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Abstract—This paper introduces a novel paradigm for re-
source management in distributed systems, called decision-driven
execution. The paradigm is appropriate for mission-driven sys-
tems, where the goal is to enable faster, leaner, and more effective
decision making. All resource consumption, in this paradigm, is
tied to the needs of making decisions on alternative courses of
action. A point of departure from traditional architectures lies
in interfaces that allow applications to specify their underlying
decision logic. This specification, in turn, allows the system to
reason about most effective means to meet information needs
of decisions, resulting in simultaneous optimization of decision
accuracy, cost, and speed. The paper discusses the overall vision of
decision-driven execution, outlining preliminary work and novel
challenges.

I. INTRODUCTION

This paper introduces a new resource management model,
suitable for the sensor rich, distributed, data intensive appli-
cations of the Internet of Things (IoT). We call it, decision-
driven execution. It re-thinks scheduling and communication
to consider application models that are more pertinent to the
emerging data-rich IoT environments.

In traditional control loops, a basic loop might contain
a sensor, controller, and actuator, used sequentially upon the
occurrence of a corresponding stimulus, leading to time-driven
and event-driven scheduling models (depending on whether the
control is to be executed periodically or upon occurrence of
events of interest). In contrast, the vision we entertain in this
paper is one motivated by the emerging world of connected
“things”, where sensors are ubiquitous and the number of
embedded sensing devices per user is very large. There might
not exist an a priori structure (such a fixed control loop)
statically imposed on these devices. Rather, they will generally
be connected to shared media, allowing flexible reconfiguration
to perform (both one-off and repetitive) tasks. For example,
consider the myriad of sensing, storage, and computing devices
that comprise a megacity’s cyber-infrastructure. Many sensors
will be embedded in the physical environment. Different
application tasks may need subsets of these devices. A sensor
is activated when the user needs to perform a task that needs
data from that sensor. Resources are marshalled only when a
relevant application needs to make a decision. In other words,
resource consumption is decision-driven.

The decision-driven execution paradigm offers an exciting
foundation for rethinking resource management, where the
purpose is to aid application tasks (such as controllers and
actuators) in making decisions on a course of action by
supplying requisite data and executing decision results. The
bulk of resource management in the system lies in arbitrat-
ing the acquisition and movement of data among processing
components. This arbitration is guided by a novel set of
questions. For example, what data would be more relevant
for making a decision? Which sensors are most appropriate
for collecting such data? When should the data be collected
to meet freshness needs of the decision? What data should
be cached in the distributed system, and which nodes should
store it to support aggregate decision needs most efficiently? At
least three conditions must be met by the resource management
algorithms; (i) the data collected for making a decision must
be of sufficient quality to support the decision, (ii) it should
be acquired sufficiently recently such that it is not stale by the
time the decision is made, and (iii) the decision made based
on collected data must meet the relevant decision deadline. A
distributed system that supports the decision-driven resource
management paradigm must optimize communication, storage,
and scheduling to meet these constraints.

Data that constitutes the primary objects of interest in
a decision-driven execution system implicitly links together
physical and cyber constraints. The data of interest typically
comes from sensors, and as such captures aspects of the
physical state of the world. Since world state is dynamic,
data objects have expiration time constraints after which they
become stale. The scheduling of data acquisition must obey
these constraints. At the same time, as stated above, decisions
have deadlines after which the window of opportunity to act
will have passed. The system should therefore be cognizant
of both the constraints arising from data freshness needs, as
well as those arising from decision deadlines. Both sets of
constraints are a function of models of the physical world.
Therefore, the combination of these sets of constraints leads
to interesting new scheduling problems, where the intellectual
innovations arise from simultaneously addressing requirements
from the cyber realm (e.g., resource capacity constraints) and
requirements from the physical realm (e.g., data freshness).

Recent work has made initial progress at solving the
above cyber-physical resource management problems [1]–[3].

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.318

898

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.318

1825



The work bears resemblance to prior database research that
considered explicit data access transactions and required a
degree of data freshness. However, a plethora of exciting new
research challenges remain that go beyond the above work.

The rest of this paper is organized as follows. Section II
describes the decision-driven system architecture. Section III
overviews decision-driven resource management challenges.
Section IV elaborates challenges in real-time scheduling that
arise in the decision-driven context. Section V details net-
working challenges. A proof of concept implementation and
evaluation are described in Section VI and Section VII, re-
spectively. A brief discussion of other remaining research
questions is presented in Section VIII. The paper concludes
with Section IX.

II. A DECISION-DRIVEN SYSTEM ARCHITECTURE

Below, we develop a general vision for what a decision-
driven resource management paradigm might look like, and
what components need to be involved. We begin by exploring
what a decision means. Clearly, a model of decision-making
is needed in order to develop a decision-centric execution
paradigm.

We start with simple models in order to lay an initial
groundwork for investigation. The choice of decision model
itself gives rise to interesting research questions that warrant
further attention. In the initial simple model, we view decisions
as choices of a course of action among multiple alternatives.
The viability of each individual alternative depends on the
satisfaction of several predicates. Making a choice can be
thought of as an evaluation of a logical expression of multiple
predicates. For example, “if it is (i) sunny and (ii) warm, I will
not wear a sweater”. Evaluating a predicate requires acquisi-
tion of corresponding evidence. Data objects such as images,
videos, or sound clips, generated by appropriate sensors, can
supply the needed evidence. Often, a piece of evidence (e.g.,
a picture that shows whether it is sunny or rainy) can be
supplied by any of several alternative sources, such as multiple
cameras overlooking the scene. In order to know how to furnish
data needed for a decision, our system must use models of
decisions (that specify the underlying logical expressions) and
models of sources (that specify who can supply which pieces
of evidence) to optimize delivery of objects that maximally
help the decision-maker choose the right course of action.

A decision-driven resource management system allows
applications to make queries we call decision queries, or
decision tasks, that request information needed for a decision.
The system comprises nodes that contribute, request, or help
forward data needed for these decisions. It manages the acqui-
sition of evidence needed to evaluate the viability of different
courses of action involved in decision-making. By accounting
for models of decisions and sources, the system carries out
the required information collection and transmission in a more
efficient and timely manner to support decision making.

