
Eugene: Towards Deep Intelligence as a Service

Shuochao Yao∗†, Yifan Hao∗†, Yiran Zhao†, Ailing Piao‡, Huajie Shao†, Dongxin Liu†,
Shengzhong Liu†, Shaohan Hu§, Dulanga Weerakoon¶, Kasthuri Jayarajah¶, Archan Misra¶, Tarek Abdelzaher†

University of Illinois at Urbana-Champaign†, University of Washington at Seattle‡, IBM Research§,

Singapore Management University¶
Email: {syao9, yifanh5, zhao97}@illinois.edu, alpiao@uw.edu,

{hshao5,dongxin3,sl29}@illinois.edu, shaohan.hu@ibm.com, archanm@smu.edu.sg, zaher@illinois.edu

Abstract—The paper discusses an emerging suite of machine
intelligence services that are of increasing importance in the
highly instrumented world of the Internet of Things (IoT).
The suite, called Eugene1, would offer a form of intelligent
behavior (based on deep neural networks) to otherwise simple
embedded devices; the clients of the service. These devices
would benefit from service resources to learn from data and
to perform intelligent inference, classification, prediction, and
estimation tasks that they are too limited to carry out on their
own. The paper discusses the taxonomy of such services and
the state of implementation, as well as the various challenges
entailed, including scheduling, caching (of intelligent functions),
and cooperative learning.

I. INTRODUCTION

We aim to enable ubiquitous intelligence in a future world

of connected sensing and computing devices, seamlessly em-

bedded in our surroundings. We propose to do so using

a service, tentatively called Eugene, that endows everyday

objects with the appearance of human-like behavior and

encyclopedic knowledge. The goal is to revolutionize our

interactions with the physical world the way the Internet

revolutionized out interactions with each other. In Eugene’s

world, embedded IoT devices (or “things”) will be capable

of human-like interactions with their environment, including

speech recognition, vision, and gesture understanding. These

capabilities will bring about such features as verbal device

control, (soft) user authentication, and gesture-based human

machine communication.

Eugene would accomplish the above goals by allowing the

offloading of machine intelligence tasks. Indeed, the disparity

between the resource-constrained nature of embedded IoT

devices and the computational needs of the aforementioned

interactions suggests that data processing will be increasingly

offloaded to external servers. Today, precursors of such ser-

vices include speech recognition for home controllers (e.g.,

Amazon Echo) and language translation for mobile phones,

both done partly in the cloud. With the increasing popularity

of edge computing, external servers will likely move closer

to the clients, and some functionality will be “cached” on

the local device. A business, such as a management service

for a shopping mall, for example, might host its own edge

∗Equal contribution
1Named after Eugene Goostman, an AI simulation of a boy, claimed to

be the first machine passing the Turning test in a controvesial result of a
competition in 2014.

servers to satisfy the needs of local IoT devices. These devices

might include mall surveillance cameras, smart fitting rooms

that suggest better-fitting items to customers, audio-based

chatbots that offer directory assistance, and indeed customers’

own phones (that run the appropriate app). Inference models

that support certain interactions might be downloaded (after

simplification to reduce size) to the individual IoT devices

engaged in those interactions as a form of “caching”. Caching

appropriately trained neural network models will offer portable

intelligence for heterogenous devices that aim to run limited

intelligent inference functions locally.

We argue for realizing Eugene using deep neural networks

as the instrument of machine intelligence. This choice is moti-

vated by the emergence of deep learning as the state-of-the-art

computational intelligence solution for a large spectrum of IoT

applications [1]. Besides breakthroughs in processing images

and speech using deep learning techniques [2], [3], specific

neural network structures have been designed to fuse multiple

sensing modalities and extract temporal relationships [4]. The

increasing number of studies on applying deep learning in the

area of cyber-physical systems (CPS) and IoT [4]–[7] make it

a prime candidate for realizing the intelligent capabilities of

Eugene.

The rest of this paper is organized as follows. Section II

introduces the key functional requirements of Eugene. Chal-

lenges in the underlying system support, namely, back-end

scheduling, are presented in Section III, together with a

preliminary evaluation. We discuss challenges in supporting

cooperative intelligence in Section IV. Finally, we conclude

in Section V, and outline other possible future work.

II. CORE SERVICE REQUIREMENTS

Eugene will offload from IoT devices the training and/or

execution of machine learning algorithms, such as classifiers

or predictors, to do a myriad of common estimation and

recognition tasks based on device data such as visual inputs,

speech, or gestures. It is possible to concieve of Eugene
as a virtual machine for artificial intelligence. Like other

virtual machines (e.g., Java and Python), it would allow the

expression of processing tasks in some efficient intermediate

form. This form, we argue, is the neural network model. The

model specifies network topology and edge weights, as well as

other hyperparameters such as the type of activation functions

used. With those parameters, it becomes possible to implement

1630

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00162

inference algorithms (specified by the model) that perform

classification, prediction, or estimation functions.

Clients would ask the service to (i) generate deep neural

network models (from client-supplied training data), (ii) help

with (automatic) labeling of data sets, and (iii) perform model

reduction (if needed for caching). Generated models might be

executed as appropriate on the server, client, or any device that

supports the “virtual machine”. System support is needed on

servers to enable efficient scheduling of inference tasks (that

execute the computed models on incoming client-supplied

data in real-time). A scheduler might maximize a suitably

defined notion of utility to improve quality of inference results.

Auxiliary functions are needed such as profiling. They will

allow enhanced (neural network) model parameterization to

improve accuracy and/or cost.

The feasibility of developing Eugene as such a general-

purpose service is attributed primarily to the general-purpose

nature of deep learning itself, making Eugene largely auto-

nomic and configuration-free. If the service requires lengthy

per-application engineering and customization, it will lose

much of its appeal. In this regard, deep learning frameworks

have at least two key advantages over alternative solutions:

• Arguably, in many scenarios, one can use laws of

physics to derive the needed inference results from sensor

data. For example, in a location estimation task, one

can double-integrate inputs that comprise accelerometer

data to obtain velocity and position. The problem with

such approaches is two-fold. First, they require that

application-specific models of underlying physical phe-

nomena be developed and given to the service. Second,

they rely on understanding accurate models of noise.

