations, where state of an individual node is predicted
from state of another (well-chosen) individual node.

• Majority: It computes the majority state of all known
PoIs and predicts all missing state to be the same as
the majority state. This heuristic is another example of
exploiting spatial correlations. It lies at the other end of
the spectrum from BestProxy, in that it exploits a global
notion of spatial correlations, where state of an individual
node is predicted from global state.

• LastKnownState: It explores temporal correlations among
PoI sites. Namely, the predicted state today is set equal
to the last known state.

• ARIMA: This, in principle, is one of the most general
forecasting methods for time series data that assumes an
underlying non-stationary process [11].

The performance of the above baselines is discussed next.
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(a) Distribution of gas outages (b) Distribution of food outages (c) Distribution of pharmacy outages

Fig. 1: Distribution of public services outages

B. Failure of Individual Baselines

We evaluate our baselines through a real-world disaster
response application. In November 2012 [13], Hurricane Sandy
made landfall in New York City. It was the second-costliest
hurricane in United States history (surpassed only by hurricane
Katrina) and the deadliest in 2012. The hurricane caused wide-
spread shortage of gas, food, and medical supplies as gas
stations, pharmacies and (grocery) retail shops were forced
to close. The shortage lasted about a month. Recovery efforts
were interrupted by subsequent events, hence triggering alter-
nating relapse and recovery patterns.

The daily availability of gas, food, and medical supplies
was documented by the All Hazard Consortium (AHC) [14],
which is a state-sanctioned non-profit organization focused
on homeland security, emergency management, and business
continuity issues in the mid-Atlantic and northeast regions of
the United States. Data traces1 were collected in order to help
identify locations of fuel, food, hotels and pharmacies that may
be open in specific geographic areas to support government
and/or private sector planning and response activities. The data
covered states including West Virginia, Virginia, Pennsylvania,
New York, New Jersey, Maryland, and District of Columbia.
The information was updated daily (i.e., one observation per
day for each gas station, pharmacy, or grocery shop). To
give an example of the extent of damage, Figure 1(a) shows
the distribution of the percentage of time that each of 300+
affected gas stations in the New York area was unavailable
during the first month following the hurricane. We can see
that 40 gas stations were not available for more than 1 week
and some were out for almost the whole month. Similarly,
Figure 1(b) shows the distribution of outage for affected food
stores and Figure 1(c) shows the distribution of outage for
affected pharmacies.

With these PoI sites and input data as ground truth, we
evaluate the baselines described. The metrics we use are
accuracy of inference and amount of data needed. We break
time into cycles as discussed earlier. We set each cycle to a day
to coincide with the AHC trace. We then plot the performance
of the above baselines when a configurable amount of today’s
data is available (in addition to all historic data since the
beginning of the hurricane).

We evaluate the solutions on November 3rd, and November
8th. November 8th corresponds to a period of disruptive change
due to a second snow storm that hit after Sandy, causing

1Available at: http://www.ahcusa.org/hurricane-Sandy-assistance.htm

massive temporary relapse of recovery efforts due to new
power outages, followed by a quick state restoration to the
previous recovery profile. November 3rd is an example of
a period of little change, when damage was incurred but
recovery efforts have not yet been effective. The same trend
was observed for all datasets we have, namely, gas, pharmacy,
and food.

Figure 2, Figure 3, and 4 plot the prediction error with
standard deviation shown as error bars in availability of gas
stations, food (grocery shops), and pharmacies, respectively.
In each figure, sub-figures (a) and (b) refer to November 3rd
and November 8th, respectively.

The reader is reminded that we assume that, on a given
day, one knows the status of only a fraction of PoIs (where
the status refers to whether they are open or closed). The
purpose is to extrapolate this data and find out the status of
the remaining ones. The horizontal axis in the aforementioned
figures varies the percentage of PoIs whose status is known
on the indicated day from 5% to 50%. To eliminate bias that
may result from knowing the status of specific PoIs, each point
(corresponding to a specific percentage of PoIs whose status
is known) is an average of 50 different experiments. In each
experiment, a different random set of PoIs is selected as known
(adding up to the required percentage). The results shown are
the average of the 50 experiments.