A. Exploiting Decision Structure: An Illustrative Example

A key innovation of the decision-driven system lies in
a novel query interface that allows applications to express
decision needs in a manner that helps the resource management
components properly priorite data acquisition. Specifically, a

query may specify a logical expression that describes the
decision structure. This expression specifies the predicates that
need to be evaluated for the corresponding choice (of a course
of action) to be made. In this model, there are no limits on
the types of queries that can be expressed as long as they can
be represented by Boolean expressions over predicates that the
underlying sensors can supply evidence to evaluate.

There are many possible ways that such expressions could
be obtained. In many applications, especially those involving
liability or those where human teams must operate efficiently
under adverse or dangerous conditions, a well-prescribed op-
eration workflow is usually followed. The workflow specifies
how individuals should act, under which conditions a given
course of action is acceptable, and what checks must be done
before emparking on an action. Training manuals, rules of en-
gagement, doctrine, standard operating procedures, and similar
documents describe these workflows, essentially documenting
acceptable decision structures. Decision logic could also be
learned by mining datasets that describe conditions observed
and decisions taken on them by an authority. Such an approach,
for example, may be used to reverse-engineer strategy used by
an expert or by an adversary. Finally, in some cases, decision
logic could be algorithmically derived. For example, in a
vehicular navigation application, the driver will generally seek
a route that satifies some machine-checkable property, such as
a condition on expected commute time, quality of route, or
length of commute. Hence, the logic for the decision on route
from alternatives on a given map is known. An interesting
research question is: given the logical decision structure (i.e.,
the graph of logical predicates to be evaluated to arrive at a
course of action), how best to deliver the requisite information?

Let us look at a toy example to help make the picture more
concrete. Suppose after an earthquake that hits our smart city,
there is a shortage of air support, and an emergency medical
team needs to transport a severely injured person from an
origin site to a nearby medical center for surgery. There are
two possible routes to take: One composed of segments A–
B–C, and the other of segments D–E–F . We need to make
sure that the chosen route is in good enough condition for our
vehicle to pass, so we want to retrieve pictures from deployed
roadside cameras in order to verify the road conditions and aid
our decision-making on which route to take. Our route-finding
query can be naturally represented by the logical disjunctive
norm form (viable(A)∧viable(B)∧viable(C))∨(viable(D)∧
viable(E)∧viable(F )), where viable(X) represents the pred-
icate “route segment X is viable”. This expression signifies
that at least all segments of one route need to be viable for the
transport to occur. In this example, if road segments A, B and
C all turn out to be in good condition, then the first route is
viable, and there is no need to continue retrieving pictures for
road segments D, E, and F . Similarly, if a picture of segment
A shows that it is badly damaged, we can skip examining
segments B and C, as this route isn’t going to work anyway.
Instead, we can move on to explore segments D, E, and F .

As is evident from this toy example, exploiting decision
structure (represented by the Boolean expression) enables us
to take inspiration from heuristics for short-circuiting the
evaluation of logical expressions to schedule the acquisition
of evidence. Specifically, we can acquire evidence in an order
that statistically lowers expected system resource consumption
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needed to find a viable course of action. By incorporating
additional meta-data (e.g., retrieval cost of each picture, data
validity intervals, and the probability of each road segment
being in good or bad condition), we can compute retrieval
schedules that better optimize delivery resources expended to
reach decisions. This optimization, indeed, is the main research
challenge in the decision-driven execution paradigm.

This optimization must consider both physical and cyber
models. On one hand, models of the underlying physical
phenomena are needed to correctly compute inputs such as
data validity intervals (how long can one consider measure-
ments of given physical variables fresh), and environmental
conditions (e.g., probablities that some measurements not yet
acquired will fall into a range that invalidates versus supports
a predicate). One the other hand, models of computing and
communication resources are needed to understand how much
bandwidth and compute power are available for data collection
from the physical world.

The latter models can be obtained from network and other
resource monitoring. The former are more difficult to obtain.
They can be learned over time or derived from the physical
nature of the phenomena in question. For example, temperature
does not change very quickly. Hence, the validity interval of
a temperature measurement could be of the order of large
fractions of an hour. On the other hand, state during an active
emergency, such as a burning building, can change on the
order of minutes. Hence, its validity interval is much shorter.
It is also possible for external events to invalidate freshness
of variables. For example, the existence of a resource, such a
bridge across a river, can be assumed to hold with a very large
validity interval. However, a large earthquake or a military
air-raid may invalidate such past observations, making them
effectively stale and in need of being re-acquired from sensors.
The same applies to learned probabilities of conditions. The
probability of traffic congestion on some freeway at 11pm
on a Monday night might be known. However, a condition,
such a nearby large concert that ends around the same time,
can invalidate it. In general, a combination of past contextual
knowledge, current observations, and invalidations will be
needed to operationalize the physical models.

Lowering the data acquisition costs of decisions involves
carrying out an optimal collection strategy given the resources
available and the underlying physical models, such that a
measure of decision correctness is maximized, while cost is
minimized. If some contextual information needed for the
models is not known, the optimization may proceed without it,
but the quality of solutions will be lower, generally entailing
a less than optimal resource cost. The sensitivity of decision
cost to the quality of models supplied is itself an interesting
research problem.

B. System Abstractions and Components

The decision-driven execution system represents the phys-
ical world by a set of labels (names of Boolean variables).
These labels can be used in expressions of decision logic
structures. The system maintains tuples of (label, type, value),
where label is just an identifier (i.e., variable name), the
type specifies the semantic type of the label (for example,
“road condition”), and value could be true, false, or unknown.

The system can be easily extended to more general types
(other than Boolean). More general discrete variables can be
implicitly represented by sets of labels, one label for each
allowed value of the variable, with the restriction that only
one of these can be true at a time. Continuous variables can be
supported as long as actions are predicated on some thresholds
defined on these variables. For example, the decision to turn the
lights on in a smart room can be predicated on the value of an
optical sensor measurement dropping below a threshold. This
is a Boolean condition whose evaluation result can be stored
in a variable labeled, say, Dim. The pool of labels itself can
be dynamic. New applications can add new labels (and new
categories of labels) to the pool and specify sensing modalities
needed to determine label values. For instance, in the routing
example above, the predicate viable(X) can be represented by
the label viableX , denoting a Boolean variable of value true
(if the route segment is viable) or false (if it is not). The route
selection decision is associated with labels viableA, viableB,
..., viableF .