Most estimators make assumptions on the statistical dis-

tribution of noise offering accurate results only when

such assumptions are satisfied. In a complex environment,

noise is hard to model. It may be non-linear, non-

additive, correlated, and biased. Recent results in deep

learning demonstrate that the network can learn very

complex nonlinear relations, allowing better extraction of

signals from noise (even when the two are intertwined

in a complex nonlinear fashion) [4]. Best of all, such

extraction is fully automated, thus requiring no human

intervention or expertise.

• Furthermore, unlike other machine learning approaches

that rely on the design of clever input features (to support

the intended estimation or classification tasks), deep

learning has the advantage of being able to ingest raw

data directly and automatically compose relevant features

by adjusting link weights. Hence, less human effort is

consumed in feature engineering.

In a world dominated by data and computing devices, saving

human cognitive bandwidth by employing a machine is a great

trade-off. With that in-mind, we set forth to describe what

the Eugene general-purpose machine intelligence service suite

should be able to do.

A. Training and Data Labeling
Eugene will facilitate learning from data collected by the

embedded devices. These services will execute on the back-

end to produce the trained neural networks necessary for

various inference and estimation tasks. The most basic service

is to ingest labeled raw data from clients and train the eventual

neural network model on the server. Since it is expensive to

label a lot of data manually, another service would be to assist

with automatic labeling. Below we describe the underlying

challenges and possible solutions in more detail.

Training: The first challenge in implementing deep intelli-

gence as a service lies in training the neural network to support

the application of choice. In many cases, IoT devices will have

already collected large amounts of sensory data (such as video

footage from security cameras). Often, labels are available

retrospectively (such as instances of various security breaches

caught on camera). This offers opportunities for training the

system to identify (and alert to) similar instances in the future.

The feasibility of such a service was recently discussed in

DeepSense [4], a general-purpose learning framework for sen-

sor fusion systems. It integrates convolutional neural networks

(CNNs) and recurrent neural networks (RNNs) to extract

spatio-temporal features of input signals. Sensory data are

aligned and divided into time intervals for processing. For

each interval, DeepSense first applies an individual CNN to

each sensor data stream, encoding relevant local features. A

(global) CNN is then applied to the respective outputs to model

interactions among multiple sensors for effective sensor fusion.

Next, an RNN is applied to extract temporal trends. Intelligent

IoT applications will generally need two important functions:

estimation and classification (depending on whether the sought

results are continuous or categorical, respectively). Hence, at

the last stage, either an affine transformation or a softmax

output is used by DeepSense, depending on whether the output

is an estimation or a classification result. Accordingly, it be-

comes possible to perform complex multi-sensor fusion tasks

for purposes of estimation or classification from time-series

data. The detailed mathematical formulation of the DeepSense

learning algorithm can be found in a related paper [4].

Labeling: A general disadvantage of deep learning methods

lies in the need for large amounts of labelled data. To learn

well from empirical measurements, the neural network must

be given a sufficient number of labelled examples from which

network parameters are to be estimated. Since the number

of parameters is large, so is the required number of labelled

examples. In order to make deep learning services practical,

a key challenge is thus to reduce the need for labeled data.

Eugene could address this challenge by employing a recently

proposed approach that uses Generative Adversarial Networks

(GAN) to learn from mostly unlabeled data [8]. Unlabeled

data carries information on the structure of the input space.

By overlaying it with labeled data, one can better observe the

emergence of input data clusters corresponding to different

labels. A small number of labeled points within a cluster can

thus inform the labeling of the remaining points. Using this

1631

intuition, the GAN learns by playing a game of progressive

refinement of both the dimensions in which points are virtually

clustered and the rules for cluster separation. In this game,

one entity proposes labels for unlabeled samples, whereas

another tries to distinguish the resulting labeled samples from

the original labeled ones. As the game procedes, both entities

learn from each other ultimately producing labels that are hard

to falsify. Empirical results show that these eventual artificially

produced labels (for originally unlabaled data) help improve

accuracy of learning applications almost as much as the

ground-truth labels themselves [8]. The approach significantly

reduces reliance of the learning service on availability of

large amounts of labeled data, allowing the exploitation of

more easily attainable unlabeled data instead. The limitations

of this approach remain to be investigated, but preliminary

evidence suggests that it is effective at circumventing the lack

of sufficient data labels.

B. Model Reduction and Caching

Once trained, deep neural networks can be used to per-

form complex estimation, prediction, detection, or identifica-

tion/classification tasks. Typical networks produced by deep

learning techniques are very large. They may include several

hundreds of layers, each composed of possibly thousands of

nodes. As such, they need to execute on appropriately well-

resourced machines, resulting in communication between end-

devices (e.g., sensors making new observations) and well-

resourced back-ends every time the device needs to run the

service on a new data item. In environments where the

communication bandwidth of the end-device is not plentiful, it

is advantageous to execute some inference tasks locally. This

need calls for reducing the relevant neural network models to

a footprint that fits the end device. Hence, a model reduction

service is needed.

The feasibility of an efficient neural network model reduc-

tion service is attributed to two observations. First, it is often

the case that phenomena observed by sensors evolve over

lower-dimensional manifolds. In this case, the large neural

network is an overkill and compression is possible. Second, in

many applications, the most frequent inputs to a device com-

prise only a very small fraction of the much larger potential

input space. For example, in a service where users typically

give yes/no answers, recognizing responses such as “yes” and

“no” versus neither (referring to all other utternaces besides

these two) should be easier than distinguishing all possible

spoken words. In this scenario, neural networks produced

by deep learning methods can be reduced in size without

significant loss of accuracy in the common case. Much like

caching, a reduced network model can run locally on the

resource-limited embedded device to handle common inputs

(e.g., to recognize “yes” and “no” in the above example). The

identification of an uncommon occurrence (e.g., the occurrence

of other words) is viewed as a cache miss that triggers full

network execution on the server.

Several attempts were made to simplify deep neural net-

works after they have been trained. Commonly, a compression

service removes edges that have low weights. The removal pro-

duces a sparse matrix (to represent the neural network), where

most of the cells are zeros. The sparsity of the matrix allows

for reductions in storage and computation time. Unfortunately,

prior work has shown that these reductions do not scale propor-

tionally to the fraction of zero entries in the sparse matrix [5].