Consider Figure 2-a and Figure 2-b, that illustrate the
overall prediction error rate for gas availability on November
3rd and 8th, respectively, as a function of the percentage of
PoIs whose status is known that day. On the vertical axis, the
performance of baselines is compared.

Figure 3 and Figure 4 compare the performance of base-
lines in predicting food and pharmacy availability.

It can be seen that no single baseline does consistently well
in all figures. Specifically, LastKnownState does remarkably
well on November 3rd, when the change was minimal from the
day before. This is especially true for gas and food (grocery)
availability prediction, where it beats the next heuristic by a
wide margin. However, BestProxy does better on November
8th, when a second snow storm hits and its aftermath causes
a lot of perturbation. More specifically, the error rate of Best-
Proxy is around 8% lower than LastKnownState on November
8th. BestProxy clearly outperforms LastKnownState that day
for gas and pharmacy availability prediction, and ties for food
availability prediction. Majority does poorly on November 3rd
and better (but not best) on November 8th. Random does
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(a) Error rate on November 3rd.

(b) Error rate on November 8th.

Fig. 2: Comparing baselines to predict gas
availability after Sandy

(a) Error rate on November 3rd

(b) Error rate on November 8th

Fig. 3: Comparing baselines to predict food
availability after Sandy

(a) Error rate on November 3rd

(b) Error rate on November 8th

Fig. 4: Comparing baselines to predict
pharmacy availability after Sandy

worse. Very interestingly, ARIMA does only marginally better
than Random and much worse than the best heuristics on either
day. This is attributed to the lack of sufficient training data,
and the challenges caused by disruptive changes in the time-
series. Also notice that, the standard deviations for all baseline
methods are quite small compared to the error rates, which
indicates that which PoIs are known does not have a significant
effect on the performance.

The results confirm that algorithms that do spatial ex-
trapolation (such as BestProxy) are better on days of more
change, whereas algorithms that do temporal extrapolation
(such as LastKnownState) are better on days of less change.
The results also suggest that, due to lack of training data,
complex prediction models that normally do well, such as
ARIMA, are ineffective. We leverage these observations to
guide the design of an algorithm that consistently offers
the best performance. This algorithm appropriately adapts
to periods of change versus periods of calm, and requires
little training data. Note that, we do not aim to outperform
any one heuristic at all times. Rather, our aim is to match
consistently the best performing heuristic at any time, even
though that heuristic changes, depending on circumstances.
Such an algorithm is described next.

III. A HYBRID PREDICTION ALGORITHM

The above study leads to two insights that help develop an
algorithm for data extrapolation in disaster response scenarios:

• Insight #1: The first insight is that our algorithm should
be able to switch between spatial and temporal prediction
modes. On days with little change, LastKnownState does
really well and should be the default prediction. On days
where change is abundant, spatial correlations are more
appropriate to use for prediction.

• Insight #2: The second insight lies in refining the notion
of spatial correlations to be used for prediction. Since our
default prediction is LastKnownState (i.e., no change), we
need spatial correlations only to predict change. Hence,
rather than using Kendall’s Tau correlation to find a good
proxy, we seek a proxy that helps predict change only. In

other words, we seek a proxy whose state changes (and
not overall state) are most correlated with those of the
target to be predicted.

The second insight is intuitive in retrospect. Just because two
gas stations were out of gas or out of power for a long time,
does not mean their state changes are correlated. What’s more
indicative is whether or not they lost gas or power at the same
time. The latter gives a better indication that if gas or power
is restored to one, it may also be restored to the other.