To determine the value of a label (e.g., whether conditions
of a road segment make it a viable candidate), evidence must
be collected. An example of such evidence might be a picture
of the corresponding road segment. We call such evidence
items evidence objects or simply data objects, where it is clear
from context that the data in question offers evidence needed
to evaluate a logical predicate in the decision structure.

Evidence objects are data objects needed for deciding the
value of labels. Entities that examine evidence in order to
determine the value of a label are called, in our architecture,
annotators. For example, an annotator could be a human
analyst receiving a picture of route segment A, and setting the
corresponding label, viableA, to true or false, accordingly. Al-
ternatively, an annotator could be a machine vision algorithm
performing the same function. In general, annotators should
advertise the type of evidence objects they accept as input, and
the types of labels they can accordingly compute. Clearly, the
same object can be used to evaluate several different labels. For
example, a picture of an intersection can be used to evaluate
physical road conditions. However, it can also be used to detect
specific objects such as individual vehicles, license plates, or
pedestrians, or used to estimate values such as length of traffic
backup, traffic speed, or congestion level.

Another key component of the decision-driven resource
management paradigm is the data sources. Sources that orig-
inate data, such as sensors, must advertise the type of data
they generate and the label names that their data objects help
resolve. For example, a source might offer pictorial evidence of
road conditions. Such a source would advertise both its data
type (say, JPEG pictures) and the specific geographic locale
covered. In the route discovery example, this source would
need to be paired with an annotator that can accept pictures
as input and determine viability of road segments within that
geographic locale.

Finally, an important component is network storage or
caches. The decision on mapping data and computation to
network nodes in a distributed execution environment is a clas-
sical problem in distributed computing systems. This problem
must be solved in the context of a decision driven execution
as well. Content (both data objects and annotation labels)
should be cached at nodes closer to consumers who might need
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these objects and labels for their decision-making. Similarly,
annotators will need to execute on nodes that are close to
consumers needing the annotations. The placement of data and
computational modules in the network to minimize decision
cost remains an open problem.

The aforementioned architecture effectively changes the
query paradigm from specifying what objects to retrieve to
specifying why they are needed; that is to say, how they fit
in the logic used to make a decision. This shift is thanks to
sharing the structure describing the query’s decision logic. Evi-
dence objects are needed to resolve predicates named by labels
in that decision logic. The architecture allows the network to
be much smarter when answering a query. Being aware of the
logical decision structure, the resource management system
can allocate resources to seek evidence that helps evaluate
the decision expression at the lowest cost. As alluded to in
the introduction, we can take inspiration from literature on
optimizing the evaluation of logical expressions to determine
which labels should be evaluated first and which sources
should be contacted for the corresponding evidence. In turn,
this determination informs resource allocation, such as policies
for scheduling/queuing of object retrieval requests, policies
for caching of results, and choices governing invocation of
annotators.

C. A Walk Through the Execution of a Decision Query

Putting it all together, when a user makes a decision
query, at a high level, query resolution works as follows.
The system first determines the set of predicates (i.e., labels)
that is associated with the query from the underlying Boolean
expression that describes the decision logic. This is the set of
labels whose values need to be resolved. The query source then
needs to determine the set of sources with relevant evidence
objects. If multiple sources offer redundant evidence, some
arbitration is needed to determine who to contact. A scheduling
algorithm must decide on the order in which evidence objects
must be retrieved to evaluate the different labels.

The system must manage caching. Say, the query source
decides to resolve the value of the label, viableX . If the label
has already been evaluated in the recent past (because of a prior
query), its evaluation may be cached in the network, in which
case the resolved value can be found and returned. This is the
cheapest scenario. Otherwise, if the evidence object needed
to evaluate the predicate has been recently requested (but
the corresponding label not evaluated), the requested object
may be cached. Such might be the case, for example, when
the object was requested to evaluate a different predicate.
The cached object needs to be sent to the right annotator
to determine the label value relevant to the current query.
Otherwise, if the objects is not cached or is stale, the query
should be propagated to a source that has fresh relevant objects.
The relevant object is then shipped to an annotator that decides
label values. Both the object and the computed new labels are
cached in the network with a freshness interval that specifies
their validity for future use. Next, we outline the research
challenges that must be addressed in realizing this architecture.

III. DECISION-DRIVEN RESOURCE MANAGEMENT:
OPTIMIZING RETRIEVAL COST

Initial work on decision-driven resource management was
recently published in the context of centralized systems [3],
[4]. It needs to be extended to a more general decision model
and to distributed resource management. Consider a workload
model, where tasks consume resources to make decisions, each
represented by a logic expression in disjunctive normal form
(OR of ANDs). Let {ai} denote the set of alternative courses of
action for the ith decision, and {bij} denote the jth Boolean
condition needed to determine the value of ai. Therefore, a
query q takes the general form:

q = (b00 ∧ b01 ∧ . . .)︸ ︷︷ ︸
a0

∨ (b10 ∧ b11 ∧ . . .)︸ ︷︷ ︸
a1

∨ . . . .

The first challenge lies in designing algorithms that opti-
mize the cost of retrieving evidence objects needed to resolve
the decision query. In the simplest model, the query is resolved
when a single viable course of action is found. Other more
nuanced models may be possible. For example, a query could
be resolved when a viable course of action is found for which
additional conditions apply that may be represented by another
logical expression structure ANDed with the original graph.

A. Minimizing Retrieval Cost by Short-ciruiting

Associated with each condition bij may be several pieces
of metadata. Examples include (i) retrieval cost Cij (e.g., data
bandwidth consumed), (ii) estimated retrieval latency lij , (iii)
success probability pij (i.e., probability of evaluating to true),
and (iv) data validity interval dij (i.e., how long the data object
remains fresh). The question becomes: how to orchestrate the
retrieval such that the query is resolved at minimum cost?