This is because sparse matrix algebra is not as efficient as

dense matrix algebra. Hence, as the matrix becomes sparse,

additional overhead is introduced to take advatage of sparsity

(compared to when it was dense), thereby offsetting some

of the savings. A promissing solution for a model reduction

service is one that removes nodes instead of edges in the neural

network to fix the above sparse matrix problem. Removal of

entire nodes from the neural network is equivalent to removal

of entire rows/columns from the corresponding matrix. This

produces a new matrix that is also dense, but that has smaller

dimensions. The approach was shown to be significantly more

effective at reducing resource consumption without degrading

quality [5]. The resulting compact neural network models are

therefore suitable for execution on resource-limited nodes.

To automate caching, Eugene must decide on what con-

stitutes frequent inference tasks. The inference models (i.e.,

neural networks) pertaining to those specific tasks can then

be reduced and cached. For example, in a vision-based item

identification system executed in a smart refrigerator, the

most common items entered might end up being beer and

pop bottles. Recognizing that the most common classification

results point to those specific items, Eugene (running on the

server) may retrain a neural network with only those items

as positive examples, compress the result, and download the

compressed model to the device. Several interesting questions

arise in implementing this mechanism. For example, when

exactly should the system decide that an item or set of items

are frequent? How small or large should the set of items be to

make it worth developing a reduced model for? How to auto-

matically adapt answers to the above two questions according

to the capability of the local device, and the bandwith of its

communication link? Finally, when should the cached model

be removed from the device? These questions are a topic of

future work.

C. Execution Profiling

On the server side, execution efficiency considerations

suggest the need to understand the relation between neural

network structure and execution overhead. Prior work has

shown that simply counting the number of neural network

parameters and/or the total FLOPs involved in processing

does not lead to good estimates of execution time because

the relation between these predictors and execution time is

highly non-linear [9]. Table I (reproduced from [9]) shows

that networks with the same number of FLOPs (e.g., CNN1

and CNN2) can differ significantly in execution time. In fact,

networks with fewer FLOPs can take longer to execute (e.g.,

CNN3 compared to CNN4).

Understanding the causes of nonlinear relations between

network parameter settings and the resulting execution time,

1632

TABLE I: Execution time of convolutional layers with 3× 3 kernel
size, stride 1, same padding, and 224× 224 input image size on the

Nexus 5 phone.

in channel out channel FLOPs Time (ms)

CNN1 8 32 452.4 M 114.9

CNN2 32 8 452.4 M 300.2

CNN3 66 32 3732.3 M 908.3

CNN4 43 64 4863.3 M 751.7

energy, and memory consumption is thus key to developing

efficient deep learning service implementations. One may

leverage recent work [9] that addressed the above challenge

by implementing an automated profiling system that breaks

execution models into piece-wise linear regions, and uses

regression over the (automatically identified) relevant neural

network parameters within each region to develop a predictive

model of execution time in that region. A similar approach

can be developed for modeling/minimizing energy or memory

consumption. Such a profiling tool would optimize perfor-

mance on the server side (as it will typically not have access

to profiling results on the client). For example, leveraging

the identified nonlinear behavior, it might become possible

to increase neural network size and accuracy while at the

same time reduce its execution overhead (as illustrated by

comparing CNN4 to CNN3 in Table I).

D. Result Quality Estimation

Another important challenge in realizing intelligence as a

service is to assess the quality of inference results produced

by learning models. To support mission-critical applications,

the service must offer principled uncertainty estimates that

faithfully reflect the correctness of its predictions. Methods are

needed that provide accurate uncertainty estimates in results

obtained from deep learning models. Moreover, the uncertainty

estimation must be resource efficient.

Recently, a well-calibrated and efficient uncertainty esti-

mation algorithm was proposed for multi-sensor data fusion,

called RDeepSense [6] (as an extension of DeepSense [4]). It

emits a distribution estimate instead of a point estimate at the

output layer. Intuitively speaking, the algorithm models node

outputs with random variables and estimates their distribution

parameters. Estimation of the mean of the random variable

is what traditional learning does. Estimation of the variance,

however, is what yields confidence in results. A smaller

estimated variance corresponds to a higher confidence in the

computed mean.

Interestingly, the estimation of the mean and the estimation

of the variance are interrelated. Typically, the estimator jointly

determines both by minimizing some error function. The

choice of that function has an important effect on estimation

accuracy of the two parameters. Specifically, using common

error functions, such as the mean square error, was shown

underestimate the uncertainty. This is so because such an

estimator predicts a very accurate mean value. If the mean

value is estimated well, the variance observed around that

mean on training data is small and may thus underestimate

variance encountered later during testing. In contrast, when

using a nonlinear error function, such as the negative log-

likelihood, the estimated mean is often biased (because the

nonlinearity penalizes erring on one side more than erring

on the other, causing the estimated mean to drift towards

the heavily penalized side). The biased (i.e., incorrect) mean

estimate results in increased measured variance around the

mean, leading to an artificially inflated uncertainty estimate.

One can exploit the above intuition to arrive at an estimate

of variance that neither underestimates nor overestimates the

true value. The idea is to use a weighted sum of the above two

error functions (namely, mean square error and negative log-

likelihood) as the combined loss function [8]. The weights

are adjusted (calibrated) such that the underestimation and

overestimation roughly cancel out. RDeepSense was shown to

generate very good uncertainty estimates that allow defining

accurate confidence intervals for outputs of the deep learner.

The ability to compute confidence in deep learning results

offers another interesting resource optimization possibility.

Namely, one may structure a deep neural network into stages,

each consisting of several layers, and compute confidence in

(intermediate) results after each stage. Once a high-enough

confidence is reported, it becomes possible to skip the exe-

cution of the remaining stages. For example, consider a deep

neural network whose job is to identify the presence of humans

in a landscape. The presence of humans may be easier to

identify in some images than others. Consequently, it could

be that fewer stages need to be executed for some images to

reach an acceptable level of confidence in results. We return

to this topic again when we describe challenges in back-end

scheduling that aims to maximize total utility of the service.