More concretely, consider two PoIs, x and y, that have state
(x1, x2, ..., xn) and (y1, y2, ..., yn). Let xn be unknown (i.e., it
has not yet been delivered). Let us define the change time series
as (dx1, dx2, ..., dxn) and (dy1, dy2, ..., dyn), where dxi =
xi − xi−1 and dyi = yi − yi−1 (we assume that x0 = 1
and y0 = 1 (everything was working before the disaster). To
predict xn (or equivalently predict the change dxn), we would
like to find a proxy y, whose current status is known and whose
changes are maximally correlated with changes in x. We can
then use dyn to predict dxn and hence predict xn. To do so,
we compute P (change in x|same change in y) for all gas
stations y whose current state is known. This probability can
be approximated by:

P (change in x|same change in y) =
count(dxi = dyi)

count(dyi �= 0)
(2)

where count() is a function that counts the number of times the
condition in its argument was true for 1 ≤ i ≤ n−1. The best
proxy for (predicting change in) x becomes the y that maxi-
mizes the above probability. Let us call such a y, ybest. Let the
resulting probability, P (change in x|same change in ybest)
be denoted P best. Using insight #1 above, the sought algorithm
is as follows:

Lines 1 to 4 indicate that the algorithm alternates between
spatial and temporal prediction depending on whether the best
found proxy for the target x is sufficiently good (i.e., better
than a threshold, T ). When spatial prediction is used, we
predict that state of x will change (i) if it was the same as
the state of the best proxy, and (ii) if the state of that proxy
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Algorithm 1 ENHANCED BEST PROXY (x, n)

1: IF ( P best ≥ threshold T )
2: use SpatialPrediction
3: ELSE
4: use LastKnownState (i.e., xn = xn−1)
5:

6: SpatialPrediction
7: IF ((dybestn is not zero) AND (ybestn−1 = xn−1))

8: THEN xn = ybestn
9: ELSE use LastKnownState (i.e., xn = xn−1)

changed. Otherwise, we predict no change. Note that, it is
possible that there is no best proxy for a certain PoI. When
choosing the best proxy, we require one PoI to have at least a
certain number of changes in its own history so far. To see why
this is necessary, imagine we are now considering choosing
PoI A as B’s proxy, however, A has only 1 state change in its
history and the change happened in the same cycle as B. In
this case, A’s P score will be 1, which is always larger than
or equal to T and all other proxy candidates. Therefore, A
will be selected as B’s best proxy, although A is actually not
a strong candidate.

It remains to derive the optimal value of the threshold, T .
Let M denote the fraction of PoIs that had state = 1 in the
last cycle. Hence, 1 − M is the fraction of PoIs with state
= 0. Furthermore, let F denote the fraction of PoIs (that we
are aware of so far) that change state in the current cycle.
The optimal value of T is one that minimizes misprediction
probability.

The above algorithm mispredicts either (i) when spatial
prediction is used and it is wrong, or (ii) when temporal
(LastKnownState) prediction is used and it is wrong. Hence,
misprediction probability, Pm, is equal to the sum of spatial
misprediction probability, Psm, and temporal misprediction
probability, Ptm. Below, we compute these probabilities.

Spatial Misprediction: From line 7 of Algorithm 1, spatial
misprediction occurs when (i) P best exceeds the threshold T
and (ii) the best proxy has the same state as x in the last
cycle, yet (iii) they have different states in the current cycle.
Note that, the first two conditions are what invokes spatial
prediction. The third condition causes that prediction to err.

Clearly, the probability of the first condition, P (P best >
T ), decreases with increasing threshold, T . Let us approximate
P (P best > T ) = 1 − T . The probability of the second
condition is simply 1 − 2M(1 − M). Since P best is the
probability of a correlated change in x (given a change in the
proxy), the probability of the third condition (a misprediction)
is approximately 1 − P best. We know that P best > T . As-
suming that P best could be uniformly anywhere above T , we
can replace 1−P best by (1−T )/2. The spatial misprediction
probability is then the product of probabilities of the three
conditions above, leading to the expression:

Psm = (1− T )[1− 2M(1−M)](1− T )/2 (3)

Temporal misprediction occurs when the algorithm resorts
to temporal prediction and is wrong. According to the algo-
rithm, temporal (LastKnownState) prediction occurs when (i)

P best exceeds the threshold T , but (ii) the best proxy does not
have the same state as x in the last cycle, or when (iii) P best is
less than the threshold T . In either case, a misprediction occurs
if the state of x changes (hence contradicting LastKnownState).
The latter probability can be approximated by F , the fraction
of nodes we know of that changed state today. Hence:

Ptm = (1− T )[2M(1−M)]F (4)

+ [1− (1− T )]F

Recall that misprediction probability, Pm, is the sum of Psm

and Ptm. Hence, from Equation (3) and Equation (4), we get:

Pm = (1− T )[1− 2M(1−M)](1− T )/2 (5)

+ (1− T )[2M(1−M)]F

+ [1− (1− T )]F

The optimal threshold, T , is one that minimizes the above
probability. The equation is a quadratic function of T . Because
the coefficient of T 2 is [1 − 2M(1 −M)], which is always
positive, the optimal threshold can be found by setting the
derivative of the above function to zero and enforcing the
natural constraints on values of probability (that they are
between 0 and 1). In other words:

dPm

dT
= −(1− T )[1− 2M(1−M)] (6)

− [2M(1−M)]F

+ F = 0

subject to the constraint 0 ≤ T ≤ 1. After some rearranging
and algebraic manipulation, we get:

T = 1− F (7)

Unfortunately, we do not know the probability of change, F, in
advance. In the absence of further knowledge, we can design
for F = 0.5. In this case, T = 0.5.

IV. EVALUATION

In this section, we evaluate the hybrid approach pre-
sented above versus the baselines described earlier in Sec-
tion II-A (i.e., Random, LastKnownState, BestProxy, Majority,
and ARIMA). For ground truth, we use the same data set,
featuring the daily status of gas stations, pharmacies, and food
stores in the aftermath of Hurricane Sandy. As before, we opt
to predict the status of these PoIs on November 3rd and 8th,
as examples of a day or relative calm and a day of significant
change. We do so by varying the fraction of PoIs whose state
is revealed to the predictor on a given day, and attemtping to
predict the rest using each of the compared approaches.

Figures 5-a and 5-b illustrate the accuracy of prediction
of gas availability on November 3rd and 8th, respectively.
The horizontal axis shows the percentage of PoIs whose
state is known on the given day. As before, each point is
the average of 50 experiments featuring different random
selections of stations whose status is known. On the vertical
axis, two curves are compared. One is the hybrid extrapolation
algorithm developed in this paper. The second is the best of
the predictions of the five baselines described in Section II-A.
It can be seen that the new algorithm consistently matches or
outperforms the best of all others.
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(a) Error rate on November 3rd.

(b) Error rate on November 8th.

Fig. 5: Predicting gas availability after Sandy

(a) Error rate on November 3rd

(b) Error rate on November 8th

Fig. 6: Predicting food availability after Sandy

(a) Error rate on November 3rd

(b) Error rate on November 8th

Fig. 7: Predicting pharmacy availability after
Sandy

Specifically, on November 3rd, the hybrid approach
matches the best baseline. This is because it recognizes that
change is small, and opts to use LastKnownState, which
happens to be the best under the circumstances, as we have
seen in Figure 2-a). On November 8th, it outperforms the best
baseline, which tends to be BestProxy as we have seen in
Figure 2-b. This is because of the new definition of correlation
that it uses, which focuses only on changes, per Insight #2
discussed earlier.

Figures 6-a and 6-b repeat the experiment on the food
data set. They illustrate the accuracy of prediction of food
availability on November 3rd and 8th, respectively. A similar
trend is seen, where the hybrid matches the best baseline on
November 3rd and outperforms the best baseline on November
8th. Figures 7-a and 7-b illustrate the same for pharmacies.
Further experiments (not shown) demonstrated that the results
are largely insensitive to the choice of threshold, T . The
superior results presented above can therefore be robustly
achieved.

The experimental results presented in this section show
that the hybrid approach is as good as or better than the
best of all compared algorithms on both November 3rd and
November 8th. These two days were selected because of their
representative nature, as they exemplified days of calm and
days of change, respectively.

To show that the above results hold true for other days
as well, we compute the worst case overage amount by
which the prediction error of the hybrid approach, as well as
the prediction error of each of the five individual baselines,
exceeds the best of the five baselines. Hence, an algorithm that
behaves as the best of the baselines under all circumstances
will have a worst-case overage of zero. Algorithms that are not
consistently the best will have a higher worst-case overage. The
results are shown in Figure 8, where Figure 8-a, Figure 8-b,
and Figure 8-c, are for the case of gas, food, and pharmacy
availability prediction, respectively.