Sequential retrieval of evidence objects gives the most
opportunity to take advantage of the decision logic structure
to short-circuit and prune unnecessary retrievals in view of
previously retrieved objects. Simply put, when handling an
AND,

ai = bi0 ∧ bi1 ∧ bi2 ∧ . . . ,

we want to start with the most efficient bij and proceed
downwards. Here, “most efficient” means highest short-circuit
probability per unit cost

1− pij
Cij

.

Imagine a particular course of action whose viability depends
on just two conditions, h and k, that require retrieving and
examining a 4 MB and a 5 MB audio clip, respectively. It
has been estimated (e.g., from historic data or domain expert
knowledge) that condition h has a 60% probability of being
true, whereas k has a 20% probability. In this case, we would
want to evaluate k first, as it has a higher short-circuiting
probability per unit bandwidth consumption. Intuitively, this
is because it is more likely to be false, thereby producing a
result that obviates retrieval and evaluation of the remaining
ANDed primitives. More precisely:

1− 0.2

5︸ ︷︷ ︸
0.16

>
1− 0.6

4︸ ︷︷ ︸
0.1

.
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Hence, this evaluation order leads to a lower expected total
bandwidth consumption compared to the other way around
(i.e., evaluating h before k)

5 + 0.2× 4︸ ︷︷ ︸
5.8

< 4 + 0.6× 5︸ ︷︷ ︸
7

.

Similarly, for the handling an OR in the logic structure:

q = a0 ∨ a1 ∨ a2 ∨ . . . ,

we start processing the ai with the highest short-circuiting
probability per unit cost; in this case, one that has the highest
probability of evaluating to true.

Conditions in the physical world can change over time.
Therefore, it is important that, at the time a decision is made,
all pieces of information involved must still be fresh. Other-
wise, decisions will be made based on (partially) stale infor-
mation. A greedy algorithm has been proposed [3], where all
data object requests are first ordered according to their validity
intervals (longest first) to meet data expiration constraints, then
rearrangements are incrementally added, according to objects’
short-circuiting probabilities per unit cost, to reduce the total
expected retrieval cost.

The approach is heuristic and does not have a known
approximation ratio. Near optimal algorithms should be inves-
tigated. Unlike early work that considers object retrieval over
a single channel, it is interesting to extend the formulation
to consider more general network topologies. Importantly, this
retrieval order is influenced by models of the physical world
that determine how fast physical state changes, and thus how
often it needs to be sampled. Such models will be incorporated
into the optimization to refine expressions of short-circuit
probability. Specifically, whether or not a retrieved object
short-circuits an expression depends not only on the value
of the corresponding predicate evaluation, but also on when
the evaluation was carried out. Stale evaluation results are not
useful. Hence, the optimization must be cognizant of timing
constraints derived from physical models of the underlying
measured phenomena.

B. Minimizing Retrieval Cost by Optimizing Coverage

Another interesting question in minimizing the cost of
object retrieval lies in selecting the sources from which objects
should be retrieved, as well as the annotators needed to
compute predicate values from the supplied evidence. Three
interesting challenges arise in the context of this optimization.

First, in general, multiple sources may offer evidence
objects that help evaluate the same or overlapping subsets
of predicates needed for resolving a decision query. Some
evidence objects may lead to evaluating multiple predictates at
once. In our running example of route finding, a single picture
from an appropriate camera can help evaluate conditions on
multiple nearby road segments at once, if all such segments
are in the camera’s field of view. Hence, to determine the most
appropriate sources to retrieve evidence from, one must solve
a source selection problem. This problem can be cast as one of
coverage. It is desired to cover all evidence needed for making
the decision using the least-cost subset of sources. Variations
of this problem will be investigated in the proposed work.

Second, an interesting novel factor in our resource man-
agement model is the existence of annotators. Not only do we
need to collect evidence objects, but also we want to use them
to determine specific predicate values. As mentioned earlier, an
annotator could be a human, in which case one must consider
the cost of delivering the collected evidence to that human for
annotation. Alternatively, the annotator could be a machine.
When the annotator is the query source, all evidence must
simply be shipped to that source for both annotations and
decision making. In this case, we assume success at resolving
the query as long as all evidence objects can be shipped by the
decision deadline and remain fresh at that deadline. When the
annotator is a piece of software, we other challenges arise. For
example, where in the distributed system should that software
be located to minimize decision cost? Besides considerations
of network cost, how to account for processing factors such as
load balancing on the annotators?

Finally, there is the issue of confidentiality and trust. A
user might not trust the accuracy of specific annotators or
might not wish to send specific evidence objects to them
for confidentiality reasons. Such additional constraints will
be incorporated into the optimization algorithm. To address
trust, the label values computed by different annotators will
be signed by the annotator. Such signatures can be used
to determine if a particular cached label meets the trust
requirements of the source. Similarly, labels can note which
objects the annotator used to make their annotation decision.
That way, trust becomes pairwise between the annotator and
the source. If an annotator requires multiple pieces of data to
solve a predicate, then all are stored in the label. In JSON,
one can think of the following label format:

{
"label":"viableX",
"type":"road condition",
"value":true,
"annotator":"/BBN/boston/bldg9/photo_analysis_v2.39",
"sources": ["/city/marketplace/south/noon/camera1",

"/city/marketplace/north/dawn/camera5"]
}

IV. REAL-TIME DECISION-DRIVEN SCHEDULING

The architecture described in the previous section inspires
opportunities to develop a new type of real-time scheduling
theory, we call decision-driven scheduling. The objective of
a decision-driven scheduling algorithm is to schedule the
retrieval of data (evidence) objects needed for current decision
queries.

The retrieval schedule must obey several constraints. First,
decisions must be carried out by their respective deadlines,
leading to deadline constraints. Second, at the time that a
decision is made, the data or labels it is based on must be
fresh. Since retrieved evidence eventually becomes stale due
to changes in the physical state of the underlying phenomena,
the latter requirement leads to data validity constraints. We say
that each retrieved object has a validity interval after which it
is no longer guaranteed to be accurate. Decisions must be made
while the objects they need are within their validity intervals.
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A. Initial Results

Simple versions of the above problem have been solved
in recent work [1], [2]. For example, consider the basic case
of a single task (i.e, decision query) deciding the viability of
a single course of action, where the underlying data objects
are retrieved over a single resource bottleneck. For simplicity,
let the source also be the data annotator. Hence, the system
must simply deliver all evidence objects to the source by the
decision deadline.