E. Run-time Inference

It remains to describe the challenges in implementing the

run-time inference service itself. The goal is to perform

inference with a required degree of quality. The service would

accept data from end devices that choose to offload inference

processing to the server, and return inference results together

with a confidence estimate. An important design consideration

is scalability, which calls for execution efficiency. Recent

studies on deep learning have shown that improvements in

result accuracy diminish with increased depth of the neural

network [2]. Hence, efficiency considerations suggest that once

the desired quality is achieved, the service should refrain from

executing additional layers.

One idea would be to schedule inference tasks in a way

that optimizes total utility. The resulting overall run-time

inference architecture is described in Figure 1. As shown in

Figure 1, the deep neural network is separated into multiple

layers. These layers are grouped into a small number of stages

(of multiple layers each). At the end of each stage, a thin

softmax function layer is attached to compute a classification

at selected internal layers, as well as confidence in such

classification. The scheduler determines how many stages to

execute to avoid diminishing returns. More on the scheduling

challenge is discussed below.

1633

Trained with Confidence Calibration

...
...

Stage 1 Stage 2 Stage 3

Classifier Classifier Classifier

Dynamic Confidence Curve

Stage 1 Stage 2 Stage 3

Classifier Classifier Classifier

Dynamic Confidence Curve

Stage 1 Stage 2 Stage 3

Classifier Classifier Classifier

Dynamic Confidence Curve

Stage

P
re

d
ic

ti
o

n
 C

o
n

fi
d

e
n

ce

Stage

P
re

d
ic

ti
o

n
 C

o
n

fi
d

e
n

ce

Stage

P
re

d
ic

ti
o

n
 C

o
n

fi
d

e
n

ce

S
ch

e
d

u
lin

g
 A

lg
o

ri
th

m

Fig. 1: The overview of Deep Intelligence as a Service.

III. SYSTEM SUPPORT AND SERVICE UTILITY

MAXIMIZATION

While the previous section described service-level challenges

in implementing basic intelligence as a service, this section

describes challenges in the underlying system support. Specif-

ically, we focus on scheduling on the server. The challenge in

scheduling comes from the fact that the level of difficulty of

inference tasks in deep learning engines is heavily influenced

by the input data. For example, identifying a face in a picture

could be a very easy or a very difficult task, depending on the

picture. As alluded to above, one therefore needs to customize

the executed neural network depth to each data item received.

At some point, execution of additional layers reaches a point of

diminishing returns and the priority of such execution should

be reduced. This customization needs coordination between

the service and the underlying scheduler.

We argue for implementing a utility-maximizing scheduler

for Eugene’s inference tasks to improve the cost and scalability

of the service. The goal of the scheduler would indeed be to

choose the best inference depth for each task such that the

overall utility is maximized. For a proof of concept of such a

scheduler, we implemented a greedy algorithm that picks the

next task stage to execute such that the maximum increase

in accrued utility is achieved. The algorithm starts from an

empty set. In each step, the algorithm picks a stage of a

task with the maximum differential utility (where utility in

our implementation is set equal to the estimated confidence in

results). This selected stage is added to the future timeline.

A lookahead parameter, k, specifies how many items will

be added to the timeline before the scheduler quits. When

the timeline has been executed, the algorithm restarts again

with the most recent utility estimates given the current partial

execution, and selects the next k stages.

The scheduling framework is implemented in user space.

Implementing the scheduler in user space solves two key

concerns. First, it does not require changes to the operating

system, making it portable to more platforms. Second, it

enables us to integrate the scheduler with widely deployed

deep learning libraries. Specifically, we integrate it with

TensorFlow [10]. For historic reasons, we call the Eugene
scheduler RTDeepIoT.

To prevent unbounded delays, the scheduler can accept a

latency constraint that specifies how long a given task can

stay in the system before its execution needs to be finished.

A daemon process monitors the elapsed time for each task.

If the elapsed time for a task exceeds the maximum latency

constraint, the daemon process will send a signal to stop the

current computation. The process is returned to the pool and

is made available to handle new requests. No utility is accrued

for tasks that are not completed. The interaction between the

scheduler and the service framework is thus as follows:

1) Input data arrive with requests for inference. They are

assigned to one of a pool of waiting processes. The utility

of executing the next stage is computed by the service.

2) The scheduler updates its estimate of utility of future

stages and recomputes the set of stages to execute next.

3) When a stage is finished, the process sends the updated

confidence value in results of subsequent stages to the

scheduler.

4) If the process finishes all the stages of the current

inference task, it goes back to the pool and waits for

new assignments.

5) If the process cannot finish by the deadline, it will be

interrupted by the daemon process, and forced to return

to the pool.

Two challenges arise in implementing the above scheduler:

• Confidence estimation: How to estimate confidence in

neural network outputs at intermediate layers?

• Dynamic utility curve updates: How to adapt the utility

curve dynamically over time?

We discuss these two functions in more detail in the following

subsections.

A. The Utility Metric: Confidence
Consider a classification problem as a running example of

an inference task performed by a deep neural network. The

output of a neural network classifier is a vector of probabil-

ities, where the largest probability is called the classification

confidence. Ideally, a well-calibrated classification confidence

should be equal to the actual likelihood of classification

correctness. Unfortunately, most deep learning systems are not

well-calibrated in that sense. With the growing capability and

advances in deep learning, although classification accuracy

has greatly improved, the classification confidence is not as

accurate [11].
The calibration of confidence can be visually represented

by the reliability diagram [12]. As shown in Figure 2, the

diagram plots expected classification accuracy as a function of

confidence. If the neural network is perfect, then the diagram

should plot the identity function. Any deviation from a perfect

diagonal represents miscalibration.
In order to represent the degree of miscalibration with a

scalar that summarizes statistics of calibration, we introduce

1634

the metric, Expected Calibration Error (ECE) [13]. First, we

group classification results into M bins with equal-width 1/M .

We denote Sm as the set of samples whose classification

confidence falls into the interval ((m − 1)/M,m/M]. Then,

we can define the average accuracy of Sm as:

acc(Sm) =
1

|Sm|
∑

Si∈Sm

�(ŷi = yi), (1)

where ŷi and yi are the predicted and true label of sample Si.