In Figure 8, the worst-case overage, for each algorithm,
is computed by finding the maximum error overage com-
puted over 10 days of the recovery phase (from November

3rd through November 12th). For statistical significance, the
performance of each heuristic on each day is first averaged over
50 experiments before the overage is calculated. Consistently
with other figures, the horizontal axis shows the percentage of
PoIs whose status is known. It is seen that the new Hybrid
algorithm has a worst-case overage that is roughly zero. In
other words, it never does worse than the best solution over
all days under consideration.

The figure shows that the overage of other baselines is
higher. Their relative prediction (in)accuracy follows roughly
the same order in the three data sets. Specifically, Last-
KnownState is generally the next best algorithm to ours.
In the aftermath of disasters, failures take long to fix, so
the state changes gradually, making LastKnownState a good
predictor most of the time. Errors occur when aftershocks
hit or major repairs are made, and are related to the size
of such perturbations. BestProxy comes next. Its accuracy
depends on how spatially well-correlated the PoI states are.
No significant difference is seen between its accuracy in gas
and food availability prediction, but pharmacy prediction is
better. This can be attributed to the size of the pharmacy data
set, shown on the horizontal axis in Figure 1(c). Namely, the
number of pharmacies is the largest. Hence, the odds of finding
a good proxy are better than with the other data sets. Majority
comes next after BestProxy. In scenarios where restoration is
quicker, PoIs converge to the majority state faster, and the
predictor becomes more accurate. Comparing Figure 1(a), 1(b),
and 1(c), we can see that pharmacies and gas are restored the
fastest, followed by food, which roughly corresponds to how
well Majority works in the three cases. Finally, ARIMA and
Random consistently do next-to-worst and worst, respectively,
showing little variation across the data sets. This is because
their worst-case behavior is random (for ARIMA, it occurs
in the very early days), and hence not tightly related to the
properties of input data.

In conclusion, Figure 8 shows that while some prediction
algorithms do best under some circumstances, no baseline does
consistently well under all circumstances. The contribution
of the new approach lies indeed in proposing a method that
adapts intelligently between time-based extrapolation and spa-
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(a) Worst-case overage in gas availability
prediction error.

(b) Worst-case overage in food availability
prediction error.

(c) Worst-case overage in pharma availabil-
ity prediction error.

Fig. 8: Distribution of public services outages

tial extrapolation, matching or outperforming the best baseline
solution at all times.

V. RELATED WORK

The work reported in this paper complements a large body
of sensor network literature that focused on monitoring and
disaster alerts. For example, Werner-Allen et al. deployed three
wireless sensor networks on active volcanoes [15]. Li et al.
deployed a sensor network for monitoring and alerts in a
coal mine [16]. Liu et al. present an automatic and reliable
sensor network for firefighter applications [17], which allows
a firefighter to carry a small dispenser filled with sensor nodes
and deploy them one-by-one in a manner that guarantees
reliable communication. The SensorFly project [18] develops a
sensor cloud, which consists of many low cost and individually
limited mobile sensing devices that only when functioning
together can produce an intelligent cloud, in disaster situations
such as an earthquake and fire. This paper is different from the
above work in leveraging a participatory sensing framework,
and considering first responders and volunteers as front-end
sensors for data collection.