In this scenario [1], one needs to retrieve N data objects
O1, . . . , ON from corresponding sensors, S1, ..., SN . The sen-
sors might normally be off. Once activated, they sample their
environment periodically, at period Ii, equal to the validity
interval of the sensor measurement. Delivering a measurement
from sensor Si (i.e., object Oi) takes bandwidth Ci. Let ti
denote the activation time of sensor Si, which is also the time
its data is sampled. Subsequent samples will occur at times
tik = ti + kIi (where k is an integer). Once all needed data
objects are retrieved from all N sensors via the communication
medium, the decision can proceed. At that time, the sensors
are deactivated. Let the time instant at which all decision data
has been fetched be denoted by F . We shall henceforth call
it the decision time. We require that F ≤ D, where D is the
decision deadline.

Let the optimal retrieval policy be one that chooses acti-
vation times, ti, such that cost is minimized. In the absence
of short-circuit opportunities, each object must be retrieved at
least once. Hence, the optimal cost is:

Costopt =
∑

1≤i≤N

Ci (1)

It occurs when no sensor is sampled twice. Let a feasible
retrieval schedule be one that satisfies the decision deadline.
Recent work has shown that if any feasible retrieval schedule
exists, then a feasible retrieval schedule exists with a cost
exactly equal to Costopt. This is because, at the time the
decision is made in any schedule, only one sample from each
sensor is within its validity interval. For purposes of that one
decision, other previous samples from the same sensor need
not have been retrieved, as they would not be used.

The above suggests that the aformentioned schedulability
problem can be cast as one of finding sensor activation times
ti and a retrieval order such that decision cost is exactly
Costopt. If no solution is found, the problem is unschedulable.
Accordingly, the optimal retrieval scheduling policy as one that
finds a retrieval order that meets the two constraints below,
whenever any other policy does:

Data freshness: ti + Ii ≥ F (∀i, 1 ≤ i ≤ N),

Decision deadline: t+D ≥ F,

where the decision query arrives at time t. The freshness
constraint above ensures cost minimality. If it is violated, a
second sample is taken from the sensor, which makes the cost
non-optimal. These can also be represented together as:

min ( min
1≤i≤N

(ti + Ii), t+D) ≥ F

Prior work [1] shows that the optimal solution to the above
problem for a single decision query and a single communica-
tion channel is the Least Volatile object First (LVF). In this
policy, the object with the longest validity interval is retrieved
first over the shared channel. The same work also determined
an optimal retrieval policy for multiple independent decision
queries, assuming that each query is deciding the viability of
a single course of action, the sets of evidence objects needed
for the different queries are non-overlapping, and there is a
single resource bottleneck over which objects are retrieved.
The work proved that the optimal retrieval policy falls in the
category of hierarchical scheduling, where non-overlapping
priority bands are first assigned to different decision queries,
then objects needed for a given query are prioritized within its
band. In other words, priority assignment is hierarchical. First,
query-level priorities can be decided. Second, within a query,
a sequence for object retrieval can be defined.

The optimal algorithm, as shown in prior work [1], assigns
the highest priority to the query with the smallest value of the
minimum of its object validity expiration times and its decision
deadline. Within a query, it retrieves object pertinent to that
query in the Least Volatile object First (LVF) order.

B. Remaining Challenges

The above work has several limitations. First, while it does
consider multiple decision queries, they are assumed not to
overlap in the sets of data objects they need. Second, the
decision for each query involves evaluation of validity of only
a single course of action. Hence, there is no disjunction in the
decision model. Short-circuit opportunities are not considered.
Finally, all objects needed for making the respective decisions
are assumed to be retrieved over a single channel, essentially
reducing the problem to one of single-resource scheduling. To
establish a general theory of decision-driven scheduling these
limitations need to be removed. This leads to several avenues
of investigation:

• Non-independent queries: It is important to consider
the case where some queries overlap in needed data
objects. In this case, retrieving each object once is
not optimal anymore. That is because, if an object
is shared by multiple queries, there is a possibility
that the same data object can be reused. Such reuse
can reduce total cost. At present, the optimal solution
to this problem is unknown. Algorithms with near
optimal performance are needed. They should be fur-
ther extended to account for more complex decision
models (i.e., multiple courses of action) and short-
circuit opportunities.

• Noisy sensor data: The challenge here is to adapt prior
algorithms to the case where sensor data is not clean.
Hence, it might not be enough to retrieve a single piece
of evidence to evaluate some label. Rather, multiple
pieces may be needed to corroborate the computed
label to a specified degree of confidence. The need
for such corroboration has implications on source
selection and data retrieval schedules. Requirements
for confidence in computed predicate values, in the
presence of noisy data, lend themselves nicely to
the formulation of new scheduling problems, where
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the right amount of evidence must be retrieved to
guarantees a level of confidence in decision results.
Annotators, in this scenario, may need to examine
multiple pieces of evidence (e.g., multiple pictures) to
determine the value of a particular label (e.g., whether
a route segment is viable). Once the label value is de-
termined, annotators can offer feedback on the quality
of individual inputs used. For example, they may mark
a given picture (and hence, its source) as not useful.
Such feedback can accumulate to gradually build
profiles for reliability of sources. In turn, these profiles
may be considered in future source selection problems
to avoid bad sources or seek sufficient corroboration
such that a required level of confidence in results
is attained. The problem gets more complicated by
considering reliability of annotators. A bad annotator
could offer false feedback that improperly influences
the reliability profile of a source. Hence, individual
query originators may develop different profiles for
the same data sources, depending on which annotators
they trust.

• Event-triggered decision-making: In many scenarios,
the need for decision-making itself will be triggered
by sensor values. For example, the firing of a motion
sensor inside a warehouse after hours may trigger a
decision task to determine the identity of the intruder.
Other decisions may need to be done periodically.
The scheduling problems described above can thus be
augmented by analysis that takes into account decision
triggers, offering a better model of expected future
workload, such as periodicity, or specific contexts in
which the decision query will arrive.