Next, we define the average confidence of Sm as:

conf(Sm) =
1

|Sm|
∑

Si∈Sm

pi, (2)

where pi is the classification confidence of sample Si. The

ECE metric is defined as the weighted average of the differ-

ence between average accuracy and confidence in M bins.

ECE =

M∑

m=1

|Sm|
m

∣∣∣acc(Sm)− conf(Sm)
∣∣∣. (3)

Accurate confidence estimation has drawn growing attention

in recent studies [6], [14], [15]. However, existing efforts tend

to either underestimate or overestimate the confidence [14],

[15]. We denote by S the set of all samples. When acc(S) <
conf(S), the neural network tends to underestimate the

classification results. When acc(S) > conf(S), the neural

network tends to overestimate. The target is to make acc(S) ≈
conf(S) and ECE → 0.

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Confidence

Ouput
Gap

(a) Without confidence calibration

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Confidence

Ouput
Gap

(b) With the entropy-based calibration.

Fig. 2: The reliability diagrams of ResNet on CIFAR-10.

A natural metric to control the classification confidence is

entropy, H(pi), where pi is the vector of confidences over

all targeted classes. Therefore, we propose a simple entropy-

based regularization method for confidence calibration with

fine-tuning. We reformulate the loss function of the fine-tuning

process as:

L = CE(pi,yi) + α ·H(pi), (4)

where CE(·, ·) is the cross entropy; yi is label of sample i in

one-hot representation; and α is the hyper-parameter for the

entropy regularization. Tuning the value of α is simple. When

the confidence underestimates the accuracy, we set α < 0 and

vice-versa. Our confidence calibration method is simple but

works well in practice. Its evaluation is presented later in this

paper.

B. Dynamic Utility Updates

We define the utility of executing a stage (of a task)

as the expected increase in output confidence if the stage

is executed (compared to the confidence in output before

the stage is executed). In the previous section, we described

how confidence is estimated once a stage is executed and

its output obtained. It remains to describe how to estimate

confidence in future stage outputs before these stages are

executed. We predict confidence in results of future stages

using regression models that relate computed confidence in

results of previously executed stage(s) to predicted confidence

in results of future stages. Specifically, we choose the Gaussian

process regression model [16]. We made this choice for two

reasons. First, the Gaussian process model is the state-of-the-

art regression model. Second, Gaussian processes produce a

Gaussian distribution as the output, from which we can easily

compute the mean value and desired confidence intervals.

Using this approach, we gradually refine confidence dur-

ing the execution of inference algorithms. At the beginning,

predicted confidence in results is the same for all tasks, and

is based on overall statistics computed from training data.

However, as tasks compute results at intermediate stages, each

task obtains an updated confidence in computed results and is

thus able to update its estimate of confidence in subsequent

stage results using the aforementioned regression model.

For a three-stage neural network, as shown in Figure 1,

we train three Gaussian process regression models, p̂
(2)
i =

GP1 2(p
(1)
i), p̂

(3)
i = GP1 3(p

(1)
i), and p̂

(3)
i = GP2 3(p

(2)
i),

where p
(l)
i denotes the classification confidence of sample i

at neural network stage l. These regression models are learnt

from the confidence curves of training data.

However, Gaussian process is notorious for its long infer-

ence time, which is unacceptable for a runtime predictor. For-

tunately, the inputs of these gaussian models are bounded, i.e.,
p
(l)
i ∈ [0, 1]. Therefore, we can approximate these complex

Gaussian process regression models with simple piece-wise

linear functions with two steps:

1) profiling the Gaussian process regression model with a

set of input confidences, {0, 1/M, · · · , 1}.
2) connecting these profiling points with a piece-wise linear

function.

Thus, we can use these computationally efficient piece-wise

linear functions at runtime for updating future stage confidence

estimates dynamically.

1635

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

C
o

n
v

 Laye
r

Classifier Classifier Classifier

+ + + + + + + + +

Fig. 3: The illustration of three-stage ResNet.

With predicted future confidence computed, we have all

we need to do utility maximizing scheduling. As mentioned

earlier, the scheduler picks the stage of a task whose execution

will increase predicted confidence in results (i.e., utility) the

most. Under certain conditions (submodular utility curves and

equal stage execution times), the scheduler optimizes global

utility of the service.

C. A Proof of Concept

The feasibility and efficacy of training [4], automatic la-

beling [8], model reduction [5], and profiling [9] functions

have recently been studied and reported in the respective

citations. Hence, below, we focus on the exploitation of trained

networks; namely, the combination of quality estimation, infer-

ence, and run-time scheduling. We test these functions in the

context of an image recognition service, implemented based on

a state-of-the-art convolutional neural network (CNN) struc-

ture; namely, residual neural networks (ResNet). As shown in

Figure 3, compared to traditional CNNs, ResNets add extra

shortcut connections between convolutional layers. The whole

ResNet is divided into three stages. Except for the bottom

convolutional layer on the left side, each stage consists of

six convolutional layers with three residual shortcut connec-

tions. At the end of each stage, a simple softmax classifier

is appended, using the end-of-stage aggregated features for

classification. The network was trained on the CIFAR-10

dataset with 50000 training images.

The scheduler spawns a pool of worker processes. These

processes wait on input images to arrive. Each image rep-

resents a task submitted to the system. When an input image

arrives, it is assigned to a process in the pool. The process runs

the aforementioned deep neural network on the new input. The

execution of the process features an explicit separation into

stages. A stage might contain multiple layers. When finished,

each stage will output a tuple in the form (predicted value,
confidence). Predicted value is the classification result from

the current stage, specifying the most likely classification.

Confidence describes the likelihood that this classification is

correct. For example, a picture can be classified as a cat,

dog, or cow, with probabilities 0.6, 0.3, and 0.1, respectively.

The classification result is then (“cat”, 0.6). The confidence
in classification will then be sent to our user-level scheduler

through a named pipe in linux. When a task is finished, the

corresponding process is returned to the pool.

Note that, since our greedy algorithm tends to choose stages

with the maximum incremental utility for future execution,

tasks with lower initial classification confidence values tend

to be selected for another execution stage. This has the side-

effect of attaining better fairness as well.