More importantly, our work focuses on a new problem in
participatory sensing. Namely, the problem of automatically
filling in the “blind spots” in reported observations. Past
research on participatory sensing describes how to aggregate
and clean-up collected data. A survey on analytic challenges
in the field recently appeared [19]. For instance, CenWits [2]
proposes a participatory sensor network to rescue hikers in
emergency situations. BikeNet [3] presents a bikers sensor
network for sharing cycling related data and mapping the cy-
clist experience. The Nericell project [4] presents a system that
performs rich sensing using smartphones that users carry with
them in normal course, to monitor road and traffic conditions.
The GreenGPS system [5] provides a service that computes
fuel-efficient routes for vehicles between arbitrary end-points,
by exploiting vehicular sensor measurements available through
the On Board Diagnostic (OBD-II) interface of the car and
GPS sensors on smart phones. This paper complements that
past work by looking at the important problem of how to fill in
the data gaps. This unique challenge comes from the timeliness
constraints in disaster response applications. In the absence of
urgency, one can eventually fill in the data gaps by sending
(or waiting for) more observers. Hence, there is less need to
“guess” them. However, in disaster recovery scenarios, there
is no time to wait, so the service provider needs to fill in the
gaps immediately as best one can.

Also, our work is related to the large body of literature fo-
cusing on prediction-based data collection in sensor networks.
Le Borgne et al. [20] apply time-series prediction technology

to reduce the communication effort while guaranteeing user-
specified accuracy requirements on each sensor nodes in
wireless sensor networks. Tulone et al. [21] propose a sensor
network comprising sensor nodes and sink nodes. Sensor nodes
transmit their local autoregressive models to sink node, and
sink node uses the models to predict sensor values without
communicating with sensors directly. Krause et al. [22] de-
velop an algorithm called pSPIEL that is capable of measuring
the predictive quality of sensor locations and then selecting
sensor placements at informative and communication-efficient
locations. All those researches utilize similar prediction tech-
nology to ours but focus on improving the communication
efficiency while maximizing the quality of collected data.

Thanks to the fast development of smartphones and social
networks, participatory sensing receives more attention in dis-
aster response applications in recent years. People share their
information about the disaster region to social networks and
special-purpose services, to help each other beat the disaster to-
gether. For instance, popular social networks such as Facebook
and Twitter, played an important role after natural disasters
such as Japan Tsunami in 2011 [23] and US Hurricane Sandy
in 2012 [24]. Many service providers, some notable names in-
cluding Waze [25] and GasBuddy [26], set up special-purposes
services to allow individuals to participate and report the
availability of various resources (e.g., gas stations) after Sandy
via the web or smartphones. Ushahidi [27] is another notable
disaster and crisis management mapping tool. It can be used to
collect and visualize data from multiple data streams including
text messages, email, twitter and web-forms. However, due
to the opportunistic nature of participatory sensing, there are
typically “blind points” in the obtained PoI map at any given
time point. Our work takes advantage of these services, aiming
to complete the estimation of missing world state.

Finally, our system design is related to state of the art
sensor selection algorithms that are paired with inference
approaches for missing or incomplete data. For example,
Aggarwal et al. formulate the problem of sensor selection,
when redundancy relationships between sensors can be ex-
pressed through an information network by using external
linkage information. They present methods for efficient sensor
selection by using regression models to estimate predictability
and redundancy [7]. The problem is extended to dynamic
sensor selection in data streams [28]. Similarly, PhotoNet [29]
provides a picture-collection service for disaster response
applications that maximizes situation-awareness. Kobayashi et
al. propose a sensor selection method with fuzzy inference for
sensor fusion in robot applications [9]. However, this existing
work assumes that correlations between data items are known
in advance.
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To the best of our knowledge, no previous work has
been applied to real-world disaster response scenarios where
inference algorithms were investigated that (i) specifically
address the bimodal nature of damage propagation and that
(ii) require very little training data. Our paper fills in this gap
by analyzing the example of New York City gas crisis in the
aftermath of Hurricane Sandy via real data traces.

VI. CONCLUSIONS

We presented the design, implementation, and evaluation
of an inference-based algorithms for data extrapolation in par-
ticipatory sensing systems for disaster response applications. It
was shown to be capable of accurately predicting the status of
PoI sites, when collected data is incomplete. The algorithm
exploits correlations among state changes in PoI sites and
changes adaptively between temporal and spatial extrapolation.
Our experimental results via a real-world disaster response
application demonstrate that our algorithm is consistently the
best of all compared in terms of prediction accuracy, whereas
others may suffer non-trivial degradation. The new algorithm
is currently being adapted to more complex prediction tasks
(e.g., non-binary variables) and evaluated on new data sets.
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