V. NETWORK CHALLENGES

In a distributed system where decision tasks can originate at
different nodes and where evidence needed to make a decision
may be distributed, it is important to address the underlying
networking challenges. Specifically, how do we find sources
who have evidence pertaining to the decision? Where to cache
objects as they are retrieved from those sources? When objects
are processed by annotators to generate values for one or
more labels, where should these values be stored? Answers to
these questions are needed in the context of three mechanisms,
below.

A. Hierarchical Semantic Naming and Indexing

Since decision-driven resource management is centered
around data retrieval, it seems natural that some form of
information-centric networking can be implemented to facil-
itate routing queries and finding matching objects [5], [6].
In information-centric networks, such as NDN [7], data, not
machines, are the primary named entity on the network. The
network adopts hierarchical data names, instead of hierarchical
IP addresses. In this paradigm, consumers send low-level
queries, called interest packets, specifying a data name or name
prefix. Routing tables directly store information on how to
route interests to nodes who previously advertized having data
matching a name prefix. Hence, interests are routed directly
to nodes that have matching data. The data then traverses the
reverse path of the interest to return to the query originator.

Adaptations of the information-centric networking ideas
can furnish the underlying framework for routing queries
to sources in the decision-driven execution architecture. In
an NDN-like implementation, evidence objects, labels, and
annotators all have public names in an overall name space.
Nodes possessing those objects advertize their names. Nearby
routers who receive those advertizements update their tables
such that interests in the given names are correctly forwarded
to nodes that have matching objects. Since labels encode the
semantics of the underlying variables, we call the resulting
scheme hierarchical semantic indexing.

In designing hierarchical name spaces (where names are
like UNIX paths), of specific interest is to develop naming
schemes where more similar objects have names that share
longer prefixes. This naming scheme will allow the network
do clever object substitutions, when approximate matches are
acceptable. For example, when a query arrives for an object
/city/marketplace/south/noon/camera1/,
if retrieving this object is impossible or costly, the
network may automatically substitute it with, say,
/city/marketplace/south/noon/camera2/.
This is because the large shared name prefix signifies that
the latter object is very similar to the former (e.g., a view
of the same scene from a different angle). Hence, it is a
valid substitution when approximate answers are allowed.
This mechanism may lead to substantial resource savings
and more graceful degradation with overload. In fact, it may
offer a new foundation for network congestion control, where
requirements on the degree of acceptable approximation are
relaxed as a way to combat congestion and tightened again
when congestion subsides.

B. Information-maximizing Publish-Subscribe

Building on the aforementioned hierarchical semantic in-
dexing, it becomes possible to develop network resource
management protocols that maximize information flow from
sensors to decision tasks. The importance of delivering a piece
of information is not an absolute number, but rather depends on
other information delivered. For example, sending a picture of
a bridge that shows that it was damaged in a recent earthquake
offers important information the first time. However, sending
10 pictures of that same bridge in the same condition does
not offer 10-times more information. Indeed, the utility of
delivered information is sub-additive. This observation has two
important implications; namely:

• Data triage cannot be accurately accomplished by
assigning static priorities to data packets, as the im-
portance of one piece of information may depend on
other information in transit.

• Data triage cannot be accurately accomplished at the
data source, as the source may be unaware of other
sources supplying similar information.

The above two points argue for implementing data triage in
the network. An information-utility-maximizing network must
perform data triage at network nodes to maximize the delivered
(sub-additive) information utility in the face of overload. Our
premise is that a network that explicitly supports hierarchical
names for data objects (as opposed to hierarchical IP addresses
for machines) can directly maximize and significantly improve
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delivered information utility. In a well-organized hierarchical
naming scheme, objects with hierarchical names that share
a longer prefix are generally closer together in some logical
similarity space. Assuming that items closer together in that
space share more information in common, distances between
them, such as the length of the shared name prefix, can be
leveraged to assess redundancy in sub-additive utility maxi-
mization. Since content names are known to the network, fast
greedy sub-additive utility maximization algorithms can be im-
plemented on links and caches. For example, the network can
refrain from forwarding partially redundant objects across bot-
tlenecks; it can cache more dissimilar content, and can return
approximate matches when exact information is not available.
The above intuition suggests that naming data instead of hosts
lays a foundation for information utility maximization and for
improving network overload performance.

C. Support for Different Task Criticality

Importantly, network resource management mechanisms
must support tasks of different criticality. In a network that
directly understands content names, it is easy to implement
different content handling policies that depend on the content
itself. Some parts of the name space can be considered more
critical than others. Objects published (i.e., signed) by an
authorized entity in that part of the name space can thus receive
preferential treatment. There objects, for example, can be
exempt from the aforementioned approximation mechanisms
for congestion control. They can also recieve priority for
caching and forwarding. The integration of such preferential
treatment mechanisms with the scheduling problem formula-
tion described earlier is itself an interesting research problem.

VI. IMPLEMENTATION

To perform a proof-of-concept validation, we imple-
mented a distributed system, called Athena, that embodies the
decision-driven execution paradigm.

A. Query Requests

In this implementation, a user can issue query request(s)
at any Athena node, using a Query Init call. At each node,
upon user-query initiation, Athena translates the query into the
corresponding Boolean expression over predicates, and starts
carrying out necessary predictate (label) evaluation. This pro-
cessing is done in the context of Query Recv. The component
reacts to received queries (either initiated locally or propagated
from neighbor nodes) by carrying out the following execution
steps: (i) add the new query to the set of queries currently
being processed by the node, (ii) determine the set of sources
with relevant data objects using a semantic lookup service [8],
[9], (iii) compute the optimal source subset using a source
selection algorithm [10], (iv) send the Boolean expression of
the query to neighbors and (v) use a decision-driven scheduler
to compute an optimal object retrieval order according to the
current set of queries. Requests for those objects that are slated
for retrieval are then put in a queue, called the fetch queue.
Note how, in this architecture, a node can receive the Boolean
expression of a query from step (iii) above before actually
receiving requests for retrieving specific objects. This offers
an opportunity to prefetch objects not yet requested. A node
receiving a query Boolean expression from neighbor nodes will

try prefetching data objects for these remote queries, so these
objects are ready when requested. Such object requests are put
in a prefetch queue. The prefetch queue is only processed in
the background. In other words, it is processed only when the
fetch queue is empty. When a queue is processed, an object
Request Send function is used to request data objects in the
fetch/prefetch queue from the next-hop neighbors.