To verify the effectiveness of this scheduling algorithm, we

test the scheduler with several processes running the afore-

mentioned residual neural network. Each process classifies

images from the CIFAR-10 dataset, not included in the training

set. The dataset contains images of 10 classes. Images arrive

in a randomly shuffled order. The workstation that runs the

scheduler and the classification processes has 8 Intel i7-4770

CPUs, with 32 GB memory. The evaluation is performed under

Ubuntu 16.04 with kernel version 4.13. The residual neural

network is implemented on TensorFlow 1.4.0.

Confidence Calibration & Dynamic Updates: In this exper-

iment, we compare the following three confidence calibration

methods:

1) RTDeepIoT: It refers to the entropy-based confidence

calibration method described in Equation (4).

2) RDeepSense: A state-of-the-art confidence calibration

method with dropout operations [6].

3) Uncalibrated: The original confidence estimates without

calibration.

The resulting ECE metric, defined in Equation (3), is

shown in Table II. RTDeepIoT achieves the smallest ECE
among all three stages, even compared to the state-of-the-

art RDeepSense method. The evaluation results show that the

proposed simple entropy-based confidence calibration method

can provide a good estimation of classification accuracy,

making it possible for the RTDeepIoT scheduler to optimize

utility in a more informed fashion.

TABLE II: The ECE of confidence calibration methods with
three-stage ResNet on CIFAR-10 dataset .

Uncalibrated RDeepSense RTDeepIoT

Stage 1 0.134 0.058 0.010
Stage 2 0.146 0.046 0.012
Stage 3 0.123 0.054 0.008

Next, we evaluate the quality of prediction of confidence in

results of future execution stages, based on the three regression

models, p̂
(2)
i = GP1 2(p

(1)
i), p̂

(3)
i = GP1 3(p

(1)
i), and p̂

(3)
i =

GP2 3(p
(2)
i). The evaluation results on Mean Absolute Error

(MAE) and coefficient of determination (R2) are shown in

Table III. Overall, the method provides acceptable prediction

1636

2 5 10 20
65

70

75

80

85

90

Number of Concurrent Tasks

Se
rv

ic
e

A
cc

ur
ac

y
M

ea
n

(%
)

RR

(a) The mean of service classification accuracy
over RTDeepIoT-k and RR.

2 5 10 20
60

65

70

75

80

85

90

Number of Concurrent Tasks

Se
rv

ic
e

A
cc

ur
ac

y
M

ea
n

(%
)

FIFO

(b) The mean of service classification accuracy
over RTDeepIoT-1, RTDeepIoT-DC-k, and FIFO.

2 5 10 20
0

2

4

6

8

10

12

14

Number of Concurrent Tasks

Se
rv

ic
e

A
cc

ur
ac

y
St

d
(%

)

RR
FIFO

(c) The standard deviation of service classification
accuracy.

Fig. 4: The scalability test for scheduling algorithms with ResNet on CIFAR-10.

result. As the number of finished stages increases, the dynamic

prediction improves. That’s to say, GP2 3 has the lowest error,

since it is used after the first two stages have already been

executed, thereby offering more accurate predictions in the

results of stage three.

TABLE III: The Mean Absolute Error (MAE) and coefficient of
determination (R2) of dynamic confidence curve prediction for

three-stage ResNet on CIFAR-10 dataset .

GP1 2 GP1 3 GP2 3

MAE 0.124 0.108 0.072
R2 0.57 0.43 0.78

Runtime Scheduling: Next, we evaluate the effectiveness

of the run-time scheduler that attempts to optimize utility

by picking the stage that maximizes the increase in pre-

dicted confidence next. Specifically, we compare the following

scheduling variants:

1) RTDeepIoT-k: this is our novel scheduler, where k the

lookahead parameter mentioned in Section III.

2) RTDeepIoT-DC-k: this is a simplified variant of our

scheduler. Instead of using dynamic confidence updates,

it assumes that the confidence will continue to increase

with the same slope. Therefore, it uses the confidence

increase in the current stage as the predicted increase per

each of the future stages.

3) RR: this is a stage-level round-robin scheduling algo-

rithm. The scheduler will select a stage to run among

all the deep learning services in a round-robin manner.

4) FIFO: this is a FIFO scheduling algorithm, where the

scheduler runs the deep learning service on images in a

first come first served manner, and runs all stages to the

end.

The results of the experiment are shown in Figure 4 (where

for readibility we break the baselines into two subsets and

compare them in two different subfigures). Both show that

our scheduling policy does better than simpler baselines,

especially FIFO and RR scheduling. The standard deviation

of classification accuracy is shown in Figure 4c. It reveals

divergence between two types of algorithms. A lower deviation

means better fairness. Our scheduling algorithm can balance

the computation fairly, even with a very biased utility curve.

IV. NEXT: COLLABORATIVE INFERENCING

The services described until now operate largely in a per-
device fashion. Services such as training, compression, caching

or profiling are offered to each individual IoT device’s neural

network pipelines. However, in many environments, IoT de-

vices are not deployed individually, but rather as a collection
of possibly heterogeneous nodes that together support an

application. In this distributed environment, how can one

support such collaborative inferencing?

A. Distributing the Inference Model

In the simplest case, the multistage nature of neural net-

works allows for an interesting possibility to share the load

between clients and servers (besides caching, described earlier

in the paper). Namely, in performing inference, it may be

possible to execute some stages of the neural network on

the client, leaving other stages to execute on the server. If

the confidence in results obtained on the client is sufficiently

high, no subsequent offloading to the server is needed. Other-

wise, processing continues on the server. The approach raises

questions regarding optimal partitioning of the model between

the client and server. An ideal partitioning should maximally

reduce client reliance on remote processing on the server,

while observing client-side resource constraints as well as

communication bandwidth constraints between the client and

server.

An extension of this collaboration model is one where

multiple distributed sensors (the clients) contribute data to be

collectively used as input to the inference process. In one

realization, clients would send their raw data to the server.