B. Data Object Requests

As a query is decomposed into a set of data object requests,
each corresponding to a specific label to be resolved. These
requests are then sent through the network towards their
data source nodes. Each node maintains an Interest Table
that keeps track of which data objects have been requested
by which sources for what queries. The interest table helps
nodes keep track of upstream requests and avoid passing along
unnecessary duplicate data object requests downstream.

Each node also serves as a data cache, storing data objects
that pass through, so new requests for a piece of data object
that is already cached can be served faster. When a forwarder
node already has a cached copy of a piece of data, it needs
to decide as to whether or not this cached copy is still fresh
enough to serve an incoming request for this piece of data. If
yes, then the forwarder would just respond to this request by
returning the cached object, otherwise it would pass along the
request towards the actual source for a fresh copy.

Specifically, a Request Recv is called upon receiving an
object request from a neighbor. The request is first bookmarked
in the interest table. Then, if the object is not available locally,
the request is forwarded (using Request Send) closer to the
data source node if the request was a fetch (prefetch requests
are not forwarded).

Above, we just discussed how data object requests are
handled by Athena nodes. Next, we will look at how Athena
handles the transmission of the actual requested data content,
either from actual data source nodes or intermediate nodes
upon cache hits, back towards the requesters.

C. Data Object Replies

Requested data objects (e.g. a picture, an audio clip, etc)
are sent back to corresponding requesters in the similar hop-
by-hop fashion as that of the requests themselves. Each data
object, as it is being passed through intermediate forwarder
nodes, is cached along the way. Cached data objects will decay
over time, and eventually expire as they reach their freshness
deadlines (age out of their validity intervals). In terms of func-
tional interfaces, each Athena node implements the following
two functions: Data Send is used to send requested data object
content back towards the original requesters; and Data Recv
is invoked upon receiving a piece of requested data object,
which is then matched against all entries in the interest table.
If the current node is the original query requester node, the
data object is presented to the user for the label value, which
is in turn used to update the query. Otherwise, the object will
be forwarded to the next hop towards the original requester.

One important note here is that in Athena, a raw data object
needs to be sent from the source back to the requester only
when the predicate evaluation (labeling) has to be done by the
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Fig. 1. A visualization showing the flow of requests and data as nodes in Athena work together to resolve a query. In this example, the user uses Query_Init()
to create and issue a query at Node A. The query in our example involves two data objects, u and v. Node A calls Query_Recv() locally to start the processing.
The query is propagated through the network (edge 3 and 4), reaching Node B and C. Upon receiving the query, Node C attempts prefetching, first for data
object u in this particular example. Since Node C is the data source for u, it sends u back towards the requester node (edge 8, 11, 13, and 14), during which,
Node A’s fetch request meets the returned data at Node C (edge 9). Upon receiving u at Node A, the user examines the data, makes a judgment regarding the
corresponding condition state of the query. This state label provided by the human decision maker is then propagated back into the network (edge 17). The
handling for data object v follows a similar pattern, for which the fetch request has a cache hit at the forwarder node B, without reaching the actual source node
C, due to prefetch requests. In the figure, grey arrows and requests represent those processed in the background; namely pre-fetches and their responses. Solid
black arrows and requests are those processed in the foreground; namely actual object fetch requests and their responses.

requesting source. For example, after an earthquake, a user
is using Athena to look for a safe route to a nearby medical
camp. In doing so, Athena retrieves road-side pictures along
possible routes for the user to examine. This judgment call—
looking at a picture and recognizing it as a safe or unsafe road
segment—is put in the hands of the user (the human decision
maker) at the original query requester node. Alternatively,
predicate evaluation could be made by machines automatically
(e.g., using computer vision techniques to label images). If a
qualified evaluator is found at a node for a given predicate, the
predicate can be evaluated when the evidence object reaches
that node. If the source of the query specified that the signature
of this evaluator is acceptable, only the predicate evaluation is
propagated the remaining way to the source (as opposed to the
evidence object). In the implementation, we restrict predicate
evaluators to sources of the query.

D. Label Caching

As requested data objects arrive, the query source can then
examine the objects and use their own judgment to assign
label values to the objects for the particular query task. These
labels are injected back into the network, such that future data
requests might potentially be served by the semantic labels
rather than actual data objects, which depends on whether the
requests need to evaluate the same predicates, and what trust
relations exist among the different entities (e.g. Alice might
choose not to trust Bob’s judgment, and thus would insist on
getting the actual data object when a matched label from Bob
already exists). As such human labels are propagated from the
evaluator nodes back into the network towards the data source

nodes, they are cached along the way, and can be checked
against the interest tables and, upon matches, used locally to
update query expressions, and forwarded to the data requesters.
Compared to sending actual data objects, sharing and utilizing
these labels can lead to several orders of magnitude resource
savings for the particular requests.

To help better visualize how the various discussed compo-
nents work together, we show, in Fig. 1, an example of requests
and data flows for a particular query.

VII. EVALUATION

We emulate a network of Athena nodes, each running
the actual implementation code discussed above in a separate
process per emulated node. Each node is uniquely identified
by its IP:PORT pair. We adopted a set of simulation-based ex-
periments featuring a post-disaster route assessment scenario,
where Athena is deployed in a disaster-hit region and is used
by people in the region to carry out situation assessment and
route-finding tasks. For simplicity, we consider a Manhattan-
like map, where road segments have a grid-like layout. The
EMANE-Shim network emulator [11], [12] was used to handle
all data object transmissions.

We experimented with multiple data retrieval protocols as
follows:

• Comprehensive retrieval (cmp): As a first baseline,
we include a simple algorithm where all relevant data
objects for each query are considered for retrieval.
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Fig. 3. Total network bandwidth consumption comparison of all
schedule schemes (with 40% fast changing objects).

• Selected sources (slt): This is one step beyond the
above cmp baseline, where data source selection is
performed to minimize the candidate set of data ob-
jects to be retrieved to cover all predicates in queries
(e.g., if two cameras are overlapping on an road
segment that we are interested in, we then can carry
out source selection to help determine which one we
use, but if two different roads are considered, we
retrieve objects that cover both roads). We borrow a
state of the art source selection algorithm [10] and use
it in our implementation and experiments.

• Lowest Cost Source First (lcf): This scheme takes the
above selected source nodes, and sorts them according
to their data object retrieval costs (i.e., data object
size), prioritizing objects with lower costs.

• Variational Longest Validity First (lvf): A decision-
driven scheduling algorithm, where resolved labels are
not propagated into the network for future reuse.

• Variational Longest Validity First with Label Sharing
(lvfl): Our scheduling algorithm, with label sharing
enabled. After a label value is computed, it is propa-
gated back into the network towards the corresponding
data source node. Thus, any node along the path
that intercepts a future request for this data object
can potentially return this label value rather than
(requesting and) returning the actual data object.

We divide the experimental region into a Manhattan grid
given by an 8×8 road segment network, with around 30 Athena
nodes deployed on these segments, where each node’s data
can be used to examine the node’s immediate surrounding
segments. Data objects range from 100 KByte to around 1
MByte, roughly corresponding to what we might expect from
pictures taken by roadside cameras. The network simulator
is configured with 1 Mbps node-to-node connections. Each
route-finding query consists of five candidate routes that are
computed and randomly selected from the underlying road seg-
ment network. Each node issues three concurrent queries. Each
data point is produced by repeating the particular randomized
experiment 10 times.

In our experiments, data objects belong to two different
categories, namely slow changing and fast changing. The
ratio of fast changing objects to the total number of objects
is a quantification of the level of environmental dynamics.

First, we explore how different mixtures of slow and fast
changing objects affect the ability of the system to (success-
fully) resolve decision queries under each of the information
retrieval schemes. A decision query is said to be successfully
resolved if the system manages to supply enough fresh data
in response to a query, such that a decision can be reached by
the query deadline, according to the decision logic. The results
are shown in Fig. 2. As seen, at all levels of environment
dynamics, decision-driven information retrieval schemes are
able to successfully resolve most, if not all, queries, whereas
baseline methods struggle. This is due to their failure to take
into account the data validity constraints when scheduling data
retrieval, which then leads to data expirations and refetches.
This not only increases bandwidth consumption, but also
prolongs the query resolution process, potentially causing more
data to expire.

The actual network bandwidth consumption comparisons
of all schemes are shown in Fig. 3. We already saw from Fig. 2
that the various baseline schemes fall way short in terms of
query resolution ratio. Here we observe that they additionally
consume more network bandwidth. Comprehensive retrieval
incurs the highest amount of network traffic, as it is neither
careful about avoiding redundant data object retrieval, nor
does it try to optimize the order when fetching data. Network
bandwidth consumption marginally decreases as we include
source selection (slt) and then follow a lowest-cost-first (lcf)
data retrieval schedule. Our decision-driven scheduling strat-
egy leads to a considerable decrease in network bandwidth
consumption. Moreover, when opportunistic label sharing (lvfl)
is enabled in Athena, more significant bandwidth savings are
observed, as expected, since labels are transmitted instead of
actual data objects, when possible.

This very preliminary evaluation serves as an initial proof
of concept that decision-driven execution improves application
ability to make timely decisions while at the same time
reducing cost. More evaluation is needed in more realistic
settings to offer more confidence in the proposed approach.

VIII. DISCUSSION

The bulk of this paper focused on challenges in decision-
driven execution that are more directly aligned with distributed
computing. However, the paradigm offers interesting research
opportunities in other related areas as well. For example,
the paradigm offer a mechanism for networks to learn about
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their users and the physical environment, then exploit such
learned knowledge for optimizing decision-making. The de-
cision model used by the network can itself be refined over
time as the system observes the decision-makers’ information
requests, records their decisions, and takes note of the underly-
ing context as measured by the multitude of sensors connected
to the system. Subsequent mining of such data can lead
to progressive refinement of decision-making models and to
increasingly accurate reverse-engineering of decision stratgeies
of individuals and groups. Such learned knowledge can, in
turn, be applied to optimize cost of future decision-making.
The system, being connected to sensors, can also derive its own
models of physical phenomena over time using any of an array
of well-known estimation-theoretic approaches. These models
can inform settings of various elements of object metadata,
such as validity intervals of different types of measurements
and probability distributions of particular observed quantities.

While much of the discussion in this paper focused on us-
ing the structure of a single decision query to anticipate future
object fetch requests, it is also possible to apply pattern min-
ing techniques to identify common decision query sequences
and thus anticipate not only current but also future decision
needs. This is possible because users, in many cases, adhere
to prescribed workflows dictated by their training, standard
operating procedures, or doctrine. The workflow is a flow-
chart of decision points, each conditioned on certain variables
or inputs. Since the structue of the flow chart is known, so are
the possible sequences of decision points. One can therefore
anticipate future decisions given current decision queries. An-
ticipating future information needs can break traditional delay-
throughput constraints: anticipating what information is needed
next, as suggested by mission workflow, gives the system more
time to acquire it before it is actually used.

Finally, observe that decisions can be conditioned not only
on current state but also on anticipated state. For example, a
decision on where to intercept a fleeing criminal will depend on
predictions of where the criminal goes next. This information
may be inferred indirectly from current measurements. Hence,
decision-driven execution lends itself nicely to increasing the
efficacy of missions involving a significant anticipatory or
prediction component, as it offers the mechanisms needed
to furnish evidence supporting the different hypotheses or
predictions of future actions of agents in the physical en-
vironment. The system can therefore empower applications
involving intelligent adversaries, such as military operations
or national security applications. Design of such applications
on top of decision-driven execution systems remains an open
research challenge.

IX. CONCLUSIONS

In this paper, we outlined a novel paradigm for distributed
execution, were all resource consumption is driven by informa-
tion needs of decision making. The hallmark of the paradigm
lies in exporting the logical inference structure of decision
making to the underlying resource management layer in order
to enable more efficient acquisition of data that simultaneously
increases decision timeliness, lowers decision cost, while im-
proving decision quality. Preliminary evaluation suggests that
the approach holds promise in meeting its timeliness, cost, and
accuracy goals.
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