The server would execute the entire neural network model on

received data from all clients in order to compute inference

results. In many cases, however, it may be more efficient for

clients to execute some part of the inference network locally

on their own data then send intermediate results to the server

to continue model execution remotely. In the latter case, how

should the inference model be partitioned among nodes in the

distributed system? Optimal partitioning can take into account

1637

Fig. 5: Collaborative IoT (Camera) environment & Deep
Inferencing Pipelines.

resources available on individual nodes, communication band-

width among them, as well as any end-to-end requirements

such as maximum allowable latency. Viewing neural network

models as the intermediate code representation for a virtual

machine implies potential for great flexibility in how execution

is partitioned in the distributed system. Adaptive algorithms

are needed to maximally exploit this flexibility (e.g., in mobile

or dynamic environments) where connectivity, power, and

other local resources may change over time.

B. Orchestrating Collaboration

A more interesting form of cooperative processing is one

where the distributed devices cooperate to mutually enhance

each other’s performance. For example, two cameras may

realize that they are looking at the same target (e.g., because

of the way they are positioned, and because of the location of

the target in their respective fields of view). Hence, rather than

performing target classification twice in two independent tasks,

each running on inputs from one of the cameras, it might be

possible to join the tasks for better accuracy. How and when

should one perform such a join to best enhance classification

results based on the collective data of both cameras? Note

that, individually, the two cameras might not have enough

information to conclude that they are observing the same

target (e.g., they might not know that they have overlapping

fields of view). However, the server, observing classification

outputs of the two cameras over time, may conclude that their

fields of view are indeed overlapping. This knowledge can

thereafter be used to determine if their outputs should be

processed jointly to improve accuracy of classification. The

same wisdom may apply to sensors of different modalities,

such as microphones and vibration sensors. In short, an edge

server offering intelligence as a service for a number of

IoT devices may serve the additional function of discovering

correlations among their data (e.g., inferred from correlations

in produced labels) that can thereafter be used to reconfigure,

and possibly re-train, the neural network model to better

exploit the data from these correlated sources.

Consider, for example, a set of surveillance video cameras,

deployed across a smart university campus (as illustrated in

TABLE IV: Collaborative Deep IoT Inferencing
Approach Detection Accuracy Recognition Latency

Individual 68% 550 msec

Collaborative 75.5% 25 msec

Figure 5) to support applications such as people counting
(estimating the aggregated occupancy in different parts of the

campus) or people tracking (capturing the movement trajectory

of a specific individual throughout the campus). Convention-

ally, we can envisage that each camera operates as an isolated
IoT device, applying state-of-the-art DNN-based techniques,

such as MobileNet Single-Shot Detectors (SSD) [17], to per-

form object (people) detection, followed by object (people)

identification, on each frame. Such an approach, however, has

two limitations: (a) poor processing efficiency: executing 2

independent DNNs even on a specialized edge node (e.g., In-

tel’s MovidiusTMneuromorphic co-processor) consumes ≈ 550
msecs/frame, implying a processing throughput ≤ 2fps; (b)

lower accuracy: individual cameras may often be affected by

specific context-based artifacts (e.g., occlusions, poor lighting)

that impair the object detection process.

To overcome these limitations, it is possible to explore

the notion of collaborative inferencing, where the inferencing

pipelines of different IoT devices exchange state information
in near real time and subsequently adapt their individual execu-

tion logic. As a specific illustrative example, consider Figure 5,

where each camera has a field-of-view (FoV) with varying

degrees of overlap with neighboring cameras–e.g., cameras B

and C both observe two individuals and a tree (from different

perspectives) concurrently. In this scenario, the cameras may

collaborate to improve their overall operational efficiency and

accuracy. For example, one camera that detects individual

bounding boxes (individuals) in its FoV may share those

bounding box coordinates with its neighboring cameras. The

other peer cameras can then supplement their own DNN-based

inferences with these additional object coordinates (suitably

remapped to a common coordinate space) to improve both

their detection accuracy (for people counting) and reduce their

processing latency (for individual tracking).

The collaborative paradigm described above was evaluated

with the PETS dataset [18], consisting of 8 outdoor cameras.

Table IV summarizes the performance differences between

the baseline (non-collaborative) vs. the collaborative deep

inferencing approach. We see that such collaboration is indeed

beneficial: it increases the people counting accuracy by ≥8%,

and achieves a 20-fold reduction in the average per-frame

processing latency.

C. Services for Collaborative Inferencing

To realize the benefits of such collaborative deep inferenc-

ing, we believe that it will be important to augment Eugene
to provide several new forms of functionality. These include:

• Collaboration Brokering: The collaborative video moni-

toring example provided earlier implicitly assumes that

the cameras are aware of each other’s identity & the

1638

extent of FoV overlap. Note that such overlap need

not be concurrent: one can envisage future scenarios

where the camera views are temporally correlated with

a variable lag-e.g., two corridors at two ends of a cam-

pus building corridor are likely to observe the same

individuals 20 seconds apart. To easily support such

dense IoT deployments, it is necessary to discover such

correlations, and establish the identity of collaborators,

in a more autonomous fashion. This is where Eugene
can step in: by operating on the metadata & higher-level

inferences from individual nodes, Eugene can discover

and establish the relevant collaboration parameters–e.g.,

instructing cameras A & B to apply the collaborative

tracking mechanism discussed above, but with a time

lag of 20 seconds. Developing suitable mechanisms that

uncover such useful spatiotemporal correlations among

IoT devices, while satisfying the requirements of low

communication overheads and privacy, is an open chal-

lenge.

• Resilient Collaboration: Collaborative deep inferencing,

however, introduces a new form of failure: their oper-

ation is vulnerable to incorrect or malicious behavior

by individual IoT nodes. For example, false or noisy

bounding box estimates by one camera can reduce the

people detection accuracy of other peer cameras by over

20%. To promote practical use of such collaboration

paradigms, Eugene must also provide resiliency services
that provide protection against such adversarial behavior.

One can imagine a future where Eugene continuously

monitors the output inference streams, and the internal

parameters of relevant deep pipelines, of individual IoT

devices to first (a) proactively uncover faulty operational

situations and subsequently (b) provide suitable pipeline

modifications to compensate for such faults.

V. CONCLUSIONS AND FUTURE WORK

This paper envisioned (and described the current status of)

a novel service model, called “intelligence as a service”, to

empower future IoT applications, where simple devices with

sensing capabilities offload their machine intelligence needs

to the cloud or to an edge server, possibly caching reduced

models. We focused on deep learning as the state of the art

enabler of machine intelligence. Several service components

were presented together with related challenges at both train-

ing and inference time. As an example of system support for

this service, a scheduler was described that optimizes service

utility. Preliminary evaluation results were reported, as well as

opportunities for further work; most importantly, collaborative

inferencing.

The work opens many related research opportunities. For

example, the paper did not explicitly discuss service models

and APIs. Where will training data and labels come from?

One service model would be to define data pools (e.g., the

“Downtown Mall’s Security Cameras Pool”). Only devices

authorized to contribute to the pool can add data and/or labels

to it for purposes of neural network model training.

A question that arises when multiple devices collaborate

on the same data is how to handle rogue devices (or insider

attacks) that gain access to the data for the purpose of polluting

the pool with adversarial inputs (e.g., bad samples or wrong

labels)? Some form of anomaly detection may be needed in

order to identify input samples that differ from the rest. For

example, if samples arriving from one of the devices are often

misclassified based on models computed from other devices’

data, then one may suspect rogue behavior. Efficient solutions

are needed to implement such tests given that the number

and identity of rogue devices are unknown. How to handle

malicious devices that mix bad inputs with some amounts of

good data to avoid suspicion?

The service, as described in this paper, treats all client

devices alike and aims to offer fairness (e.g., imposes the

same maximum allowable latency constraint on all tasks). In

reality, different applications will have different demands and

constraints. For example, an interactive voice chatbot might

have significantly tighter latency constraints than an intru-

sion detection camera. A few seconds of delay in detecting

suspicious behavior is tolerable, but a similar delay before

each response in an interactive conversation might be very

distracting. The scheduler described in this paper needs to be

modified to support multiple service classes and account for

different execution cost and constraints. An appropriate pricing

structure may be needed that is informed of the true resource

cost imposed by clients of each class on the service.

We hope the work reported in this paper will help produce

early prototypes of machine intelligence services for IoT

systems, and contribute to the realization of a new smart

edge, where each device appears endowed with unlimited

knowledge and intelligent behavior. Indeed, understanding the

true potential, capabilities, and limitations of intelligence as

a service may be the first step towards revolutionizing our

interactions with physical surroundings in the near future. The

authors hope that this paper makes a step towards such an

understanding, if only by formulating some of the questions

whose answers are to be understood.

ACKNOWLEDGEMENTS

This material is supported partially by the National Research

Foundation, Prime Minister’s Office, Singapore under its In-

ternational Research Centers in Singapore Funding Initiative.

The research reported in this paper was also sponsored in part

by NSF under grants CNS 16-18627 and CNS 13-20209 and

in part by the US Army Research Laboratory under Coop-

erative Agreements W911NF-09-2-0053 and W911NF-17-2-

0196. The views and conclusions contained in this document

are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied,

of the Army Research Laboratory, NSF, or the U.S. Govern-

ment. The U.S. Government is authorized to reproduce and

distribute reprints for Government purposes notwithstanding

any copyright notation here on.

1639

REFERENCES

[1] S. Yao, Y. Zhao, A. Zhang, S. Hu, H. Shao, C. Zhang, S. Lu,
and T. Abdelzaher, “Deep learning for the internet of things,”
Computer, vol. 51, no. 5, pp. 32–41, May 2018. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/MC.2018.2381131

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 82–97, 2012.

[4] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “Deepsense:
a unified deep learning framework for time-series mobile sensing data
processing,” in Proceedings of the 26th International Conference on
World Wide Web. International World Wide Web Conferences Steering
Committee, 2017.

[5] S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher, “Deepiot:
Compressing deep neural network structures for sensing systems with a
compressor-critic framework,” in Proceedings of the 15th ACM Confer-
ence on Embedded Network Sensor Systems. ACM, 2017.

[6] S. Yao, Y. Zhao, H. Shao, A. Zhang, C. Zhang, S. Li, and T. Abdelzaher,
“Rdeepsense: Reliable deep mobile computing models with uncertainty
estimations,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 1, no. 4, p. 173, 2018.

[7] N. D. Lane, P. Georgiev, and L. Qendro, “Deepear: robust smartphone
audio sensing in unconstrained acoustic environments using deep learn-
ing,” in Proceedings of the 2015 ACM International Joint Conference
on Pervasive and Ubiquitous Computing. ACM, 2015, pp. 283–294.

[8] S. Yao, Y. Zhao, H. Shao, C. Zhang, A. Zhang, S. Hu, D. Liu, S. Liu,
L. Su, and T. Abdelzaher, “Sensegan: Enabling deep learning for internet

of things with a semi-supervised framework,” Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol., vol. 2, no. 3, pp. 144:1–144:21,
Sep. 2018. [Online]. Available: http://doi.acm.org/10.1145/3264954

[9] S. Yao, Y. Zhao, H. Shao, S. Liu, D. Liu, L. Su, and T. Abdelzaher,
“Fastdeepiot: Towards understanding and optimizing neural network
execution time on mobile and embedded devices,” in Proceedings of
the 16th ACM Conference on Embedded Networked Sensor Systems,
ser. SenSys ’18. New York, NY, USA: ACM, 2018, pp. 278–291.
[Online]. Available: http://doi.acm.org/10.1145/3274783.3274840

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[11] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks,” arXiv preprint arXiv:1706.04599, 2017.

[12] M. H. DeGroot and S. E. Fienberg, “The comparison and evaluation of
forecasters,” The statistician, pp. 12–22, 1983.

[13] M. P. Naeini, G. F. Cooper, and M. Hauskrecht, “Obtaining well
calibrated probabilities using bayesian binning.” in AAAI, 2015, pp.
2901–2907.

[14] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning, 2016, pp. 1050–1059.

[15] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” arXiv preprint
arXiv:1612.01474, 2016.

[16] C. E. Rasmussen, “Gaussian processes in machine learning,” in Ad-
vanced lectures on machine learning. Springer, 2004, pp. 63–71.

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in ECCV, 2016.

[18] J. Ferryman and A. Shahrokni, “Pets2009: Dataset and challenge,” in
2009 Twelfth IEEE International Workshop on Performance Evaluation
of Tracking and Surveillance. IEEE, 2009.

1640

